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STEIN-JAMES ESTIMATORS OF A MULTIVARIATE
LOCATION PARAMETER!

BY SERGE L. WIND?

Columbia University

Bounds on the risks, under squared error loss, of a family of
estimators of a multivariate location parameter are given for both fixed
and random unknown location parameters when the covariance matrix
of the observed random variable is unknown. The class of estimators
considered in this paper contains Cogburn’s [2].

1. Introduction and summary. Properties of the risks of a family of estimators
of a multivariate location parameter are presenfed. These estimators are
generalizations of those proposed by James and Stein [3] and Baranchik [1]
for estimating the mean of a multivariate Normal distribution, but here no
specific parametric distribution is assumed on either the underlying distribution
or on any prior distribution. Cogburn [2] discussed mean squared error
properties of the family, under the assumption that the covariance matrix oI
of the observed random variable was known. We extend his results in two
directions: we assume ¢° is not known (Corollary 2.1) and we assume this
variance is a random variable with an unknown prior distribution (Corollary
2.4). Components of these “Stein-James estimators” may be employed as
restricted asymptotically optimal solutions to estimation problems considered
in an Empirical Bayes context [5].

2. Mean squared error properties of a family of Stein-James estimators. In
this section, we will obtain four corollaries to Cogburn’s Theorem ([2] page 25).

The following structure is assumed: Let R be r-dimensional Euclidean
space; S, a subspace of R of dimension s, and T the ¢t-dimensional orthogonal
complement of S. The notation of [2] is used where X denotes the projection
of X on S, and XY denotes the usual inner product of two vectors. Structure
H: Let X, Y be random variables in R such that X = Y 4 &, with £ a point
in R, such that EY = 0 and EY,’ = ?, with 0 < 7 < co. Suppose §* =
EY? < oo. We wish to estimate & subject to squared-error loss (6 — &)
Bounds on the mean squared error (MSE) of
(2.1) 0*(X) = Xy + A*X,,
where A* = (X, — #)*/X,?, #? an estimator of *, and Z+ = max(0, Z), are
determined.
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REMARK. The general type of problem to which the canonical form results
below apply can be stated as follows: Let Z be a random vector in ¢ dimen-
sional coordinate space Q, distributed with mean @ and covariance matrix ¢°I,
with ¢* unknown and I the ¢ X ¢ identity matrix. It is assumed that mean
lies in a given subspace Q of Q,, and we let Q* denote the orthogonal com-
plement of Q. The corollaries then hold with X = Z,, n = dimension of Q*,
6 = (n+ 2)7'Z}. and r = ¢ — n = dimension of Q. If S is the null space,
#* = rg% if S is the space generated by the equiangular line, #* = (r — 1)é*.

COROLLARY 2.1. MSE (0*) = 6* + 2{2 + o(1)},
given assumption H, where A = §,*(t* + £,5)7, if:

(i) components Y, of Y are independ;nt with distributions drawn from a family
of uniformly square integrable distributions;
(ii) min; EY? = ¢ for some fixed ¢ > 0;

(iii) max; EY?=o0(t) as t— co;

(iv) the sequence {t%t—*} converges in mean of order 1 to 1, for E?* < K < oo.

Proor. Let d, the estimator used by Cogburn [2], be (2.1) with z? the true
(but unknown) parameter in place of #2. "

7*(MSE (0*) — MSE(9)) < t2E(0* — 0)* + 2r7*{E(0* — 0) MSE(9)}} .
Moreover,
t2E(0* — 0)* = t?E{(min(#2X,7%, 1) — min (22X, 2%, 1))X,}?
< t2E{(2 — o)X, for X,* = min(z?, #%)
=0 otherwise.
t2E[(F2 — o)X, (6 + ) TE(R — )P S E(F P — 1) 0.
The first limit follows because X,*— {§,* + 7°} w.p. 1; the second, from
hypothesis (iv). The result is proved, since, from [2], MSE(d) = ¢* 4+ 7* X
{2+ o(1)} under (i)-(iii).

Now consider £ to be a (Bayesian) random variable in R. Assume H*: Y
is independent of §; components Y; are independent and drawn from a given
family of uniformly square integrable distributions with mean 0 and variance
in the interval [m, m’], for some 0 < m < m’ < . The corollary below
follows from Result 1 ([2] page 29) and Corollary 2.1.

COROLLARY 2.2 Assuming H and H*, if E{|t* — o*|t7%|§} — 0 for E(#|§) <
K < oo, then

MSE (6*) = 6* + t{p + o(1)} , where p = EA.

Let us deal specifically with the empirical Bayes assumption. In addition

to H*, we postulate that H’: &, are i.i.d., with variance ¥?, and Y, arei.i.d.,

with common second moment ¢*. We suspect £ lies on the equiangular line

S in r-dimensional space, or & = ce, where e is the vector of r ones and ¢ is
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any constant. A reduction in MSE(0*) over ¢* + 7* = ro® for the estimator

X, can be expected. With a proof paralleling that of Corollary 2.1, we obtain
COROLLARY 2.3. Under the hypotheses of Corollary 2.2 and H’,

MSE(3*) _ o*¥?

1).
r 02+’I”+0()

We now consider the case where ;> = EY,? are random variables on [m, m’].
Let

(2.2) X, =WV, +§ i=1,---,r).
We introduce a joint prior on (&;, W;) which is independent of V;:
(2.3) EW? = og*, l::Vi =0, E¢, = p,

EV: =1, Et2 = p* 4+ W2,

Hence, EX; = pand Var X, = o* 4+ U2 Lety = (0,, - - -, 0,). Then E(X;|§,7) =
¢, and Var (X;|¢, y) = 0,3, which is the structure assumed in H. Let F; = W, V.
Then X = F + &, and now 7 = E(F;*|§, 1)-

COROLLARY 2.4. Given (2.2) with &, W random variables with a joint distribu-
tion, with pairs (&;, W,) i.i.d., V; i.i.d., with moments as specified in (2.3). Let
S be the equiangular line. Also assume that, conditional on 7 = (oy, - -+, 0,), F;
are drawn from a uniformly square integrable distribution family with means 0 and
variances in the interval [m, m’], and that E{|t* — ¢*|c™?| €, 7} — 0 for E(#4/§, ) <
K < co. Then,

MSE (%) _  o*¥?
r T og* 4+ W

MSE(2*) _ BP* | E(i +o(1)
-r— m— —T r b

+ o(1).

PRroor.

a? 1 ECEE?  (r— 1)o*Ue

— Pa.s. T — ’

r r E* 4+ EE2 r(o* + WP

and the result follows by applying the Dominated Convergence Theorem and
then taking the limit as r — co.

Note. If ¥, is distributed Normally, and each (&;, W;™) is distributed

as a Normal—gamma 2 distribution (Raiffa and Schlaifer [4] page 300), for
i=1, ...,r, then the Bayes risk is precisely ra*W?/(c* + U?).

Acknowledgment. I with to acknowledge, with gratitude, the helpful com-
ments of Professor A. J. Baranchik and the referee.

REFERENCES
[1] BARANCHIK, A. (1964). Multiple regression and estimation of the mean of a multivariate



ESTIMATORS OF A MULTIVARIATE LOCATION PARAMETER 343

normal population. Technical Report No. 51, Dept. of Statistics, Stanford Univ.

[2] CoGBURN, R.(1965). On the estimation of a multivariate location parameter with squared
error loss. Bernoulli Bayes Laplace Anniversary Volume. Springer-Verlag, Berlin,
24-29.

[3] James, W. and STEIN, C. (1961). Estimation with quadratic loss. Proc. Fourth Berkeley
Symp. Math. Statist. Prob. 1 Univ. of California Press, 361-379.

[4] RAIFFA, H. and SCHLAIFER, R. (1961). Applied Statistical Decision Theory. The M.L.T.
Press.

[5] WinD, 8. (1970). An empirical Bayes approach to the multiple linear regression problem.
Ph.D. dissertation, Columbia Univ.



