DIFFUSION APPROXIMATIONS OF BRANCHING PROCESSES¹

By Peter Jagers

Stanford University and University of Gothenburg

For $n=1,\ 2,\ \cdots$ let $z_t^{(n)},\ t\geq 0$, be an age-dependent branching process starting from n ancestors. Suppose it has the reproduction generating function $f_n,\ f_n'(1)=1+\alpha/n+o(n^{-1}),\ f_n''(1)=2\beta_n\to 2\beta,\ f_n'''(1-)\leq \infty$ some constant, and the life-length distribution L with L(0)=0 and $\lambda=\int_0^\infty tL(dt)<\infty$. Then, it is shown that the finite dimensional distributions of $n^{-1}z_{nt}^{(n)}$ converge, as $n\to\infty$, to the corresponding laws of the diffusion $t\to x_t$ with drift $(\alpha/\lambda)x$ and infinitesimal variance $(2\beta/\lambda)x$.

1. Introduction and summary. Let x_t , $t \ge 0$, be a one-dimensional diffusion with drift αx and infinitesimal variance $2\beta x$, $\alpha \in R$, $\beta > 0$, $x \ge 0$, describing the growth of a large population with independent individuals. Feller (1951) sketched how this process might appear as the limit of a sequence of Galton-Watson processes, where the *n*th population has *n* ancestors and is measured in units of *n* individuals; the *n*th time unit equals *n* time units of the first process; the number of offspring per individual in the *n*th process has expectation $1 + \alpha/n + o(n^{-1})$, a finite variance $2\beta_n$ converging to 2β , and a third moment bounded in *n*. The rigorous formulation and proof of this fact are due to Jiřina (1969). More general problems of Galton-Watson processes with transformed times and states have been considered by Lamperti in a sequence of papers. But the Feller-Jiřina scheme is attractive in yielding a natural and explicit limit process.

We shall generalize it to age-dependent branching processes. Suppose that f_n , $n \in \mathbb{N}$, is a sequence of generating functions of probability measures on the nonnegative integers, N, satisfying $m_n = f_n(1) = 1 + \alpha/n + o(n^{-1})$, $2\beta_n = f_n''(1) \to 2\beta$, $f_n'''(1-) \le c < \infty$, $\alpha \in \mathbb{R}$, $\beta > 0$, c > 0. Let L be a probability distribution on the nonnegative reals, R_+ , with L(0) = 0 and $\lambda = \int_0^\infty tL(dt) < \infty$. All reproduction generating functions denoted by f_n or f are assumed nonlinear. Denote by $z_t(n)$, $t \in \mathbb{R}_+$, $n \in \mathbb{N}$ an age-dependent branching process with off-spring generating function f_n and life-length distribution L, started from n ancestors at time zero. We shall prove that, for any t, $x_n(t) = n^{-1}z_{nt}(n)$ converges, as $n \to \infty$, in distribution to the value x_t at time t of a diffusion with drift $\alpha x/\lambda$ and infinitesimal variance $2\beta x/\lambda$. It will be clear from the proof that the condition on $\{f_n'''(1-)\}$ may be relaxed.

The approach is the following: If $F_n(s, t)$ is the generating function of a branching process defined by f_n and L but with one ancestor—an (f_n, L) process in Sevastyanov's terminology—then $x_n(t)$ has the generating function $F_n(s^{1/n}, nt)$, $s \in [0, 1]$. But

$$\lim_{n\to\infty} F_n^n(s^{1/n}, nt) = \exp -a(s, t)$$

Received October 30, 1970.

¹ This work was partially supported by the National Science Foundation under Grant GP-15909. 2074

if (and only if)

$$\lim_{n\to\infty} n[1-F_n(s^{1/n},nt)] = a(s,t).$$

And this is exactly what we shall show with

$$a(s,t) = \frac{\sigma e^{\alpha t/\lambda}}{1 + \sigma(\beta/\alpha)(e^{\alpha t/\lambda} - 1)} \quad \text{if} \quad \alpha \neq 0,$$

$$\frac{\sigma}{1 + \sigma\beta t/\lambda} \quad \text{if} \quad \alpha = 0.$$

Here $\sigma = -\log s$, $s \in (0, 1]$, and $\exp -a(s, t)$ is the generating function of the diffusion with the stated drift and variance [see Jiřina (1969)]. The convergence in distribution then follows from the continuity theorem for Laplace transforms.

The method consists in a study of the basic integral equation of (f, L) processes:

(1)
$$F(s,t) = s[1-L(t)] + \int_0^t f \circ F(s,t-y) L(dy)$$

by means of a Taylor expansion. Once the convergence of $x_n(t)$ is established, a recursive argument applied to the corresponding equation for

$$F^{(k)}(s_1, \dots, s_k; t_1, \dots, t_k) = E[s_1^{z_{t_1}} \dots s_k^{z_{t_k}}], s_i \in [0, 1], t_i \in R_+, 1 \le i \le k, z_t$$

an (f, L) process, namely

$$\begin{split} F^{(k)}(s_1,\cdots,s_k,t_1,\cdots,t_k) &= s_1\cdots s_k \big[1-L(t_k)\big] \\ &+ s_1\cdots s_{k-1} \int_{t_{k-1}}^{t_k} f\circ F(s_k,t_k-y)L(dy) \\ &+ s_1 &= s_{k-2} \int_{t_{k-2}}^{t_{k-1}} f\circ F^{(2)}(s_{k-1},s_k;t_{k-1}-y,t_k-y)L(dy) + \cdots + \\ &+ \int_0^{t_1} f\circ F^{(k)}(s_1,\cdots,s_k;t_1-y,\cdots,t_k-y)L(dy), \end{split}$$

would yield the convergence of all finite-dimensional distributions of $x_n(t)$. This, however, involves lengthy calculations and is omitted.

It is easy to give the sample space of (suitably normalized) branching processes the Skorohod J_1 -topology: if the process is not supercritical, define its Malthusian parameter, μ , to equal zero and consider for any branching process z_t the process $w_t = e^{-\mu t} z_t$. This is a right continuous process with left limits at any point and $\lim_{t\to\infty} w_t$ exists almost surely under simple conditions (Jagers (1968)). Hence, $w_{\tan \pi t/2}$, $0 \le t \le 1$, is a random element of D[0, 1]. But we have not been able to find any neat tightness conditions in terms of f_n and L.

2. Some simple properties of branching processes.

PROPOSITION 2.1. Let q be the extinction probability of an (f, L) process with generating function F. Then, for $0 \le s \le q$, $s \le F(s, t) \le q$, and for $q \le s \le 1$, $q \le F(s, t) \le s$.

PROOF. Suppose that $0 \le s \le q$ and take $\varepsilon > 0$. Set $t_0 = \inf\{t; F(s, t) \le s - \varepsilon\}$. We wish to prove that $t_0 = \infty$, i.e. $F(s, t) > s - \varepsilon$ for all t. Since L(t) = 0 implies

2076 PETER JAGERS

that F(s, t) = s, and $F(s, \cdot)$ is right continuous, then $L(t_0) > 0$. But if $t_0 < \infty$,

$$s - \varepsilon \ge F(s, t_0) = s [1 - L(t_0)] + \int_0^{t_0} f \circ F(s, t_0 - y) L(dy)$$

$$> s [1 - L(t_0)] + f(s - \varepsilon) L(t_0)$$

$$> s [1 - L(t_0)] + (s - \varepsilon) L(t_0) \ge s - \varepsilon.$$

This contradiction for all $\varepsilon > 0$ shows that there is no t such that F(s, t) < s. On the other hand, if $t_1 = \inf\{t; F(s, t) \ge q\}$ and s < q, then $L(t_1) > 0$ and

$$q \le F(s, t_1) < s[1 - L(t_1)] + qL(t_1) \le q$$

showing that $0 \le F(s, t) < q$ if $0 \le s < q$. Since the basic integral equation has only one solution between zero and one, it is evident that F(q, t) = q identically. And for $s \ge q$, $F(s, t) \ge F(q, t) = q$, whereas an argument like the one given yields $F(s, t) \le s$.

PROPOSITION 2.2. For any (f, L) process, $F(s, \cdot)$ is nondecreasing if $0 \le s \le q$ and nonincreasing if $s \ge q$.

PROOF. Fix $s \leq q$ and put $M(u) = \sup_{0 \leq t \leq u} F(s, t)$.

$$F(s,t) = s + \int_0^t \left[f \circ F(s,t-y) - s \right] L(dy)$$

$$\leq s + \int_0^t \left[f \circ M(u-y) - s \right] L(dy) \leq s + \int_0^u \left[f \circ M(u-y) - s \right] L(dy)$$

for $0 \le t \le u$, since $f \circ M(u-y) \ge f \circ F(s, t-y) \ge f(s) \ge s$. Hence

$$M(u) \leq s [1 - L(u)] + \int_0^u f \circ M(u - y) L(dy).$$

Define for $n \in N \varphi_n: R_+ \to [0, 1]$ by

$$\varphi_0 = 1$$

$$\varphi_{n+1}(t) = s\lceil 1 - L(t) \rceil + \int_0^t f \circ \varphi_n(t-y) L(dy).$$

By induction $M \leq \varphi_n$. But $\varphi_n \downarrow F(s,\cdot)$ [2, p. 132]. Thus $M = F(s,\cdot)$.

For $s \ge q$ the same reasoning applied to $I(u) = \inf_{0 \le t \le u} F(s, t)$ and a sequence ψ_n with $\psi_0 = 0$ yields the proposition.

PROPOSITION 2.3. If, for $\alpha \ge 0$, q_n is the smallest nonnegative root of $f_n(x) = x$, then

$$q_n = 1 - \alpha/\beta n + o(n^{-1}),$$
 as $n \to \infty$.

The proof is left for the reader.

3. The convergence of generating functions. We start from the basic integral equation for (f_n, L) processes,

$$F_n(s,t) = s[1-L(t)] + \int_0^t f_n \circ F_n(s,t-y) L(dy).$$

Fix $s \in (0, 1)$ and set $g_n(t) = h[1 - F_n(s^{1/n}, nt)], t \in R_+, \sigma_n = n(1 - s^{1/n})$. Expanding f_n around 1 gives

$$g_n(t) = \sigma_n [1 - L(nt)] + m_n \int_0^t g_n(t - y) L(n \, dy) - \beta_n / n \int_0^t g_n^2(t - y) L(n \, dy) + n \int_0^t r_n \circ g_n(t - y) L(n \, dy),$$

where $|r_n(x)| \le c(x/n)^3$, $x \ge 0$. Take Laplace-Stieltjes transforms (denoted by circumflexes) of this:

$$\hat{g}_n(z) = \sigma_n \left[1 - \hat{L}(z/n)\right] + m_n \hat{g}_n(z) \hat{L}(z/n) - \beta_n / n \widehat{g_n^2}(z) \hat{L}(z/n) + n \widehat{(r_n \circ g_n)}(z) \hat{L}(z/n),$$

$$z > 0. \text{ Then,}$$

$$\beta_n \widehat{L}(z/n) \widehat{g_n}^2(z) + n \left[1 - m_n \widehat{L}(z/n)\right] g_n(z) - \sigma_n n \left[1 - \widehat{L}(z/n)\right] - n^2 \widehat{(r_n \circ g_n)}(z) \widehat{L}(z/n) = 0.$$

Evidently, $\beta_n \hat{L}(z/n) \to \beta$, $n[1-m_n \hat{L}(z/n)] \to \lambda z - \alpha$ and $\sigma_n n[1-\hat{L}(z/n)] \to \lambda z \sigma = -\lambda z \log s$. Furthermore,

$$n^{2}(\widehat{r_{n} \circ g_{n}})(z) = zn^{2} \int_{0}^{\infty} r_{n} \circ g_{n}(t) e^{-zt} dt$$

$$\leq cn^{-1} \int_{0}^{\infty} g_{n}^{3}(t) z e^{-zt} dt \leq K/n$$

for some K, since $g_n(t) = n[1 - F_n(s^{1/n}, nt)] \le n(1 - s^{1/n}) + n(1 - q_n)$, which is bounded by 2.3. Hence, as $n \to \infty$, the equation (loosely speaking) approaches the equation in the following proposition:

PROPOSITION 3.1. If $\alpha \neq 0$, the equation

$$\beta \widehat{x^2}(z) + (\lambda z - \alpha)\widehat{x}(z) - \sigma \lambda z = 0$$

has the solution

$$a(t) = \frac{\sigma e^{\alpha t/\lambda}}{1 + \sigma(\beta/\alpha)(e^{\alpha t/\lambda} - 1)}.$$

For $\alpha = 0$

$$\frac{\sigma}{1 + \sigma \beta t / \lambda}$$

is a solution

PROOF. Assume that $\alpha \neq 0$, $L(t) = 1 - e^{-\gamma t}$, $\gamma = 1/\lambda$, $f_n(x) = 1 + (1 + \alpha/n)(x - 1) + \beta(x - 1)^2$. The equation for g_n has a sense also if f_n is not a probability generating function and it reduces to a Riccati differential equation

$$g_n' = \alpha \gamma g_n - \beta \gamma g_n^2,$$

$$g_n(0) = \sigma_n.$$

The solution is

$$g_n(t) = \frac{\alpha \sigma_n e^{\alpha \gamma t}}{\alpha + \beta \sigma_n (e^{\alpha \gamma t} - 1)}$$

2078 PETER JAGERS

which tends to a as $n \to \infty$. Therefore

$$\beta \frac{\gamma n}{z + \gamma n} \widehat{g_n^2}(z) + n \left[1 - (1 + \alpha/n) \frac{\gamma n}{z + \gamma n} \right] \widehat{g_n}(z) - \sigma_n \frac{zn}{z + \gamma n} = 0.$$

And letting $n \to \infty$ completes the proof. The same argument applies to the case $\alpha = 0$.

Proposition 3.2. There is no other function than those given in Proposition 3.1 which satisfy the equation there with initial value σ .

PROOF. Assume that A is also a solution for $\alpha \neq 0$. Then,

$$\widehat{A}(z) - \widehat{a}(z) = \frac{\beta}{\lambda z - \alpha} \left[\widehat{a^2}(z) - \widehat{A^2}(z) \right], \qquad z > \alpha/\lambda.$$

Since $\beta/(\lambda z - \alpha)$ is the transform of $\beta/\alpha \exp \alpha t/\lambda$,

$$A(t) - a(t) = \int_0^t \left[a^2(y) - A^2(y) \right] e^{-\alpha y/\lambda} \, dy \, e^{\alpha t/\lambda} \, \beta/\lambda.$$

A must be differentiable,

$$A'(t) - a'(t) = \alpha/\lambda \lceil A(t) - a(t) \rceil + \beta/\lambda \lceil a^2(t) - A^2(t) \rceil$$

and

$$A(t) - a(t) = K \exp \lambda^{-1} \left[\alpha t - \beta \int_0^t \left[A(y) + a(y) \right] dy \right].$$

Since $A(0) = \sigma = a(0)$, the constant K = 0.

Assume now that $\alpha > 0$. If $\exp(-\alpha/2\beta) \le s \le 1$, then (by Proposition 2.3) $s^{1/n} \ge q_n$ for n larger than some $n(\alpha, \beta)$ and (by Proposition 2.2) $g_n(t) = n[1 - F_n(s^{1/n}, nt)]$ increases from $g_n(0) = n(1 - s^{1/n})$ to $g_n(\infty) = n(1 - q_n)$ with t. Moreover, the sequence $\{g_n\}$ is bounded by some constant and from any subsequence of the natural numbers we may by Helly's selection theorem choose a new subsequence on which $\{g_n\}$ is weakly convergent. Since the limit must solve the equation in $3.1, g_n \to a$.

If $\alpha \leq 0$, we choose s small instead (as we might indeed have done above) and repeat the argument for g_n , now nonincreasing. This completes the proof of the convergence.

REFERENCES

Feller, W. (1951). Diffusion processes in genetics. *Proc. Second Berkeley Symp. Math. Statist.*Prob. 227-246. Univ. of California Press.

HARRIS, T. E. (1963). The Theory of Branching Processes. Springer, Berlin.

JAGERS, P. (1968). Renewal theory and the almost sure convergence of branching processes. Ark. Mat. 7 495-504.

JIŘINA, M. (1969). On Feller's branching diffusion processes. Časopis. Pěst. Mat. 94 84-90.