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THE ASYMPTOTIC BEHAVIOR OF THE SMIRNOV TEST COMPARED
TO STANDARD “OPTIMAL PROCEDURES”
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1. Summary. Let X, X,, ---, X,,, Y1, Y5, .-+, Y, be independent random samples
from absolutely continuous distributions F and G respectively. Several standard
tests of the hypothesis H:F = G against the one-sided shift alternative
A:G(@) = Flv—0);(0 > 0), are defined in terms of F. If, however, the true
distributions of X’s and Y’s are W(v) and W(v—6) respectively, with ¥ not
necessarily equal to F, these tests are no longer optimal. It will be shown that there
exist continuous distributions W (with density i), which are quite similar to F but
for which the Smirnov test—in terms of generalized Pitman efficiency (defined
below) is considerably superior.

2. Assumptions, definitions, notation. Let N = m+n and 7 = m/n. Assume that
f = F'is unimodal (with mode assumed without loss of generality, to be at the
origin) with finite variance. Suppose that assumptions 1, 2, 3, 5 of [6] are satisfied.
Furthermore, assume that g = —f’/f (as defined in [6]) is twice continuously
differentiable, [*2 g'(x)f(x)dx < oo and g” is F-integrable and uniformly con-
tinuous.

The standard tests which will be considered are the locally most powerful rank
tests, the “Neyman” tests [7] and the likelihood ratio tests with test statistics
Ty* = Y Elg(V9)]Z;and Ty = [~ 1g(Y) - Y7-19(X)}/(1 +7) ([6], page 24).
Note that the ‘“Neyman” tests are locally equivalent to large sample likelihood
ratio tests, hence the same test statistic can be used for both. Let

Sy = [mn/(m+n)]* sup, (F,(2)—G,(2))
be the two-sample one-sided Smirnov statistic.

Let erq+(F; ¥) denote the Pitman efficiency computed under W of the “Neyman”
test for F, to the LMP rank test for F. Generalizing the Pitman efficiency we shall
define egr(F; ¥) = lim inf;_,  Ny(T)/N(S), where N,(T)and N,(S) are sample sizes
of corresponding tests Ty and Sy, needed to achieve the same power f for the
alternative 4:0 = 0, with the same significance level « < f, where 0; — 0. The
distribution Fis used to define the test statistic T ; then the calculations are carried
out assuming that the true distribution is . Similarly define eg7+(F; ¥).

3. Main results and proofs. Under present assumption we have
1. supy est+(F;¥) = + 00
II. supy esr(F; %) = + o0.
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To show I, we first consider the following
LemMa 1. If ¥ is such that 6*(0)/6*(0) — 1 as 0 — 0, where 6(6,) = Vary,, Ty,
g’ and g" are VY integrable, then
(Kp—K,)*(1+1)? Var
B () Y
K, denotes the root of the equation (1 /(211)%)]'}’?“ e 12t = a.

limi_,oo Ni(T)Biz =

ProoF. It can be shown that Ty, appropriately standardized is asymptotically
normal. For each sample size N,(T) there is a critical point C; determined by
Pr[T(N(T),0) 2 Ci] = «.

Under the hypothesis, we have lim,, (1 +1)C;/(tN(T) Vary g)* =K, while
under the alternatives

lim;, o,(1+0){C; + [mn/(m+n)] . Eg[g(X)—g(Y)}/(N(T)t Vary g)* = K,
and hence

(1) lim,, o, (Ni(T))*Ew[g(X)—g(Y)J =

K,—K,)(1+
(”_‘ﬁ)_(_.g(varw g)i-.

It should be pointed out that throughout this paper the sample sizes N(7T),
N«(S), etc., are determined by the power 5, which depends on the true distribution
Y. Hence, in fact, we have N(T'; ¥), which for short is denoted by N,(T). More
explicitly, to justify the first limit we can observe that

C; ~ (tN(T;F) Varp g)*K,/(1 +1)

1+1)C; N(T; F)Varp g %K K
[tN{(T;¥)Vary g]* = N(T;¥)Varyg a” B

and hence

since (as is well-known)
N(T; F) Vargyg
N(T;¥) " Varz g’

Considering the expansion g(x+0) = g(x)+0g'(x)+g"(0)6%/2, and applying
Fatou’s lemma, we find

lim,_, o, (N(T))*Ey[9(X)—g(Y)] = lim,, ,, (N(T))*Eg[9(X)—g(X +6,)]
= lim;, o (N(T))*E{ —0[g'(X)+0:/29"(0)]}
= —lim;, o, (N(T))*- 0; - lim,., o, Ey[g'(X)+0,/29"(9)]
= —lim;,, (N(T))" 0 Ey[9'(X)].
Using (3.1) we find

lim,.,, N{(T)8 = (Kp—Ko)*(1 +1)* Varg g

‘t[E.,,g /(X )]2

b

which proves the lemma.
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LEMMA 2. lim sup;_, o N«(S)0;> £ K/y*(0).

PROOF. Observe that Sy = Sy’ = [mn/(m+n)]*[F,(0)—G,0)]. Sy’ is asymp-
totically normal with mean ESy" = n*[t/(1 +7)][¥(0)—¥(—0))] if 6 = 6,. There-
fore we have

9i>’
where s; — s are defined by Pr(Sy > s; | H) = a. We observe that
oy = (Vary, Sy)te = 0 = (Y(O)[1-y(O)]}*.

Hence we have liminf;,,(s;—ESy')/oy = K;. Upon expanding W(—6,) =
Y(0)—04(0)+y'(0)0?/2 and replacing n = N(S)/(1+1) in ES, we have
lim sup;_,,Ni(S)0;> < (1+71)3(s— Kz0)?/t*§*(0), which proves the lemma.

Sy'—ESy’ i—ESy
ﬁ:ﬁ(ei)=Pr(SN>si|0i)gPI'(SN’>S,’|0i):Pr< N - N >S N

ON

THEOREM 1. Let F and ¥ be cumulative distribution functions. Then

K, $*(0) Var
[Ewg )7 "4

PROOF. Observe that egr(F; W) 2 lim inf;, (N(T)0;*/lim sup,_, ,, Ni(S)0;> and
apply the previous two lemmas.

est(F;¥) =

THEOREM 2. For any distribution F, supyegr(F; ¥) = + 0.

Proor. Let ¥(x) = yf(x)+ (1 —y)af(xa). We observe that y(x) is a density
function of a random variable W = [U+ (1 — U)/o]X where X has distribution F
and U is a Bernoulli random variable independent of X and such that
Pr(U=1)=y.

We can easily see that
Vary g(X) = Varpg(W) Z Ey{Var [g(W) | U]} 2 y Varg g(X).!

Furthermore we observe that 2(0) = (1 —y)%a2f%(0).

Now we consider

LEMMA 3. There is a K and 6* such that if 6 = o* then Eyg'(X) £ K.

ProoFr. Under present assumptions it can be shown that

lim, ., 62,9 (x)f(6x)dx = g'(0).

Hencelim,_, , Eyg'(X) = yErg'(X) +(1 —y)g’(0) and the lemma follows.

Substituting these results into Theorem 1, we find

est(F;'¥) 2 [K,(1—7)*0* (0)y Varp g]/K* = K*(1—y)’c®

which completes the proof of Theorem 2, since ¢ can be arbitrarily large.

! The authors wish to thank the referee for his suggestion of a very short and elegant proof
of this portion of Theorem 2, which was much longer in the original paper.
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THEOREM 3. For any distribution F there is a distribution ¥ such that the lower
bound of the relative asymptotic efficiency of the Smirnov test to the likelihood ratio
test derived for F exceeds C (where C is an arbitrary constant).

Proor. Follows from Theorem 2 and the asymptotic equivalence of “Neyman”
tests and likelihood ratio tests (see [2], page 1137).

THEOREM 4. For any distributions F and¥ there exists a constant K, such that

. K0%(0)
esr (B %) 2 [ TR dr

PrOOF: It is known [6] that

F2) [mJ'[W(x)]wZ(x)deVarwg
€rx ; = <9 !
rT [Z. 00 dx | Vareg
where J(z) = g(F~'(2)).

Observing that egr«(F; V) = esr(F; W) . epp+(F; W), the result follows by applying
Theorem 1, where K, = K; Vargg.

THEOREM 5. For any distribution F supy esp+(F; ¥) = + 0.

PrOOF. In order to prove the theorem it is sufficient to show that for any C there

isa ¥ such that
[20 J'[¥)V*(x) dx
¥(0)
This can be done by making ¥(x) = f(x) outside a fixed interval, while replacing

f(x) inside an interval by a density with a sharp spike. One such construction is the
following:

Arbitrarily select points #; and u, satisfying f(u,) = f(u,). Since f is assumed
to be unimodal with mode at the origin it may be assumed #, < Oand u, > 0.

Let A = [u2f(x)dx— (up —uy)f(uy). Define D by $(u, —u,)D = A.

Let ¢ be a real number satisfying ¢ < min {u,;—u,;D?} and define P by
D—P =¢t LeteK = A+eP—3(uy—u)P; V, = P+ePlu,;V, = P—¢Plu,;

<C.

¥(x) =/(x), X <uy,
—P
=-u—x+P+f(u1), Uy é X é )
1
-V,
=— x+K+f(uy), —e<x<0,
-7,
== x+K+f(u1)a 0=sx=<e
P
= —;—x+P+f(u1), £<Xx<U,,
2

=f(x)' Uy é X.



1746 GEORGE KALISH AND PIOTR W. MIKULSKI

Since F(x) = ¥(x)if x € (— o0, u;] or x € [u,, o),
2o TP () dx _ 2, I TF1/*(x)dx +I J' W)Y (x) dx
¥(0) = ¥(0) ¥(0)

[ 20 g'(x)f(x) dx 9 fi2 y2(x) dx
= ——W+SUP”[“MZ]T[F (P(x)] tp(O) .

Consider j"‘ Y2(x)dx. Upon omlttmg negative terms and using the fact
P = D—¢* < D, simple integration yields

n D) KK (flw)
[ was = G S i (B 1)

Also, since ¥(x) and F(x) are both continuous increasing functions on [u,, u,] and
Y(u,) = F(uy), Y(u,) = F(u,), it follows that
/N g
SUPy e [u1,uz]'f—~ [F (T(X))] = SUpx¢ [ul,uz]_f' (x)’
Hence

2o W) dx_ [0/ () d
70 3

+SUPx e uy, wal (x) [%ﬁ%(“z—“l)

(]

Since K > (u,—u,)/2e and eK < (3) (up —u,)e* +¢D,

© JTP)WAH(x)dx 262 [*. g’ x)dx !
[ [n/f((gw (*) < ) uzg_(z)lf() +B(8)Supxe[u,,..2]g7(x)

where

( +f(uy))® & [up—u, +2De*] [2f(u)et P
B(E) =73 D—ct E) [1- 2]_)8%/(“2_“1)][“2_“1 +1] .

Clearly lim,_, o B(¢) = 0. Hence the theorem follows.

COROLLARY. For any constant C there is a distribution ¥ such that the relative
asymptotic efficiency of the Smirnov test to: (a) Student’s (b) Fisher-Yates
(c) Wilcoxon tests exceeds C.

It is interesting to observe that the graphs of F and W can be very similar;
nevertheless, the Smirnov test can be much more efficient than any of the above
mentioned tests optimal for corresponding F.
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