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STRUCTURAL DISTRIBUTIONS WITHOUT EXACT TRANSITIVITY!

By JaMEs V. BONDAR
University of Wisconsin and University of British Columbia

This is an extension of D.A.S. Fraser’s structural inference to sta-
tistical problems invariant under a group which is not necessarily exactly
transitive on either the sample or parameter spaces. Explicit formulas
are given for the extended structural distribution of the parameter given
observations, in a class of cases for which a relatively invariant measure
exists. The connection with Bayesian inference with invariant priors is
discussed.

3

0. Introduction. The concept of structural infererce has been extensively
treated in [3], notably for invariant statistical models in which the group is
exactly transitive on the parameter space and exact on the sample space. Here
we discuss an extension of structural inference to cases in which the group is
not exact, and generalize some results of [1]. This material is of potential
interest, not only to adherents of structural inference, but also to those who
calculate Bayes posteriors from uniform priors, since the structural distribution
is often equal to the Bayes posterior (see Section 3). In Section 1, we show the
existence of extended structural distributions for a class of invariant models,
and discuss some properties. Explicit formulae for these distributions are de-
rived in Section 2 for two classes of special cases when relatively invariant
measures exist. In Section 3 and Section 4 it is shown for these two classes
of special cases, that the extended structural inference, a type of pistimetric
inference, and Bayes inference with right invariant priors give the same distri-
bution for the parameter given the observations (modulo the fact that they
may not be defined on the same g-field of the parameter space). Of course,
these apparently similar distributions are given different interpretations by the
adherents of these three approaches to inference.

1. The extended structural distribution. General information on invariant
models is found in [5], Chapter 6, and a brief summary of the required measure
theory is found in the appendix to the present paper. We assume that we are
dealing with an invariant statistical model, i.e. with a sample space &2~ and
group G of transformations of &27, with generic elements x and g respectively;
6 in the parameter space Q indexes probability measures P(.; f) such that if
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the random variable x has a distribution indexed by # in Q, then for any g in
G. the random variable gx has a distribution indexed by ¢’ in Q (we define
90 = 0’). We further assume:

L. 6, + 0, implies P(+; 0,) # P(+; 0,).

2. & is a submanifold of some E? embedded (in the sense of differentiable
manifolds) in E? and given the induced topology; the set <" of measurable
subsets of 227 is assumed to be the Borel field of &2°.

3. Allofthe probabilities P(+; #) are dominated by the same o—finite measure,
called the ground measure.

4. f(x; 0)isa continuous function on 22~ x Q except for some smooth surface
embedded in 227 x Q. !

5. G is transitive on Q.

6. G is a separable Lie group, and (g, x) — gx is continuous on G X 2.

7. &£ is the Cartesian product of some orbit Gx with some other space .&7";
%7 is a surface in a Euclidean space.

For any x in 227, Gx = {gx: g € G) is the orbit of x under G. If Gx = =2,
we say that G is transitive on 22°. If for every x,, x, in £2” there is at most one
g in G such that gx, = x,, then we say that G is exact on 2. If G is exact
and transitive it is also called exactly transitive. A model obeying assumptions
1 to 5 for which G is exact on Q is called a transformation parameter model
(TPM).

We choose an arbitrary point 8, in Q; we associate each ¢ in Q with the left
coset o(0) = [0]H(0,) in G/H(6,), where [#] is any group element such that
[016, = 6, and H(0) = {g|g0 = 0}. We equip G/H(6,) with the finest topology
such that ¢ is continuous. Since ¢ is both a homeomorphism and an isomor-
phism (see [7], Chapter 3), we can “by abuse of language” identify ¢ and the
coset o(6). Similarly, we choose an arbitrary point D(x) in each Gx such that
D(y) = D(x) if y € Gx, and x — D(x) is continuous (this is possible by assump-
tion 7); we associate any x with the left coset 7(x) = [x]H(Dx) in G/H(Dx),
where [x] is any element of G such that [x]Dx = x, and H(x) = {g|9x = x}.
We equip G/H(Dx) with the finest topology such that z is continuous. z is
both a homeomorphism and isomorphism of the orbit Gx onto G/H(Dx), so
whenever we are considering the conditional statistical model given Gx, we
may identify x and the coset z(x). We can then speak, for example, of x™* =
H(Dx)[x] ™, 8, = H(#,) and Dx = H(Dx); and if G is exact on 227, then H(x) = e
(the identity of G).

The map p: g — gH(Dx), is a map from G onto G/H(D). Note that different
Dx may have different H(Dx), hence p depends on the orbit. To emphasize
this, we may write p,, instead of p. If Sis a subset of G such that S- H(D) = S,
it will often be merely pedantic to distinguish between S and o(S).
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In addition to assumptions 1 to 7, we shall from time to time invoke the
following assumption:

8. The function D can be (and has been) chosen such that H(Dx) = H(Dy)
for all x, ye 2.

If 227 consists of a single orbit, then 7 and 8 are automatically satisfied. The
cross-product required by assumption 7 can always be replaced by a local cross-
product, thus generalizing our results somewhat.

Now, if x has a f-distribution, then [#]~'x has a f,-distribution. We write
E = H(0,)[0]*x and the mapping x — E then induces a probability from the
conditional probability on G, onto the set H(0,)\Gx = {H(6,)y|y € Gx}. Thus
E is a random variable defined on almost all G, taking values in H(f,)\Gx and
has a distribution (the error distribution given Gx) which does not depend on
the parameter value 6.

If we use the above-mentioned identification which associates & with ¢(6),
x with 7(x), then on a specific orbit

E = H(0,)[0]*x

becomes
1) ' E=0-x.
From (1),
x70 = E7!
or
(2a) H(x)§ = xE™*
or
(2b) H(Dx)[x]'0 = H(Dx)E™.

Given a value of x, equation (2a) induces a probability on the set of cosets
of form H(x)f. This probability is, by (2b), the distribution of the inverse of
the error variable multiplied on the left by x. To be precise, if S is measurable
in Q such that H(x)S = § (or equivalently, if S is measurable in G such that
H(x)SH(0,) = S), we define

3) P(S|x) = P(S~'x|Gx; 6,) .

P(- | x) is thus a measure on the g—field of such §’s in Q, which we shall call
the extended structural distribution of 6 given x. Because all the spaces in sight
(%7, £~ and Gx) are Euclidean and x — Gx is a measurable map from 22~ onto
%7 (assumption 7), the conditional probability in (3) exists (Lehmann, page 44)
and is unique up to a null set. '

There are two reasons for being interested in the probability in (3). Firstly,
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P(S| x) is the fiducial distribution obtained from the pivotal quantity §—'x given
the ancillary statistic Gx. A second reason, more persuasive to many people is

THEOREM 1. If assumptions 1 to 7 hold for an invariant statistical model, and
P(S|x) = a, then S is a confidence set of size o for 0.

ProOOF.
a = P(S|x) = P(S7'x|Gx; 6,)
= P(EcC §7'x|Gx)
= P(Ex™' C $7'|Gx)
= P(xE™* C S|Gx)
= PO eStx).

The latter expression, as is usual with confidence sets, is interpreted as the
probability that the fixed value ¢ is covered by the random set S. []

Ifin (3), Sis the entire parameter space, we get P(Q|x) = P(G™'x|Gx;6,) = 1,
hence:

THEOREM 2. The structural probability is a probability. (a.e.)

A quantity is any function of 227 x Q. An invariant quantity (x, 6) — q(x, )
is a quantity such that g(x, ) = g(gx, g6) for all x, g and §. The following
theorem will be useful in finding maximal (finest) invariant quantities:

THEOREM 3. In an invariant model satisfying assumptions 1 to 4, (x, ) — (Gx,
GO, H(0,)[0]'[x]H(Dx)) is a maximal invariant quantity, and if G is transitive on
Q, it is also a pivotal quantity. (i = GO and 0, is an arbitrary point in i.)

Proor. The quantity is invariant since its value at (gx, g6) is (Ggx, Gg0,
H(0,)[90]"[9x]H(Dx)). Since [gf] = g[0]h where h e H(0;), and similarly for
[9x], the quantity becomes (Gx, GO, H(0,)[0]*[x]H(Dx)) = q(x, 0).

On the other hand, if ¢(x, #) is an invariant quantity, we have g(x, 0) =
q([x]H(Dx), [01H(0,)0,) = q(H(0,)[017*[x]H(Dx), 6;), which is a function of D(x),
of i, and of H(0,)[0][x]H(Dx).

If G is transitive on Q then G@ is constant; Gx has a constant distribution
(see [1], Section 2) and equation (2b) tells us that H(6,)[6]'[x]H(Dx) equals
0-[x]H(Dx) = (H(Dx)E~")~* = E, which has a distribution independent of 4. []

COROLLARY. The extended structural probability is homogeneous in the sense
that P(gS|gx) = P(S|x) for almost all x. Any distribution for 0 given x ( fiducial,
structural, Bayes or whatever) which is homogeneous in this sense, or any confidence
interval for 6 which is homogeneous, will be a function of the maximal invariant
quantity.

DEerINITION. If HS, (« in some index set I) is a partition of the H-orbits of
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G, a complete set of invariants for the class of sets HS,, a € I, is a mapping which
takes each HS, into an element (member of G) in that HS,. In other words,
it is a system of distinct representatives for the class of sets HS,, a € I.

Rule to find the maximal invariant quantity: A maximal invariant quantity
is neither more nor less than a complete set of invariants for the sets 6-'x =
H(0,)[0]7'[x]H(Dx) in G (all xe2”). Thus, the maximal invariant quantity
is equivalent to a complete set of invariants for the H(6,)-orbits H(6,)[6] x.

For example, []7'x and [#]'[x] are such invariants. Examples of this rule
may be found in Section 2. A consequence of the rule is that the maximal
invariant quantity is a function of cosets H(6,)[x], and hence the dimension
of the range of the maximal invariant quantity is no greater than the dimension
of the coset space H(0,)\G, which in turn equals the dimension of Q = G/H(9,),
namely dim G — dim H(f,) ([6], Section 6.2.1). This may be interesting in
view of a dictum sometimes proposed, that the pivotal quantity used for fiducial
inference should have a dimension no greater than that of Q.

2. Two special cases. In the remainder of this paper, we will wish to get
explicit formulae for generalized structural distributions in important cases,
and for this purpose it would be useful to express probability density functions
with respect to an invariant measure on &2”~. However, if G is not exact on
£, then we do not in general have an invariant measure, but in many statistical
models we have a left relatively invariant measure A on 27, i.e. there exists
0:G — R such that di(gx) = d(9)-di(x). E.g., for many of the models of
multivariate analysis, G is a group of matrices, and Lebesgue measure on E"
is left relatively invariant with d(g) = det (g). (See Appendix or [7] Chapter 3
for the properties of relatively invariant measures.) 4 is called the modulus of
2, and is not the group modulus A.

LemMa 1. If H is a compact subgroup of the locally compact group G, then
there exists a left invariant measure on G/H. If 2 is a left relatively invariant
measure on G|H with modulus 0, any integral with respect to 2 may be written

§5. /(%) - dA(x) = K § 15, f(9D)3(9) - d1x(9)

Sfor some k > 0 and with D = H in G/H; S is any measurable subset of G|H, and
p is left invariant measure on G.

Proor. The existence of a left invariant measure is a corollary of Weil’s
theorem (for a statement of Weil’s theorem, see Appendix, or [7], page 140,
Corollary 2). Now,

§u S(ghx)dp,(h) = flgx)- py(H)

(p#y(H) < oo by compactness of H). Therefore we may set f*(g) = f(9D)/p,(H)
in Weil’s theorem, and
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Vs f)AA(x) = Ky § o105, S*(9)0(9) d(9)
= kpu(H)™ § o105 19D)3(9) dpx(9) - [
A. A general case. Making use of assumptions 7 and 8, we may construct
a measure § on &2~ which is the product of some convenient measure 2 on some
orbit Gx, with a measure / on the set of orbits. If there exists a left relatively
invariant measure on G/H (see Weil’s theorem in Appendix for a necessary and
sufficient condition for existence), then we shall use it as our A:

d§(x) = dA(n(x)) dI(Gx) .

If the P(-; 6)’s are continuous, then they will be dominated by & if / is properly
chosen (setting / equal to the marginal distribution of Gx will suffice). If dm(x)
is the element of a measure on &2~ which dominates each P(.; 6) and is domi-
nated by &, then
4) dP(x; 0) = C(x)f(x; ) dé(x)

= C)AL0]'x; 6,)07X([0]) dA(x(x)) d(Gx)
where f{+; 0) = dP(+; 0)/dm, C(+) = dm/d&, and 6 is the left modulus of A.
Now,

C(gy) = dm(gy)/dé(gy)

_ dm(gy)
da(gz(y))-dl(Dy)

= J(g’y)dm()’) = J , 51 C ,
3(9) di(z(y)) - di(Dy) (9, )07(9)C()

where J(g, y) is the Jacobian of y — gy with respect to dm(y), evaluated at y.
If we set y = D(x) and g = [x], then C(x) = J([x], Dx)0~*([x]). From (4),
() dP(x|Gx; ) = K(Dx)J([x], Dx)d~"([x)ALOT'x; )07 ([0])dA((x)) -

If S is a measurable set in Q = G/H(0,) such that H(x)S = S, the structural
distribution is given by (3).
(62) P(S]x) = K(D) § J([y], Dx)o([yDA; b0) dA(x(y))

where the integral is taken over y in Gx such that z(y) € S'[x]. If H(Dx) is
compact, then by Lemma 1 this becomes (we absorb constants into k):

k(D) § 15101, J(9> Dx)07(9) flgDx; 6,)6(9) dp(9)
(6b) = k(D) § 151, J(9, Dx)f(gx; 0,) dp(9g)
= k(D) § o105y J(97 Dx)f(97x; 0,) dv(g)

where v is the right invariant measure v(E) = p(E~") on G. Hence we have
proved:
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THEOREM 4. If assumptions 1 to 8 hold, and there exists aleft relativel ly invariant
measure 2 on G|H(Dx); if 2 dominates the conditional distributions of n(x) given
Gx, then the conditional distribution of x is given by (5); the structural distribution
is given by (6a). If H(x) is compact, then the structural distribution is given by (6b).

ReMARks. If G is compact, then H(x) is automatically compact, for H(x)
is the inverse image of the closed set {x} under the (continuous) map g — gx.

If dm(x) is chosen to be d&(x), then J(g, Dx) = d&(gD)/dé(D) = d(g).

If G is a semi-direct product of H(f,) and some other subgroup, and if G is
exact on 227, then one may use the ingenious “marginal analysis” of D.A.S.
Fraser to derive expression (6b), ([3], Chapter 5).

B. Special Case (transformation p:arameter mode]s). If assumptions 1 to 8
hold, and G is exactly transitive on Q, then equations (1) and (2a) for the
conditional model given the orbit become:

7 x=0E,
8) H(x)0 = xE
where each side of (7) is a left coset gH(Dx) and the two sides of (8) are right

cosets H(x)g. By the rule of Section 1, #~'x is maximal invariant. If H(x) is
itself compact, then Theorem 4 holds. Q = G, so (6) becomes

%) P(S|x) = k(D) \s J(07*, Dx)f(60"x; 0,) dv(6) ,
defined for all measurable § = H(x)S in G.
This is a generalization of Fraser (1968) page 64, where several formulas

for the density g* of ¢ given x are stated. Except for the last one, which
contains an error, these formulas agree with (9).

ExaMPLE 1. £27is the real line R; G is the group generated by translations
and reflections. Let (¢, +1) translate the points of £2” to the right by ¢; let
(t, —1) reflect 227 in the origin and then translate by ¢. If zero is chosen as
D, then we can use (x, 1) as [x] ((x, — 1) would also suffice as a choice of [x]).
(t @)-(t, @) = (@ty + 1, a@); (t, ) = (—at, a). H(D) = {(0, 1), (0, —1)}
is compact and du(t, a) = dt is left invariant on G; dx is left invariant on 227,
so we shall use it asour di(x). 0o =A=J=1.

Let dP(x; 0,) = f(x; 0,) dx, where no translate of f'is an even function. By (5),
dP(x; (t, 1)) = fix — t)dx
dP(x; (t, —1)) = f(—x + t)dx.

The pivotal quantity is 6~'x = a,(x — t,) where 0 = (#,, a).
Now, H(x)-(t, a) = {(t, a), (2x — t, —a)}. Hence, the structural probability
P(S| x) is defined iff S'is of the form S = {(z,, 1): t, € T} U {(#5, —1): 2, € 2x — 1}
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where T is measurable. By (9)
P(S|x) = k § 1,065 107'%; 0,) dt
=k §, fix—t)ydt + kS, , f(—x + t)dt
=2k, filx—t)dt

where k must be 1 to make P(Q|x) = 1.

General Remark. 1t is of interest to note that this extended structural distri-
bution could not have a frequency interpretation in terms of confidence sets
if we tried to define it on all Borel sets of Q. To see this, suppose that a
probability for § given x was defined on every measurable subset S of Q, such
that S is a confidence set for @ of sizé P(S|x). If we consider an experiment
in which a large number of samples x;, i = 1, 2, . . . are taken, and an extended
structural distribution for 6 given x; is obtained for each i, and if Nature chooses
6 = (0, +1) every time (unbeknown to the statistician), then the condition of
frequency interpretability implies that the marginal probability for a, = 1 is
equal to unity for almost all x. Similarly, if we consider the same experiment
with § = (0, —1) every time, we see that the marginal structural probability
of a, = —1 must be unity for almost all x. These two requirements are
contradictory.

EXAMPLE 2. (Sample of size one from normal (z, ¢%)). &2 is the real line
R'; G is the location-scale group {(¢, a); a > 0} for which (¢, a)x = ax + ¢ and
A(t, a) = 1/a([3], page 63). Multiplication and inverse are as in Example 1.
If we choose ¢, to be the N(0, 1) distribution and Dx to be 0, then H(D) =
{(0, a)|a > 0} and H(#,) = {e}. There is no invariant measure on 2Z°, but the
Lebesgue measure element dx is relatively invariant with modulus d(z, a) = a.

By (5),

dP(x| (1, o)) = (2m) exp [~ 3(07%)]-0(sz, o) -dx

= (2ro*) " exp [—%(x—;ﬁ>j~dx .

The sets on which structural probability is defined are generated by those of
form

S = {(/w) m1<x—;—’”‘<m2}

since

H(x)(p, 0) = {(x — ax + ay, ac)|a > 0}.
By (3),

P(S|x) = P(S7'x; 0,) = P(m, < z < m,)

where z is N(0, 1). Since H(x) is not compact, (9) cannot be used.
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It is of interest to note that parameter sets of the form {#]|0 < ¢ < k} have
no structural probability, although there are confidence intervals for ¢ of this
form ([8]).

REMARK. In both Examples 1 and 2, our sample size is so low that the
dimension of the sample space is less than or equal to the dimension of the
parameter space. If we take a larger sample, our sample space will have di-
mension greater than that of Q, and then G becomes exact, but no longer
transitive on &2”. This often occurs in practice: a transformation parameter
model with G not exact on 27 is typically found in cases in which the sample
size is “too small” or there are “too many parameters,” a fact which is made
more plausible by the following (somewhat heuristic) argument due to Andrew

Kalotay. If a sample x = (x,, - - -, x,) is taken from the model, and G acts on
£~ so that g(x,, ---, x,) = (9%, - f, gx,), then the stability subgroup of
(%15 + - o5 X,) 18 Mio H(x)) = N [x;]H(D)[x;]™'. For almost all x, increasing

n by 1 will decrease the dimension of () H(x;) unless [ H(x;) is'already equal
to some normal subgroup of G which is contained in H(D). If this normal
subgroup is called N, we may then consider the model to be invariant over
the group G/N, and this reduced group G/N will be exact on almost all of 22~
for n large enough that M H(x;,) = N.

ExaMpLE 3. (Multilinear model of D.A.S. Fraser and L. Steinberg [4]; a
special case of this model is discussed in [3] pages 225-242).

G — {g — |:I('r) O(rzp)j' : det C > O}
B(pzr) (pzp)
is a subgroup of the (r + p) X (r + p) matrices;

1}11...1)1

is a generic element of &2” (the v’s are fixed, the x;;’s range through the reals).
When X has the 6, distribution, the x; are i.i.d. N(0, I ,,,). If n > p, then G
is exact on almost all orbits of &2°, however G is not exact on 2, since

gX: Vi ooV,
X ¥ ... X ¥
1 9 9

n

where the x;* = Bv, + Cx; are independent column vectors with the mul-
tivariate distribution N(Bv,, CC’). If (v;, --.,v,)isof rank rand n > p > r,
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then all Bv, = 0 implies B = 0, hence
H(,) = {9|Ce SO(p), B = 0}
where SO(p) is the set of p X p orthogonal matrices with positive determinant.
As is shown in [4], the volume element dX = dx,, - - - dx,,-dx, - - - dx,, is
relatively invariant with modulus |g|"; left and right invariant measure elements
on G are du(9) = dg/|9|**" and dy(g) = dg/|g|? respectively, where dg = dB dC
and |g| = |[C(g)|]. We now write [0] as

=[5 v)

If £,(X; 6,) dX = T]1_, f(X;) dX is the probability element for X when 6, is the
parameter, then by (5): )

dP(X; 0) = K'(D)J(X], D)f,([0]"X; 6,)-du(X)
= K(D)CX)[ T[ AT-(x; — £2v)- [T dZdT,

and the structural probability of a set S in G/H(0,) is

(8)  P(S|X) = K(D) §,15, (9. DX)f.(07X; 0,)-d(g)
= k(D) § 15 IL AT(x; — SZv)[L[?"dZ dT .

It would be nice to find a probability element of the form g*(4|X)d6, but
this may be difficult, since ¢ is a coset, and df is thus not the simple p(p + r)-
order infinitesimal d.<Z dI', but is an infinitesimal of order dim Q = dim G —
dim H(0) = (2r + p + 1)p/2, whose expression may be difficult to find in terms
of the coefficients b,; and y,; of .z and I

3. A relation of structural with Bayesian inference. In this section we invoke
assumptions 1 to 7. If b is nonnegative and ¢ is a ¢-additive, o—finite positive
measure on , then dB(0) = b(6)-d&(0) is said to be the element of the prior
quasi-probability B, and b is a prior quasi-density. If B(Q) = 1, then B is a prior
probability. Let f{-; 6) be the density of x with respect to a o-finite measure
A. A quasi-density is said to be admissible with respect to & and the model if

h(x) = §a b(O)f(x; 0) d5(0) < oo

for all x a.e. (4). The Bayes posterior probability element for ¢ given x is

dP,(6| x) = ﬁ(i'f%‘ﬂ dE(0) .

If the prior distribution is defined on a sub-g-field of the Borel field of Q, then
the posterior P,(S|x) is defined only on this sub-o-field.

THEOREM 5. If the model satisfies assumptions 1 to 8, and H(x) and H(0,) are
compact, then there is a right invariant measure A, on Q. This g is also a left
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relatively invariant measure with left modulus A(9)™; it is an admissible prior quasi-
density; the Bayes posterior given this prior and the observation x will agree with
the structural distribution P(S|x) for all S for which the structural distribution is
defined.

Proor. Existence of 1, follows from Weil’s theorem (note that Q = G/H,
hence right invariance is defined); by Nachbin, Proposition 27, its left modulus
is A(g)~. Now,

§s (x; 0) d2o(0) = (s (OT'%; 0)07X([0)] d2a(6)
(10) = §,105 (9715 0,) dpi(9) (by Lemma 1)
= Sp‘l(S) ﬂg"lx; 0,)A(9) dvw(9) -
Comparing with (6b) and bearing in mind that J(g, Dx) = d(g9) = A(9)~", we see
that (10) equals k(D) *P(S|x). Now, h(x) = §o f(x; 0) d2o(0) = k(D)™ P(Q] x)
by the above; this equals k(D)™' by Theorem 2, which proves admissibility.
The Bayes posterior is

Py(S|x) = h(x)™ §5 f(x; 0) dAg(0)
= P(S|x). [

COROLLARY. Under the assumptions of Theorem 5, if A is any left relatively
invariant measure on Q with left modulus &, then dig = 6([0])*A([6])~" dA(0) is
the element of an admissible quasi-prior which yields Bayes posterior probabilities
equal to the structural ones ( for H(x)-S = S).

Note that the structural probability is defined on measurable sets of right
H(x)-cosets, while the Bayes solution is defined on all measurable subsets of
Q = G, whether they are sets of cosets or not. However, we see that the two
solutions are equal if both exist for a given set S.

ExampLE 1. If x,, ..., x, are i.i.d. observations on a sphere, G = SO (3)
and G = Q, then Theorem 5 holds even if f{+; 6,) has symmetries.

ExaMpLE 2. In the multivariate model of Example 3, Section 2, the density
of the structural distribution will be the same as that of the Bayes posterior
obtained from the prior

d<#.dTl’
P(@eS) = §pus TP

where

is a generic group element.

4. A “consistency” criterion. Here we prove that extended structural infer-
ence satisfies a certain “consistency” criterion proposed (e.g. [2] and [10]) by
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Sprott. Let x be a sample from a statistical model (27, Q, {P,}) which is in-
variant under a group G; let y be a sample independent of x from another
invariant statistical model (Y, Q, {P,’}) with the same parameter space and the
same group G; in both models, we want G to act in the same way on Q. We
say that the models satisfy criterion L if the structural distribution for x, used
as a prior distribution for a Bayes analysis of y, would yield a posterior distri-
bution whose density function is the same as that for the structural distribution
from the combined sample (x, y). This definition may remind readers of A. D.
Roy’s pistimetric inference (Roy, (1960)), in which a fiducial distribution from
part of the sample is used as a Bayes prior for the rest of the sample. Inthose
cases in which fiducial and structural-answers coincide, criterion L says that
pistimetric and pure structural inference give the same distributions for the
parameter. By Section 3, these distributions are also Bayes. Condition L im-
plies another consistency property: if the structural distribution from x is used
as a prior for a Bayes analysis given the observation y, then the posterior dis-
tribution is unchanged if the order of x and y is reversed. Fraser has shown
([1] page 275) that L holds if the models are such that G is exactly transitive on
&, 27 and Q. The results of Sections 1 and 2 permit more general conclusions,
as we now explain.

THEOREM. If assumptions 1 to 8 hold for both models, and H(x), H(y) and
H(0) are compact, then the models satisfy criterion L.

Proor. We shall put the right invariant measure A, from Theorem 5 on Q;
d&, = dA, x dl, on the first model and d¢, = d2, x dl, on the second model,
where dA, and di, are left invariant. Let the density functions of the models
be f; and f, respectively. By (6b) the structural distribution given x is (since
J=0= 1)2

dP(S| x) = k(Dx) § 15 Si(97%; 0,) d(9) -
Using this as a prior on Q for a Bayes analysis of y, the joint Bayes probability
of ¢ and y is
dP(0, y) = dP(y; 0)-dP(0 | x)
= kf([017'y; 00) dE(3) - § 100 Ju(97'5 0) d(9) -
By Lemma 1, the last term of this expression is f,([6]7"x; 0,) ¢, (H(6,)), hence

(11) dPy(0 € S|y) = k §s L([017y; 0)L([0]7"x; 0o) - dAg(0)
= k §om15 (9795 O0)fA(97%; 0) d(9) -
Now let us look at the combined model: it has the sample space 27 X 7/
G acts on the sample space like so: g(x, y) = (9x, gy). Wecanuse [(x, y)] = [x],
in which case D(x, y) = (Dx, [x]™'y). H(x,y) = H(x) N H(y), whichis compact.
We can put the measure i, on Q, and the measure 4, X [, X 2, X ,onZ2" x Z.
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The joint density of the observation (x, y) is

dP((x, y); 0) = i(; 0)fuy; 0) dAy(m(x)) dL(Gx) ddy(my(y)) dI(Gy) -
By (6b), the structural distribution given the combined sample is

P(S[(x, ) = k §p15 (97 00)fi(97'y; o) du(9) »
the same as (11). []

APPENDIX

Measure theory. It is known that if the group G has a locally compact to-
pology, and the group operations are continuous with respect to this topology,
then there is a non-trivial measure y which is left-invariant (i.e. p(F) > 0 if
F is open; p(E) = p(gE) for all g in G and measurable E — G). Ifyis defined
by v(E) = p(E™), then v is right-invariant. There is a homomorphism A called
the group modulus, A: G — R* such that du(g) = A(g) dv(g); A = 1 (and p = v)
if G is commutative or compact, 1(G) < oo if G is compact. (Seee.g. Nachbin,
Chapter 2.)

A is a left relatively invariant measure, on 2~ with modulus § if di(gx) =
0(9) dA(x) (¢ fixed in G; x a generic point of 227), where d(g) is independent
of x. Then 4 is a continuous homomorphism on G((9,9,) = 4(g,) - 4(¢,)), and
not to be confused with the group modulus A.

In what follows, H is a closed subgroup of the locally compact group G - A®
and A” are the moduli of G and H respectively. (See [7] page 138.)

Weil’s theorem. There exists a unique non-trivial left relatively invariant
measure 4 on G/H with modulus ¢ iff § is a continuous homomorphism from
G to the positive reals such that A%(h)/A%h) = d(h) for all 4 in H. For any
real integrable function fon G/H, and measurable subset S of G/H, then the
integral of f with respect to 2 may be written as

(12) §5. /(%) dA(x) = § 105 f*(9)(9) dp(9)
where ¢ is any non-trivial left invariant measure on G, and f* is any function
on G such that
) = Suf*(xh) dpy(h)

(¢y being any left invariant measure on H). Conversely, the right-hand side
of (12) defines a left relatively invariant integral with modulus é if f* is as
defined, and the above conditions on ¢ hold. Such an f* must exist for any
integrable f.
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