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INVARIANT MEASURES ON SOME MARKOV PROCESSES!

By Y. S. YANG
Nanyang University

0. Introduction, summary and notations. The principal result of this paper is the
introduction of a readily verifiable sufficient condition for the existence of an
invariant measure on transient Markov chains. Specifically, subject to mild
additional regularity conditions, it is enough to check that for every compact
set A in the state space X, there exists a compact C o A such that

P(y, 4)
yeF,y—= o0 P(y, C)

P(y, A) denote the 1-step transition probabilities of the Markov chain.

(0.1) is readily implied by simple conditions on the generating functional of the
offspring distribution (Theorems 2.1 and 2.2) for discrete time multi-type Markov
processes. These conditions together with some additional regularity-hypotheses
are verified for

(i) A 1-dimensional neutron branching model of Harris,
(ii) Discrete-time age dependent branching processes,
(iii) Galton—Watson processes with immigration.

A generalization (to discrete-time temporally homogeneous Markov processes
with g-compact metric state space) of a condition of T. Harris (1957) for existence
of invariant measures on transient Markov chains is also given. This condition is,
unfortunately, difficult to check in specific examples. The sufficient condition
(0.1) involves only 1-step transition probabilities, as opposed to the n-step transi-
tions incorporated in the Harris condition, which is also necessary.

Throughout this paper, all subsets of a topological space considered are assumed
Borel measurable. The closure, interior, boundary and complement of a set 4 are
denoted by A, A°, 04 and A° respectively, and I, denotes the indicator function
of A. The sets of positive integers, nonnegative integers, are denoted by I and I,
respectively. For any o-compact metric space X, the following notations are used:

(0.1) lim =0 if F is not compact and F = {y: P(y, A) > 0},

M(X) = set of regular measures (Borel measures finite on compact sets) on X.
B(X) = set of bounded measurable functions on X with sup norm.

B'(X) = {seB(X): |s| < 1}

C(X) = set of bounded continuous functions on X.

Coo(X) = {s € C(X): s has compact support}.

Received March 10, 1970; revised March 8, 1971.
1 This paper is based on the first part of the author’s thesis presented to the Graduate School of
the University of Southern California under the direction of Professor T. E. Harris who suggested

the problem and made many suggestions.
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INVARIANT MEASURES ON SOME MARKOV PROCESSES 1687

Co(X) = {se C(X): lim,_, ,s(x) = 0}.

C'(X) = C(X) n B'(X), similarly for C,'(X) and Cgo(X).

For any ¥ < B(X), " = {sc¥:5 =2 0}. If ue M(X) and € B(X), then
wf = [ f(x)u(dx) when defined.

1. Invariant measures on certain Markov processes with g-compact metric state
space. Let Z,, Z,, --- be a temporally homogeneous Markov process on X which is
og-compact metric. P(x, A), the transition probability, is measurable in x for all
A = X, and P(x, X) < 1 for all xe X. Let Q(x,4) = Y.y P"(x, A). For f€ B(X)
let PY(-) = [, P"(-, dy)f(»), n € I, and for n € M(X),

7P() = [ P(x,)n(dx) and nPf= [ n(dx)[,P(x,dy)f(y).
ASSUMPTIONS.
(1.1) Pf(-) e Cy(X) for all fe Cy(X).
(1.2) If A is open, then for any x € X, there exists n € I such that P"(x, 4) > 0.
(1.3) Q(x, A) < oo for all x € X and compact A4.
REeMARK. (1.1) is a weaker assumption than that of the continuity of P(x, 4) in

x and lim,_, , P(x, A) = 0 for all compact 4.
The following lemma may be known.

LemMa 1.1. If conditions (1.1) to (1.3) hold, then for any compact A and open B,
there exists a finite number c such that

o4
Q(x, B)

ProoF. It follows from (1.1) and (1.3) that for any x € A4, there exists f'e Cyo(X)
and n € I such that f < I and inf,_yP"f(u) > O for some neighborhood U of x.
Now for each y € X,

O(y,B) = Y- P"(y,B) = Y 2_y P"*"(y, B) = [, Q(», dx)P"(x, B)
> [y Q(y, du)P"(u, B) = Q(y, U)inf, .y P"(u, B).

<c forall xeX.

Hence

o(», U) 1
9(y, B) = inf, . y P"(u, B) <®©

and the lemma follows from a simple compactness argument. []

THEOREM 1.1. Suppose that (1.1) to (1.3) hold and that one of the following con-
ditions (1.4) or (1.5) is satisfied:
(1.4) For each compact A, there exists a compact C > A such that

P(y, 4)

y+23eF By, C) 0 if F is not compact, where F ={y:P(y,A4)> 0}.

lim
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(1.5) There exists a sequence {z,} in X, z, — o0 such that for each sequence of
compact sets Y1 X, Y, = Y2 |, we have

1. l L(st A> Yn)
im,_,  limsup,, ,——— =
“ ? Qzi, A)

or each compact set A with A° # &, where
L(z,A,B) = P(z, A)+ Y 5 1 [ x- 5 4P"(z, dy)P(y, A)

and
4P"(z,B) =P/(Z,eB;Z;¢A,i=1,---,n—1),

and Qf(+) is continuous for each f€ Cyo(X).
Then there exists 1 € M(X) such that n(X) = oo, A° # & implies that n(4) > 0

and n(A) = nP(A) forall A < X.

REMARKS. (1.5) is a direct generalization of the Harris condition (1957). (1.4),
although special, involves just one-step transitions and hence is a useful sufficient
condition, and readily applies to branching processes and other related processes.
Also continuity of Q ffor fe Cyo(X) is not assumed in (1.4).

PRrOOF OF THEOREM 1.1. Let D be a fixed compact set with D° # . Then for
any compact set 4 with 4° # ¥, by Lemma 1.1, there exist positive numbers
o and f such that

(1.6) ag-g—g—’g—;;ﬁ forall zeX.

Define n, € M(X), k e I by n,(-) = Q(z,-)/Q(z,, D), where {z,} is the sequence
in (1.5) or any sequence such that z, — oo if (1.4) is assumed. From (1.6), {m,} is
bounded uniformly in k € I when restricted to compact subset of X which is
g-compact metric. Hence it follows from Prohorov’s theorem on weak compactness
of measures on compact metric spaces (Prohorov (1956)), and a diagonalization
process, that there exists a subsequence of {r,} again denoted by {r,} and n € M(X)
such that «r, f — 7f for all f€ Cyo(X). Forany Y < X,

Q(z,) = P(z,)+ Loz [« P (2, dy)P(y, ")
=P(z,")+[.Q(z,dy)P(,")
= P(z,")+[,0(z,dy)P(y, ")+ [, Q(z, dy)P(y,").
Dividing by Q(z, D), we have

(L7) Q%Sg *Qp((zsz)ﬁ YQQ((Zz’iy))”(y’ )+ x_y%izz’,g)”(y’ )
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Let Y,1X, Y, compact, ¥,,, < ¥,° and n(dY,) = 0. We will show that under

condition (1.4) or condition (1.5), we have for any compact 4,

. . PZ9A+x— nQ(ZadyPyaA
(1.8) lim,_, ., lim sup,_, o, (20 4) IQsz,D)k )P( )= 0.

First assume (1.5) holds. Since A4 is compact, 4 = Y, for all sufficiently large ».
For Bn A = {J, we have

Q(z, B) = E, (number of visits to B without hitting A)
+E, (number of visits to B preceded by at least one visit to A)
= X1 aP(2,B)+ e 1 [a P2 49).0(v. B)
where 4Q(y, B) = Y2, 4P"(y, B) = E, (number of visits to B without hitting A).
Hence for all sufficiently large n,
P(z, A)+ [x-v, Q(z4 dY)P(v, A) = Pz, A) + [x -y, Yom=1 P"(21, dy)P(y, A)
+ 4021 dx) fx -, Q(x, dy)P(y, A).

The first two terms on the right are just (z,, 4, Y,). By (1.5) and Lemma 1.1,
we have

LA Y) Lz, 4, ,) 0z, A
lim,,_,wlimsupk_.w—é%—ﬁ)—) = lim,_, ,, limsup,, , éj’; D )g((sz D))=
k> k> .

0.

Now pick f€ Coo(X)* such that f= I, and ||| = I, and g, € C(X) such that
Iy v, 2902 Ix-y,

Then
[x-v, 4Q(x dy)P(y, A) < [x 9.(»)Q(x, dy)Pf(y) = h,(x).

Since Qf is continuous, ) 2, P"f is uniformly convergent in any compact subset
(Dini’s theorem). Now P"Pf(»)g,(y) £ P™ ' f(y)forallmel. Hence Y sy P"Pf()
g.(y) is uniformly convergent in any compact subset of X. Hence h, is continuous.
Also h,]0asn — oo. Let B o A, B compact and n(dB) = 0, then

) ‘ 0(z, dx)
- = 00 N> D) 4 P >
lim,, , lim sup, 4 0(z, D) X_YnAQ(x dy)P(y, A)

< lim,., , limsup,., , [z m(dx)h,(x) =lim,, ,, 5 h,(x)n(dx) = 0.

Hence (1.8) holds.

Now assume (1.4) holds. Let C and F be as in (1.4). If F is compact, then (1.8)
obviously holds. Hence assume F is not compact. By the same argument as in the
proof of Lemma 1.1, there exist open sets Uy, ---, U, covering C and ny, -+, n,, €1
such that inf, .y, P"(u, A) =a;>0,i =1, -, m.
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Let a =min; ¢;<,a; > 0. Then for any i = 1, -, m
Q(Z9 A) g Z:O=1 Pn+l+"i(ZaA) = jX Q(za dY)fo(y> dX)P"i(X,A)
2 j(X—Y,.)nF Q(Z, dY)P(y, Ui)a-

Hence for i =1,--,m,Q(z,4) =2 am™" [ x_y,,nr Q(z,dy)P(y, C).
Given ¢ > 0, there exists N € I such that foralln = Nand ye (X—Y,) n F,
P(y, A) €
=< .
P(y,C)=m 0(z, C)
SUp; e x Q(Z, D)

Hence for alln = N,

P(z, A)+ Y& 1 [x-v, P(2, dy)P(y, 4)
0(z, 4)

[x=vynrQ(z,dy)P(y,4)  P(z, A)

= Q(z,dy)P(y,C) o)

M J(X-Yu)nF
€ P(z A)P(z,C)

m z,C) P(z,C)Q(z, A
o 0G0 PE 006 A) *
a 0(z, 4)
for all z sufficiently ““large,” that is outside some compact set. In case P(z, C) =
0, P(z, A)/Q(z, A) = 0. Hence (1.8) holds.

Now for f e Cyo(X), we have from (1.7)

(1.9) rf=L (z0)+] Xé(yz"k,ng)k’ dy)Pf(y) f

lIA

<eg

A

n
a

mdy)Pf(y).
Let kK — oo and then n — oo, then n, f — nf. On the right side of (1.9), the first
term — 0 by (1.8). Furthermore, since Y, is compact and n(0Y,) = 0,
lim, ., , lim sup,., ,, fy, m(dy)Pf(y) = lim,_, , [y, 7(dy)Pf(y) = nPf.

Hence nf = nPf, whence n(B) = nP(B) for all B < X.

If B® # (¥, then there exists compact K = B such that K° # .

Then from (1.6), n(B) = n(K) = lim sup,_, ,, 7,(K) > 0. Finally we show m,(X) =
0. Let B be such that n(B) > 0 and Q(x, B) < o for all x € X. Then by the
bounded convergence theorem,

n(B) = nP"(B) = [x n(dx)P"(x, B) n=123,-
=lim,, , [ x ©(dx)P"(x, B)
= [y n(dx)lim,_, , P"(x, B) = 0.
This contradicts n(B) = 0. Hence n(X) = c0. [J
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CoOROLLARY 1.1. Let P;; be the transition matrix of a transient Markov chain
with the denumerable set I as states. If for each i € I, there exists a finite B < I such
that i € B and

limy, 4 r L _ 0 if F is infinite where F ={k:P, >0},
Yier Py

then an invariant measure exists on any infinite subset T of I such that Yie1-1Pi
for all i € T and the states of T communicate.

REMARK. It is possible to have ) ; rP;; <1 for some i€ T, since we allow
substochastic processes. And thus 7" may not be closed.

ProOOF OF COROLLARY 1.1. For eachie T, let B be as in the hypothesis. For all

keT, ZjeBij = ZJGBnTij" Hence limk—mo,keTnF(Pk‘i/ZjeBnTij) =0if Fis
infinite. Apply Theorem 1.1 with X = T. ]

2. Invariant measures on branching processes. Let X, o-compact metric, be the
set of types of a branching process as considered in Chapter 3 of Harris (1963).
For nel, let X, = symmetrized n-fold product with itself, that is the quotient
space X"/N, where X" is the n-fold Cartesian product of X with itself and N is the
equivalence relation of permutation. Let X, = {¢}. Denote the topological sum
Xo+X;+ - of X,, nel, by X. X is a o-compact metric space. If % € X, then %
can be identified with a finite set of points in X and hence a finite counting measure.
And we have Xs = [y s(x)%(dx) = Y resS(x), s€B(X). Also if seB'(X)*, let
Sz = Tes8(x) € B'(X)*. A general branchmg process can be considered as a
temporally homogeneous Markov process Z,, Z,, -+ in a state space X of points %.
Each % is a finite set {x,, x,, -}, x; € X and represents a set of objects with types
X1, X3, 5 Zn € X Will mean no object present. We shall identify X with X,CX.
P(%, -), the transition probability, will be a probability measure on X for each
% € X. We shall write P(x,-) for P(%, -) when X consists of the single point x € X.
Let P; be the probability measure on the sample space with Z, = %, ¥ e X.
For se B'(X)", xe X, let F(s) = F(s, x) = [¢ s’p(x, dy) be the generating functional
of Z, with Z, = x € X = X,. The branching property, which can be expressed as
(2 $°P(%, dy) = T, % F(s, x) for all % € X, has to be satisfied. An invariant measure
is a o-finite measure on the Borel sets of X — X, satisfying n(-) = [z z, n(d9)P(5,").

THEOREM 2.1. Suppose X is compact metric and the following conditions hold:

(2.1) inf, xP(x, Xy) > 0;

(2.2) Forany xe X and open A = X, there exists m € I such that P"(x, A) > 0;

(23) F(s,)eC'(X)* forall se C'(X)*.

Then a regular invariant measure m exists on X — X, such that n(4) > 0 for all open
AcX-X,.

ProoF. (1.1), which now refers to the space X — X, follows from (2.3) by a
result (Lemma 0.2) in Ikeda, Nagasawa, and Watanabe (1968). For nel, let
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t=inf{m > 0:Z,€ X,}t £ oo and let p < oo be the number of m > 0 such that
Z,e X, and Q, = {t < ©}. For X € X, P«(Q) < 1—(infz xP(x, X,))*, hence
SUP, ¢ x, Px(Q) = a, < 1 for all k € I. It follows from the strong Markov property
that Py(p 2 m+1) < g, supszx, P(p = m), kel, Xe X, Hence inductively
SUp; . x, Ps (hitting X, at least m times) < a,a,”~'. We then have sup, . , O(%, X,) <
oo and sup; . 10(%, B) < oo for all compact 4, B =« X— X,,.

Now for any % € X — X,, % = (x,, -+, x,) and open 4 < X, by (2.2), there exists
me I such that P™(x,, A) > 0, hence P"(%, A) = (inf,.xP(x, Xo))" *P"(x,, A) >
0, and (1.2) holds. Now to show that (1.4) holds. Let g(x) = P(x, X,), x € X.
From (2.2), for any x € X, there exists 4 € I such that P(x, X,) > 0. From (1.1),
there exists an open neighborhood U of x such that inf, ,P(u, X;) > 0. Hence
from compactness of X, there exists ¢ > 0 and J = {h,, -+, h,,} = I such that for
all x € X, there exists 4 € J such that P(x, X;) > c. Let / = max {#,, ---, h,,}. Then
infz ey PR, X,+ X,s1+ - +X,) > " >0 for all nel Let 4,= X,+ - +
X ;. Consider any X = (x4, -+, X;) € X, kK > (n+1)I. Let C; be the class of all sets
of jx’s from {x,, ---, x;}, j = 1, ---, k. Note that every element of C; is an element
of X ;. If a generation with k objects is transformed into one with n < k objects,
at least k—n objects in the initial generation must have no children. Hence

P(f, Xn) = Z§=k—n chg(xil) g(xif)'

For each subset j of £ with k— (n+ 1) objects, thatis j € C;_(,+ 1), a possibility for
Z,eAd,,, given Z, = % is that all the objects in j should have no children and the
remaining n+1 objects to transform into n+1 to (n+ 1)/ objects. Since different
objects reproduce independently of one another, we have

P(‘%’ Z""‘l) Z ZCk—n—1g(xi1)“'g(xik-n—l)infzexnﬂp(f’ ‘:1"!‘*' 1)
= ch-n—lg(xil) g(xik-n—l)cn+l

and

P(%, X,) < P(%,X,) < Yr=kmnpoc, (%) - g(x;)
P(%, X,+ 4,4 1)~ P(%, 4,y ) =t Yn i 9(%i) - 9(Xi o)

For each {x;,, -+, x;,_, } € Cy_, 0 < m = n, there correspond k —m elements of
Cy—m-1, namely the k—m subsets of {x;, -, x; __} with k—m—1 elements. But
each such subset could have come from k—(k—m—1) = m+1 elements of
C-m Hence

By _ Dc-m (%) 9 (Xii-1m) _ Yc-m90%1) 9 (%)
B, 11 ch—m—1g(xi1)”'g(xik—m—l) (k_m)/.(m-i_l)zck'-mg(xil).“g(xik—m)

m+1

k—m

for0 <m<k—1.
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Hence we have
ra P 1 Y'.oB 1 o B, B, B,
@4 PEX,—4,7) ST By O ZoByuiBrs Bra

j+1 j+2 n+1
—C"“Zk—jk—j 1-~~k_n—>0 as k- 0.

Now a set A = X is compact if and only if 4 = X,+ -+ + X, for some he L
Hence (1.4) follows from (2.4). ]

THEOREM 2.2. Suppose X is a-compact metric, (2.1), (2.2) hold and F(s,-) € C'(X)™*
for all seCOO(X)+, and suppose X can be imbedded in a compact metric space Y
such that X = Y and for any ye Y — X, lim, ,, .. x F(s, x)exists for all s€ Cyo(X)™
and Sup, . coox Flim,, . x F(s, x) =1. Then a regular invariant measure T exists
on X— X, such that n(X,) < oo for all n € I and n(A) > 0 for all open AcX-X,.

PrROOF. It can be shown (Yang (1969)) that for all y € Y— X, there exists
P(y,-) € M(X) such that P(y, X) = 1 such that lim,_,, .. x F(s,x) = F(s, y) for all
s€ C'(X)* where F(-, y) is the generating functional of P(y,-). By a theorem in
topology (page 216 in Dugundje (1966)), F(s,-) e C'(Y)* for all se C'(X)*. P(y,")
is extended to ¥ by defining P(y, ¥—X) = 0 for all y € Y. Then for se C'(Y)*,
F(s,y) = F(s lx’ y) for all ye Y. P(y,-), y € Y defines a branching process with ¥
as set of types. The hypotheses of Theorem 2.1 are satisfied. Hence there exists a
regular invariant measure 7 on ¥— ¥,. Now P(3, ¥—X) = 0 for all j € ¥implies
1(¥-X) = [3+v, P& ¥-X)n(d%) = 0. Hence for all A<= X-X, n(d) =
j}?+XoP(5E’ Z)7'5(‘1%)- 0

ExAMPLE 2.1. A one-dimensional neutron model (page 63 of Harris (1963))

= [o, L]. We take x € X to represent the position of a birth of two neutrons
instead of the position of a neutron at birth. The process is the same as in Harris
(1963) except that initially there are two neutrons instead of one. There is an
a > 0 such that e~ “* is the probability of a neutron travelling a distance = x in
the rod without collision. Then P (Z, € X,) = (Je™+4e ™ "))2 Hence
inf, . x P(x, X,) > 0 and (2.2) holds. For any subsets A Bof X, P(Z,cA) =
l(e“”‘+e""”‘ D) [ aeP*ldy, P (ZleAxB 14 ge-ely *ldyfgae " dy
where 4 x B is assumed symmetrized that is, A x B = X,. From these, it can be
shown that (2.2) holds. For s € B'(X)*,

F(s,x) = P(x,Xo)+ e +e L) [Gae ~Is(y)dy
+4[5ae = s(z)([aae " *Is(y) dy) dz.
Hence (2.3) holds and Theorem 2.2 applies.

EXAMPLE 2.2. The discrete-time age dependent process. Let X = I, with discrete
topology and Y its one-point compactification. An object of age x has probability
p(x) of changing into one object of age x+ 1 and probability p,(x), n € I, of chang-
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ing into n objects of age 0, with p(x)+ Y »2 o p(x) = 1. We assume (@)} s> , p,(x) > 0
for each x € Iy; (b) lim,_, ,p,(x) exists for n e I,; and (c) po(x) > O for all x € I,,
lim,_, ,po(x) > 0 and lim,_, , p(x) = 0. If (a) is not satisfied, we then have a well-
known example of a Markov chain which does not admit an invariant measure if
Po(x) > 0 for some x € I,,. If p(x) = 0 for some x €I, let y = min {x: p(x) = 0}
and suppose y = 3, then the process can be considered to be of finite type, that is
X =1{0,1,2, -, y} and an invariant measure exists on X — X, by Theorem 2.1.
Otherwise p(x) > 0 forall x € X. In this case, for se B'(X)*, F(s, x) = p(x)s(x+ 1)+
Yoo Pa(x)s(0)". If s€ Cho(X)™, that is s(x) = O for all sufficiently large x, then
lim,, o, F(s,x) = lim,_, , Y x% o pa(x)s(0)".

Hence
SUD ¢ oo (x)+ Mgy oo F(s,X) = lim, im0 D 2% o p,(x)A" = 1.

Condition (2.2) can be shown to hold, and condition (2.1) follows from (c). Hence

Theorem 2.2 applies.
We now consider the case when Xis finite. We then have a denumerable Markov

chain, and slightly stronger results can be obtained.

Lemma 2.1 If Y20fi =1, f; 20, I>f, >0, f(s) = Y 20fis’, 0 S5 = 1,
then for any i € I, there exist infinitely many m > i such that the coefficient of s™
f(s)* is positive for all k > m, and
coefficient of s; in f(s)*
coefficient of s™ in f(s)¥

Proor. Consider the Galton-Watson process with f as generating function. Let
P;; be the transition matrix. Then P,; < P, (at most i objects do not die in the next’
generation) =Y j-o(%;)fo" " Let j be the smallest integer such that P;; = f; > 0.
If m is any multiple of j such that m = njand n > i, then Py, 2 (,X,)/0*7"f" > 0
for all k£ > m. Hence the coefficient of s™ in f(s)* > 0 for all k > m. Also

}ii. < Zli=0(kfl)f0k_l _ Zli=0(klil)f0h_l
Pon = (E)SET GE)f"
Nowfor0 £/ Zi<mn

(kk—z) _ﬂ 1
(kfn) - (k——n—l) ......

limg,

(k—l)_'o as k— oo.

Hence
coefficient of s* in f(s)* 1 i f,"7'(,%)
coefficient of s” in f(sy* = f," ,;;m—
THEOREM 2.3. For a Galton-Watson process with immigration, that is P,; =

coefficient of s' in g(s)f(s)* where g and f are probability generating functions, if
0 < f(0) < 1, an invariant measure exists on any infinite subset T of I, such that

-0 as k- oo.
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Yieto-tPij=00r Ycr-rP;j=0if g(0) = 1 for all teT and the states of T
communicate.

ReMARKS. Conditions under which invariant measures or distributions exist in
the case f'(1) < 1 were discussed in Heathcote (1965) and Seneta (1968). When
g(0) = 1, we have the Galton—Watson process; the result was stated without proof
in Harris (1963), while proofs with moment assumption were given in Harris
(1963), Seneta (1969) and others. The problem of existence and uniqueness of
invariant measures on a branching process allowing immigration has been treated
by Z. Seneta (1969), (1970), using functional equation methods assuming (1) < co.

Proor oF THEOREM 2.3. If the process is recurrent on 7, then an invariant
measure always exists. Hence we assume that the process.is transient. Also in the
case g(0) = 1, 0 e I, is an absorbing state, we then consider T = I rather than
T c I,. Let

g(s)=z{.o=ogisi, g9: 20, zl@:ogi=1
and
() =YRofss 20, YRofi=1 and 0<f,<L.

For any i € Iy, Piy = Y uro=: 9.1, where £, is the coefficient of s* in the expan-
sion of f(s)*. Given & > 0, by Lemma 2.1, for each v = 0, 1, ---, i, there exists
m, > i such that i < my < m, < --- < m;, m,el, and NeI such that f& >0
forallk = N and

(2) £ < 5 £ 0 =0,

Letj = m;+1i, then for any u, v € I, such that u+v = i, we have my < u+m, < j.
Hence

(26) gu lfl’l(i) é tj=mo Zu+l=tguﬁ(k) = er=mo Pkt’
(27) Zu+u=igufr$)) é (l+ I)Z{=mo Pkt'

But P,; > 0 implies Y ,4,-;9./,’ >0, where g,/ > 0 for some u+v =i

implying Y-, Pix > 0 from (2.6). Also

Pki _Zu+v=igufv(k)< € Zu+u=igu rr(t’::)
Z{=mo Pkr Z{=mo Pkr l+1 Z{:mo Pkt

& ()T P
i+l Z{=,,,OPk,

from (2.5)

from (2.7)

=&.

Hence by Corollary 1.1, an invariant measure exists on 7. []
The proof of the following theorem is similar and is given in Yang (1969).
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THEOREM 2.4. For a branching process with finite number of types, if an object of
each type has a positive probability of having no children in the next generation, then
an invariant measure exists on any infinite subset T of X — X, where X is the set of
types, such that P(%, (X — Xo)—T) = 0 for any % € T and the states of T communicate.

ReMARK. In the subcritical case, similar results can be obtained from results in
Joffe and Spitzer (1967).
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