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ON AN INEQUALITY FOR ORDER STATISTICS

By HAROLD D. SHANE
Baruch College of CUNY

The problem of finding a Chebyshev type inequality for random
variables with unknown or non-existent variance was considered by
Z. W. Birnbaum (1970). In this present paper, a statistic, 7, similar to,
but simpler than Birnbaum’s, is considered. The statistic is independent of
location and scale parameters for families of bell-shaped distributions
and so may be considered to be a competitor to Student’s . An inequality
establishing an upper bound for P(|[T| > 1) is proved. This bound is
considerably smaller than the corresponding bound found by Birnbaum.
Finally, an improvement of the latter is offered.

1. Introduction and summary. For a sample of size 2n+1 from a “bell-shaped”
distribution, Z. W. Birnbaum (1970) has proposed a studentized Chebyshev type
inequality. Denoting by X/, the jth order statistic, he establishes that

(1.1) P(|S| > 2) = B HCHAA—-1)] 27+ for 1> 1,

where S = (V—p)/(W—"U), u is the median of the distribution, U = X4,
V = X(u+1yand W = X, 14, In this paper, a statistic similar to S is considered
and an inequality similar to (1.1) is developed. The inequality gives a considerably
smaller upper bound for the probability of large values of the statistic. Finally, an
improvement of Birnbaum’s inequality is provided.

2. Notation and definitions. Let X, < Xy = - £ X(2,+1) be the order
statistics for a sample of size 2n+ 1 of a random variable X. We consider the two

order statistics
(2-1) U =X(n+1—r)’ w =X(n+1+r)
for some integer r, 1 < r £ n. We shall use W— U, the interquantile range between
two sample quantiles and L(U+ W), a generalized midrange, to form the statistic
HU+W)—p
2
(2.2) T= T

Comparing T and S, given by (1.1), we see that they have the same denominator
and in each case the numerator is the difference between p and an estimate of p.

Thus, T and S are statistics of the same form.
We shall assume that X has a bell-shaped probability density function f(x), that

is
(2.3) flu—x) =f(u+x) for x 2 0 and
(2.4) f(u+x) is nonincreasing for x = 0.
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Let F(x) be the cumulative distribution of X and denote by & the family of all
distributions having densities satisfying (2.3) and (2.4).

3. The inequality. If X has a probability distribution in &, then
(3.1) F(|T|>2) = ()(A-1) "2~ for A > 1.

Proor. Clearly T is independent of location and scale parameters, remaining
unchanged under linear transformations of X. Consequently, we can assume

without loss of generality that
(3.2) u=0.

The density function f(x) is assumed to be symmetric about zero and to be a
nonincreasing function of |x| Because the corresponding cumulative distribution
function, F(x), is concave for x = 0, convex for x < 0 and F(0) = 4, it follows

thatforO <m <1, w # 0,

oy e et

The joint density of U and W is
(34) g(u,w)=K(n,r)F""(u)[F(w)—F(u)]* " '[1=F(w)]"~"- f(u) f(w)

for u < w and zero otherwise,

where
(3-5) K(n,r) =(2n+1)[(n—r)1P?(2r-1)

By symmetry, we may write
(3.6) P(|T| > A) =2P(T > 2) =2 [r>29(u, w)du dw.
For 4 > 1, ‘
(3.7) P(T > 1) = p(gjfg > 2,1) — P(U > mW),
where
(3.8) m =~§j:——l and 0<m<1.

1

Combining (3.4) through (3.8), we have
(39) P(|T| > ) =2K(n,7) 2o [i=mw F""(u)[F(w)— F(u) !
‘[L=Fw)]"~"f(u) f(w) du dw.
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Noting that F(u) is nondecreasing, we obtain the bound for the inner integral
(3.10) Soow F"~"()LF(w) — F(u)* " f (u) du
< F~7(w) 2 LFw)— F() "~ () dus
— (2r) P (W) F ()~ F(mw) 7,
which yields by direct substitution,
(3.11) P(|T| > 2) < r~'K(n,r) [ F"~"(w)[F(w)— F(mw)]*" - [L—F(w)]*~"f (w)dw.
Multiplying through in (3.3) by w(l —m) and substituting into (3.11) we obtain

Gy (r|>sX0D <£r:nﬂ)2 len-r(l_z)n-,(z_ \rdz

Ko 1=

f (et de

2r m 0

=K(n, r)(1- m)z’ 2r)(n—r)n!

2r \m ) 27ri2n+1)1°

The latter step may be verified as follows: Let
(3.13) J(a,b) = [ 2°(1 —2)(z 3 dz,
then integration by parts yields

(3.14) Jab) = 2%;——111)J(a+1, b—2),

and the result follows by iteration. Since (1—m)/m = (A—%)~!, combining (3.5)
and (3.12), one obtains (3.1).

4. Conclusions and remarks. We note that for 4 > 4, P(|T| > 2) £ P(|T| > %).
However,

wW+U
(4.1) P(|T|>3) =P(’W_—f1 > 1) =P(U,W > 0)+P(U,W <0)
=P(U > 0)+P(W <0)
since U < W. By symmetry

4.2) P(|T|>3)=2P(U>0)=2Y3+1 ., b(j;2n+1,%)

where b(j;n, p) is the usual binomial probability function. Denoting this last
probability by By and noting that B, is conveniently tabulated for small #» and
approximated for large n, we may make a slight improvement in (3.1) writing

(4.3) P(|T| > ) < min (B, (})(24—-1)"%") for A 2 4.
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An improvement over Birnbaum’s result can be achieved by replacing his upper
bound for J(n—r, 2r) (page 431) by the exact value of the integral to yield

“44)  P(IS|> ) =27 (Q)(NMA-DTT =(QIRA-1)*-1]7",  A>1
Calling this new bound B(S) and the bound given in (3.1) B(T), we see that
(4.5) B(T)/B(S) = [1-(2A-1)"2T/(%), A>1.

Since for both inequalities spread is measured in units of W— U, it is noteworthy
that B(T) is considerably smaller than B(S) for all values of 4 at which the two are
comparable. In addition, the bound B(7T') is valid for a greater range of values of 4.
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