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A COUNTEREXAMPLE IN RENEWAL THEORY

By Davib Root
Purdue University

The purpose of this note is to give a counterexample to the following
statement. Let Y;, Y, --- be i.i.d rv with distribution function F and
P[Y, = 0] = 1. For any set 4 < [0, o) let U(4) = - F**(A4) be the
usual renewal measure. If 4 < [0, ©0) and U(4) = + oo then there is a
renewal in 4 almost surely.

1. Introduction. The purpose of this note is to give a counterexample to the
following statement. Let Yy, Y5, --- be i.i.d. rv with distribution function F and
P[Y, 2 0] = 1. For any set 4 c [0, o0) let U(4) = Y=o F*(A) be the usual
renewal measure (see Feller (1966)). If 4 < [0, c0) and U(4) = + oo then thereis a
renewal in 4 almost surely.

2. Counterexample. Let P[Y; = 1] = P[Y; = n] = 4. Let

A(j) ={n+kn|n—k 2 2[2(n+k)loglog(n+k)]*,  n+k2j}
It will now be shown that for all jand ¢ > 0
Yo, P[S,€A(j)] =, whereS,=37;Y;,and
for j sufficiently large P[S, € A(j) for some n] < e.

Proor. The second part follows from the law of the iterated logarithm, (see
Feller [2]). To show that ), P[S, € A(j)] = co we may take j = 0. Then it will be
shown that for large n

(2.1) 2P[S,€ A(0)] = (2nn)~* [Pre~* 2" dx = p, where
a, =2(2nloglogn)* and b, =2(2nlogn)?.

For large b, [ e™**/? dx > (2b) ™! e~**/2, (It6 and McKean [4] page 17). Combining
this with (2.1) we have

1 o —x2/2d 1 e—4loglogn 1
(271')* 2(2 loglogn)1/2 € x> (271')* 4(2 lOg lOg n)% > n ’

Hence ) P P[S, € A(0)] = oo.
The next lemma will establish (2.1) and complete the counter example.

Lemma 1. If W, = Y i, X;, where Xy, -+ are ii.d. with

2p, >

P[X;=1] =% = P[X, = —1] then
P[2(21loglog I* < W, < 2(21log 1)*] l
(2”)_“%2%}35{3;7)1/2 e_xz/zdx - as L — oo.
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PrOOF. Only the case / even will be considered. If / = 2n then by Sterling’s
approximation

(2n)! = e~ "(2n)*"(2n2n)*(1 +¢,,)

where ¢,, > 0O as n — oo.
Following Breiman ((1968) pages 8-9) let

P,=P[W,,=0] =(nn)"*(14+6,) 6,20 as n- co.

(n)(n—1)--(n—j+1)

(n+j)--(n+1)

2_2’12ncn+j = P[WZn = 2]] = Pn
=P,D;, . where

1

D, = .
(1+j/n)(1+j/n—1)---<1+n_§.+1>

i-1 j
logD;, = —kzolog 1+n_—k .

From

(1) = (1 +¢(9) and o9 5 1~

i j
logD;, = —,‘Z'On—k<1+8<n—k>>'

i—1 j
logD;, = —(1+8j’”)k;on—k'
.2

i i1
n—k n\l1—k/n
J

! j_l j ’
logD;,, = —(1+¢;,)(1 +aj,,,)k;0; = —(L+e;)(1+&).) >

we have

This may be written

Using the equality

we finally arrive at

Set R, = {j|[2(2n)loglog2n]* < j < [2(2n)log2n]*}.
We will show that
(a) sup;.g,(¢;nj*/n)—>0asn—> o and

b) sup;.x (& ,7*/n)—0asn— .
J n \"J,
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For (a) note that

J
8w = SUPg<kxj— 13<n k)

< [2(2n)log2n]? <1 1
="\n—-[2(2n)log2n—17* )= " [2(2n)log2n]*
n—[2(2n)log2n]*
1 2(4log2n)*
Sl enkgan = w7
+
Thus
> 2(4log2n)*2(2nlog2n
SupjeRnsj,n{T= ( ngz ) ( ng ) -0 as n— 0.

To see (b) note that

1
MaX; g, &jn S MAXk<j—1,je R”m—l
- 1 - 1 2(4log2n)* for
= ) [2(2n)logn]? _1 (4log2n)t™ or large n.
T n N
Hence
2 2(4log2n)*((2(2n)log2n)*)?
Sup_]eR” ]n%: ( nf n) (((n);)g n)) 0 as n — o0.
Thus D;,, = (1+A;,)e """ where sup; . g, A;, — 0 as n— co.
Hence
g, = P[2(2(2n)loglog2n)* < W,, < 2(2(2n)log2n)*]
1 .
= (146)Y e, —p eI i 0.
1+ ,,)zjeRn(nn)%e where lim,_, ,J, =0
Set

t,=j@In)t; At =(2/n)*

=(1+6, At—— “H2 At
where 2(2 log log 2n)* < ¢ i <2Q2log 2n)* which is the Riemann approximation to
the integral. The lemma is proved and since P[S, € 4(0)] = P[2(2n log log n)* <
W, < 2(2n log n)*] we have (2.1).

REMARKS. It is possible to show that if the renewal times are negative exponential
or lattice then u(4) = oo will imply a renewal in 4 almost surely. The negative
exponential case can be extended to the class of distributions F with densities f
where f(x)/ [1—F(x)] = 6 > 0 for all x > 0 where 1 —F(x) > 0.
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