ON AN INEQUALITY FOR ORDER STATISTICS

BY HAROLD D. SHANE Baruch College of CUNY

The problem of finding a Chebyshev type inequality for random variables with unknown or non-existent variance was considered by Z. W. Birnbaum (1970). In this present paper, a statistic, T, similar to, but simpler than Birnbaum's, is considered. The statistic is independent of location and scale parameters for families of bell-shaped distributions and so may be considered to be a competitor to Student's t. An inequality establishing an upper bound for $P(|T| > \lambda)$ is proved. This bound is considerably smaller than the corresponding bound found by Birnbaum. Finally, an improvement of the latter is offered.

1. Introduction and summary. For a sample of size 2n+1 from a "bell-shaped" distribution, Z. W. Birnbaum (1970) has proposed a studentized Chebyshev type inequality. Denoting by $X_{(i)}$, the jth order statistic, he establishes that

(1.1)
$$P(|S| > \lambda) \le {\binom{2n+1}{n-r}} {\binom{2r}{r}} [\lambda(\lambda - 1)]^{-r} 2^{-(n+r)} \quad \text{for } \lambda > 1,$$

where $S = (V - \mu)/(W - U)$, μ is the median of the distribution, $U = X_{(n+1-r)}$, $V = X_{(n+1)}$ and $W = X_{(n+1+r)}$. In this paper, a statistic similar to S is considered and an inequality similar to (1.1) is developed. The inequality gives a considerably smaller upper bound for the probability of large values of the statistic. Finally, an improvement of Birnbaum's inequality is provided.

2. Notation and definitions. Let $X_{(1)} \le X_{(2)} \le \cdots \le X_{(2n+1)}$ be the order statistics for a sample of size 2n+1 of a random variable X. We consider the two order statistics

(2.1)
$$U = X_{(n+1-r)}, W = X_{(n+1+r)}$$

for some integer r, $1 \le r \le n$. We shall use W-U, the interquantile range between two sample quantiles and $\frac{1}{2}(U+W)$, a generalized midrange, to form the statistic

(2.2)
$$T = \frac{\frac{1}{2}(U+W) - \mu}{W-U}.$$

Comparing T and S, given by (1.1), we see that they have the same denominator and in each case the numerator is the difference between μ and an estimate of μ . Thus, T and S are statistics of the same form.

We shall assume that X has a bell-shaped probability density function f(x), that is

(2.3)
$$f(\mu - x) = f(\mu + x) \qquad \text{for } x \ge 0 \text{ and}$$

(2.4)
$$f(\mu+x)$$
 is nonincreasing for $x \ge 0$.

Received January 11, 1971.

Let F(x) be the cumulative distribution of X and denote by \mathcal{F}_B the family of all distributions having densities satisfying (2.3) and (2.4).

3. The inequality. If X has a probability distribution in \mathcal{F}_B , then

PROOF. Clearly T is independent of location and scale parameters, remaining unchanged under linear transformations of X. Consequently, we can assume without loss of generality that

$$\mu = 0.$$

The density function f(x) is assumed to be symmetric about zero and to be a nonincreasing function of |x|. Because the corresponding cumulative distribution function, F(x), is concave for $x \ge 0$, convex for $x \le 0$ and $F(0) = \frac{1}{2}$, it follows that for $0 < m \le 1$, $w \ne 0$,

(3.3)
$$\frac{F(w) - F(mw)}{w - mw} \le \frac{F(mw) - \frac{1}{2}}{mw} \le \frac{F(w) - \frac{1}{2}}{mw}.$$

The joint density of U and W is

(3.4)
$$g(u, w) = K(n, r)F^{n-r}(u)[F(w) - F(u)]^{2r-1}[1 - F(w)]^{n-r} \cdot f(u)f(w)$$

for u < w and zero otherwise.

where

(3.5)
$$K(n,r) = (2n+1)!/[(n-r)!]^2(2r-1)!.$$

By symmetry, we may write

$$(3.6) P(|T| > \lambda) = 2P(T > \lambda) = 2 \iint_{T > \lambda} g(u, w) du dw.$$

For $\lambda > \frac{1}{2}$,

(3.7)
$$P(T > \lambda) = P\left(\frac{W + U}{W - U} > 2\lambda\right) = P(U > mW),$$

where

$$(3.8) m = \frac{2\lambda - 1}{2\lambda + 1} \quad \text{and} \quad 0 < m < 1.$$

Combining (3.4) through (3.8), we have

(3.9)
$$P(|T| > \lambda) = 2K(n, r) \int_{w=0}^{\infty} \int_{u=mw}^{w} F^{n-r}(u) [F(w) - F(u)]^{2r-1} \cdot [1 - F(w)]^{n-r} f(u) f(w) du dw.$$

Noting that F(u) is nondecreasing, we obtain the bound for the inner integral

(3.10)
$$\int_{mw}^{w} F^{n-r}(u) [F(w) - F(u)]^{2r-1} f(u) du$$

$$\leq F^{n-r}(w) \int_{mw}^{w} [F(w) - F(u)]^{2r-1} f(u) du$$

$$= (2r)^{-1} F^{n-r}(w) [F(w) - F(mw)]^{2r},$$

which yields by direct substitution,

$$(3.11) P(|T| > \lambda) \le r^{-1} K(n, r) \int_0^\infty F^{n-r}(w) [F(w) - F(mw)]^{2r} \cdot [1 - F(w)]^{n-r} f(w) dw.$$

Multiplying through in (3.3) by w(1-m) and substituting into (3.11) we obtain

$$(3.12) P(|T| > \lambda) \leq \frac{K(n,r)}{r} \left(\frac{1-m}{m}\right)^{2r} \int_{\frac{1}{2}}^{1} z^{n-r} (1-z)^{n-r} (z-\frac{1}{2})^{2r} dz$$

$$= \frac{K(n,r)}{2r} \left(\frac{1-m}{m}\right)^{2r} \int_{0}^{1} z^{n-r} (1-z)^{n-r} (z-\frac{1}{2})^{2r} dz$$

$$= \frac{K(n,r)}{2r} \left(\frac{1-m}{m}\right)^{2r} \frac{(2r)!(n-r)!n!}{2^{2r}r!(2n+1)!}.$$

The latter step may be verified as follows: Let

$$J(a,b) = \int_0^1 z^a (1-z)^a (z-\frac{1}{2})^b dz,$$

then integration by parts yields

(3.14)
$$J(a,b) = \frac{b-1}{2(a+1)}J(a+1,b-2),$$

and the result follows by iteration. Since $(1-m)/m = (\lambda - \frac{1}{2})^{-1}$, combining (3.5) and (3.12), one obtains (3.1).

4. Conclusions and remarks. We note that for $\lambda > \frac{1}{2}$, $P(|T| > \lambda) \le P(|T| > \frac{1}{2})$. However,

(4.1)
$$P(|T| > \frac{1}{2}) = P\left(\left|\frac{W+U}{W-U}\right| > 1\right) = P(U, W > 0) + P(U, W < 0)$$
$$= P(U > 0) + P(W < 0)$$

since U < W. By symmetry

(4.2)
$$P(|T| > \frac{1}{2}) = 2P(U > 0) = 2\sum_{j=n-r+1}^{2n+1} b(j; 2n+1, \frac{1}{2})$$

where b(j;n,p) is the usual binomial probability function. Denoting this last probability by $B_{\frac{1}{2}}$ and noting that $B_{\frac{1}{2}}$ is conveniently tabulated for small n and approximated for large n, we may make a slight improvement in (3.1) writing

$$(4.3) P(|T| > \lambda) \le \min(B_{\frac{1}{2}}, \binom{n}{r}(2\lambda - 1)^{-2r}) \text{for } \lambda \ge \frac{1}{2}.$$

An improvement over Birnbaum's result can be achieved by replacing his upper bound for J(n-r, 2r) (page 431) by the exact value of the integral to yield

$$(4.4) P(|S| > \lambda) \le 2^{-2r} \binom{n}{r} \binom{2r}{r} \left[\lambda(\lambda - 1) \right]^{-r} = \binom{n}{r} \binom{2r}{r} \left[(2\lambda - 1)^2 - 1 \right]^{-r}, \lambda > 1.$$

Calling this new bound B(S) and the bound given in (3.1) B(T), we see that

(4.5)
$$B(T)/B(S) = [1 - (2\lambda - 1)^{-2}]^{r}/(2r), \qquad \lambda > 1.$$

Since for both inequalities spread is measured in units of W-U, it is noteworthy that B(T) is considerably smaller than B(S) for all values of λ at which the two are comparable. In addition, the bound B(T) is valid for a greater range of values of λ .

REFERENCE

BIRNBAUM, Z. W. (1970). On a statistic similar to Student's t. Nonparametric Techniques in Statistical Inference, ed. M. L. Puri. Cambridge Univ. Press 427-433.