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DIFFUSION APPROXIMATIONS OF BRANCHING PROCESSES!

By PETER JAGERS
Stanford University and University of Gothenburg

For n=1, 2, -+ let z{, ¢t 2 0, be an age-dependent branching
process starting from » ancestors. Suppose it has the reproduction genera-
ting function f,, f,’(1) = 14+a/n+o(r~?), £,"(1) = 2B, — 28, f,"(1-) =
some constant, and the life-length distribution L with L(0) = 0 and A =
J® tL(dt) < . Then, it is shown that the finite dimensional distributions
of n='z{Y converge, as n— 00, to the corresponding laws of the
diffusion ¢ — x, with drift («/A)x and infinitesimal variance

@B M)x.

1. Introduction and summary. Let x,, ¢ = 0, be a one-dimensional diffusion with
drift ax and infinitesimal variance 2fx, x € R, § > 0, x = 0, describing the growth
of a large population with independent individuals. Feller (1951) sketched how this
process might appear as the limit of a sequence of Galton-Watson processes,
where the nth population has n ancestors and is measured in units of »n individuals;
the nth time unit equals # time units of the first process; the number of offspring
per individual in the nth process has expectation 1+a/n+o(n~'), a finite variance
2p, converging to 28, and a third moment bounded in n. The rigorous formulation
and proof of this fact are due to Jifina (1969). More general problems of Galton-
Watson processes with transformed times and states have been considered by
Lamperti in a sequence of papers. But the Feller-Jifina scheme is attractive in
yielding a natural and explicit limit process.

We shall generalize it to age-dependent branching processes. Suppose that
fw» nEN, is a sequence of generating functions of probability measures on the
nonnegative integers, N, satisfying m, = f,(1) = 1+a/n+o(n™t), 2B, =
L) =28, f,"1=) S c< o0, aeR, f >0, c>0. Let L be a probability
distribution on the nonnegative reals, R, with L(0) = 0 and 1 = [§ ¢tL(dt) < 0.
All reproduction generating functions denoted by f, or f are assumed nonlinear.
Denote by z,(n), t € R, n € N an age-dependent branching process with off-spring
generating function f, and life-length distribution L, started from n ancestors at
time zero. We shall prove that, for any ¢, x,(t) = n~'z,(n) converges, as n — oo,
in distribution to the value x, at time ¢ of a diffusion with drift ax/A and infinitesimal
variance 28x/A. It will be clear from the proof that the condition on {f,”(1—)}
may be relaxed.

The approach is the following: If F,(s, ¢) is the generating function of a branching
process defined by f, and L but with one ancestor—an (f,, L) process in
Sevastyanov’s terminology—then x,(¢) has the generating function E (st nt),
s € [0, 1]. But

lim,_, ,, F,"(s*",nt) = exp —a(s, t)
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if (and only if)
lim,_, ,, n[1—F,(s"", nt)] = a(s, t).

And this is exactly what we shall show with

cel*
a(s, t) = T oBa) (@ = 1) if o#0,
o
H'Tﬁt/l if a=0.
Hereo = —logs, se(0, 1], and exp —a(s, t) is the generating function of the diffusion

with the stated drift and variance [see Jifina (1969)]. The convergence in distribution
then follows from the continuity theorem for Laplace transforms.
The method consists in a study of the basic integral equation of (f, L) processes:

(€Y) F(s, 1) = s[1=L(O]+[of F(s,t— y)L(dy)
by means of a Taylor expansion. Once the convergence of x,(¢) is established, a
recursive argument applied to the corresponding equation for
F(k)(sls oy Spslys ey tk) = E[Si‘l'“ Slft'f], $; € [0, 1], S R+’ lsis k, 2
an (f, L) process, namely
F(k)(sla AT 72 STRLEN tk) =S8y Sk[1 —L(tk)]
Sy Skt I::_lfOF(Sk’ te—y)L(dy)
8y =82 [ fo FP sy, 815t 1 — ¥, tr— Y)L(AY) + -+ +
+.‘.:)lfDF(k)(Sl’ '”9Sk;t1 ) "',tk‘.V)L(d,V),
would yield the convergence of all finite-dimensional distributions of x,(z). This,
however, involves lengthy calculations and is omitted.

It is easy to give the sample space of (suitably normalized) branching processes
the Skorohod J,-topology: if the process is not supercritical, define its Malthusian
parameter, u, to equal zero and consider for any branching process z, the process
w, = e *z,. This is a right continuous process with left limits at any point and
lim,_, , w, exists almost surely under simple conditions (Jagers (1968)). Hence,

Weannizs 0 < t < 1, is a random element of D[0, 1]. But we have not been able to
find any neat tightness conditions in terms of f, and L.

2. Some simple properties of branching processes.

PROPOSITION 2.1. Let q be the extinction probability of an (f, L) process with
generating function F. Then, for 0 < s < q,5 < F(s,t) = q, and for g = s = 1,
q < F(s,t) = 5.

PROOF. Suppose that 0 < s < g and take ¢ > 0. Set t, = inf {¢;F(s, 1) £ s—¢}.
We wish to prove that ¢, = oo, i.e. F(s, #) > s—e¢ for all #. Since L(¢) = 0 implies
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that F(s, t) = s, and F(s,-) is right continuous, then L(#,) > 0. But if ¢, < oo,
s—e& = F(s, to) = s[1—L(to)]+ [ °F(s, to — y)L(dy)
> s[1—L(t,)]+f(s—e)L(to)
> s[1—L(to)]+(s—e)L(ty) = s—e.
This contradiction for all ¢ > 0 shows that there is no ¢ such that F(s, ) < s. On
the other hand, if ¢, = inf {t;F(s, t) = ¢} and s < ¢, then L(¢;) > 0 and
q S F(s,t)) <s[1-L(t)]+qL(t) = ¢q

showing that 0 < F(s, 1) < q if 0 < 5 < ¢. Since the basic integral equation has
only one solution between zero and one, it is evident that F(g, ¢) = g identically.
And for s = g, F(s,t) = F(g,t) = g, whereas an argument like the one given

yields F(s, t) < s.
PROPOSITION 2.2. Forany (f, L) process, F(s,-) is nondecreasing if0 < s < q and
nonincreasing if s Z q.
ProOF. Fix s < ¢q and put M(u) = supo<.<, F(s, 7).
F(s,t) = s+[o [fo F(s,t—y)—s]L(dy)
S s+[6[fo M(u—y)—sIL(dy) < s+[5 [fo M(u—y)—s]L(dy)
for 0 < t < u, since fo M(u—y) = fo F(s, t—y) = f(s) = s. Hence
M(u) < s[1—L(w)] + [4.fo M(u— y)L(dy).
Define forne N ¢,: R, — [0, 1] by
po =1
@nr1(D) = s[1=LOT+ [o.f o 0t — y)L(dy).

By induction M < ¢,. But ¢, | F(s,-) [2, p. 132]. Thus M = F(s,-).
For s = g the same reasoning applied to I(u) = info<,<,F(s, 1) and a sequence
¥, with o = 0 yields the proposition.

PROPOSITION 2.3. If, for o = 0, q,, is the smallest nonnegative root of f,(x) = x,
then

g, =1—a/fn+o(n™1), as n— oo.
The proof is left for the reader.

3. The convergence of generating functions. We start from the basic integral
equation for (f;, L) processes,

F,(s,t) = s[1—L(&)]+ o £, o Fuls, t— y) L(dy).
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Fix s € (0, 1) and set g,(r) = h[1 —F,(s'/", nt)], t € R,, 6, = n(1—s'/"). Expanding
f, around 1 gives

gn(t) = 0,[1—L(nt)]+m, [ g,(t—y)L(ndy)

—Buln 6 9,°(t—=y)L(ndy)+n [, g,(t—y)L(ndy),
where |r,(x)| < c¢(x/n)?, x = 0. Take Laplace-Stieltjes transforms (denoted by
circumflexes) of this:

9(2) = 0,[ 1~ L(z/n)] + m,g,(2)L(z|n) — B,Ing, X (2)L(z/n) + n(7,° g)(2)L(z/n),

z > 0. Then,

BuL(zIn)g,2(2) + n[1—m,L(2/m)]g,(2) — o,n[1 ~ E(z/m)}—n* (7o go)(2)L(z/m) = O.
Evidently, B,L(z/n) —» B, n[l—m,L(z/n)] - Az—a and o,n[1 —L(z/n)] - Azo =
— Az log s. Furthermore, :

n}(F,og,)(2) = zn® [§ 1,0 g,(t) e = dt
Sen g, (Nze *dt < Kjn
for some K, since g,(t) = n[l1—F,(s'/", nt)] £ n(1—s'"")+n(1 —gq,), which is bound-

ed by 2.3. Hence, as n — oo, the equation (loosely speaking) approaches the
equation in the following proposition:

PROPOSITION 3.1. If o # O, the equation
BX2(2)+ (2 —a)2(z) —ahz = 0
has the solution

o eat/).

“O =T o@D

Foroa =0
o
1+apt/A

is a solution

PROOF. Assume thata # 0,L(¢) = 1—e ",y = 1/A, £,(x) = 1+ +a/n)(x—1)+
B(x—1)%. The equation for g, has a sense also if f,, is not a probability generating
function and it reduces to a Riccati differential equation

9’ = g, —PByg,’,

9.0) = 0,
The solution is
ag, e
0 = i o @)
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which tends to a as n —» oo. Therefore

yn =5, - yn
ﬁz_'_,yngn (Z)+n _( +a/n)z+yn g,,(Z)—O',, z+yn_ .
And letting n — oo completes the proof. The same argument applies to the case

o =0.

PROPOSITION 3.2. There is no other function than those given in Proposition 3.1
which satisfy the equation there with initial value o.

PRrROOF. Assume that A4 is also a solution for a # 0. Then,

B

lz_a[?(z)—;l?(z)], z>afl.

A(z)—d(z) =

Since B/(Az—w) is the transform of f/o exp at/A,
A —a(t) = [ [a*(y) - A*(»)] e @ dy e/ B .
A must be differentiable,
A'()—a'(t) = e/ ALAW) — a()] + plALa*(1) - A*(1)]
and
A()—a(t) = Kexp A "[at— B [o [A() +a(»)] dy]-

Since A(0) = ¢ = a(0), the constant K = 0.

Assume now that a > 0. If exp (—«/2f) < s < 1, then (by Proposition 2.3)
si" > q, for n larger than some n(x, f) and (by Proposition 2.2) g,(t) =
n[l —F,(s*/, nt)] increases from g,(0) = n(1—s'") to g,() = n(1—q,) with ¢
Moreover, the sequence {g,} is bounded by some constant and from any sub-
sequence of the natural numbers we may by Helly’s selection theorem choose a
new subsequence on which {g,} is weakly convergent. Since the limit must solve
the equation in 3.1, g, — a.

If « < 0, we choose s small instead (as we might indeed have done above) and
repeat the argument for g,, now nonincreasing. This completes the proof of the
convergence.
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