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THE OCCUPATION TIME OF A SET BY COUNTABLY
MANY RECURRENT RANDOM WALKS

By N. A. WEIss

Arizona State University

Let Ao(x), x € Z be independent nonnegative integer-valued random
variables with pj(x) = E(Ao(x)(Ao(x) — 1)+« (Ao(x) — j + 1)). Assume
that {¢;(x)}, has limits for j = 1,2 and that it is bounded for 3 < j < 6.
Suppose at time zero there are Aq(x) particles at x € Z and subsequently
the particles move independently according to the transition function
P(x, y) of a recurrent random walk, For a finite nonempty subset B of
Z denote by A.(B) the number of particles in Bat time n. Then Sx(B) =
2% —1 Ak(B) is the total occupation time of B by time 7 of all particles.

Assuming that the 7 step transition function Py(x,y) is such that
there is an a, with 1 < a < 2, so that P,(0, x) ~ cn—1/« for all x, it is
proved that the strong law of large numbers and the central limit theo-
rem hold for the sequence {Sx(B)}.

1. Introduction. Suppose at time zero that 4,(x) particles are placed at x ¢ Z
and then the particles move independently according to some transition law.
Let 4,(x) denote the number of particles in x at time nand 4,(B) = 33, 5 4,(x)
for a finite nonempty set B. Also let S,(B) = Y4, 4,(B)—the total occupation
time of B by time n.

Assuming that the random variables A4,(x), x € Z are independent Poisson
variables with means p(x), xe Z and that the particles move independently
according to the transition function P(x, y) of a Markov chain which has p(x)
as an invariant measure (i.e. >}, u#(x)P(x, y) = p(y) for all y). Derman, in [1],
proved that the system maintains equilibrium in the sense that at any time n,
A,(x), x € Z are independent Poisson variables with means p(x), xe€ Z. In [4]
Port showed that if P(x, y) is the transition function of a transient chain then

(1.1) P(lim,__ S,(B)/n = u(B)) = 1,
(1.2) [S.(B) — nu(B)]/[Var S,(B)]} —, @

where @ is the standard normal distribution. (1.1) shows that the number of
particles per unit time in B is u(B) = },,. 5 #(x) and (1.2) reveals the fact that
the total occupation time of B is asymptotically normally distributed. If the
Markov chain is null recurrent (e.g. a recurrent random walk) then results in
[5] show that (1.1) and (1.2) also hold in this case.
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In [8] the author showed that the Poisson assumption can be dropped and
(1.1) and (1.2) will still hold if it is assumed that P(x, y) is the transition
function of a transient aperiodic random walk. 1In this case we need only assume
that 4,(x), x € Z are independent and identically distributed random variables
with finite fourth moments (here we take p(x) = constant). It should be noted
that the proofs in this case differ greatly from those in the Poisson case.

The purpose of this paper is to establish (1.1) and (1.2) for the infinite
particle system for recurrent random walks without the Poisson hypothesis. We
assume that 4,(x), x € Z are independent nonnegative integer-valued random
variables with finite sixth moments and that there are constants 2 > 0, v,
and M such that .

i) m(x)—2 as [x| > o0,
(1.3) ii) py(x) >v as |x]— oo,
iii) p(x) < M, 1<j<e6, xeZ

where p;(x) = E(Ay(x)(Af(x) — 1) - - - (Ay(x) — j+ 1)). Note that (1.3) is
satisfied if Ay(x), xe Z are independent’and identically distributed random
variables with finite sixth moments.

2. Notation and preliminaries. Let X, n > 0 be independent integer-valued
random variables and assume that for n > 1 the variables are identically dis-
tributed. Then the process {Y,; n > 0} defined by ¥, = X; + X, + --- + X,
is called a random walk. This process is a Markov chain with n-step transi-
tion function given by P,(x, y) = P(X, +---+ X, =y — x). P(x, y) = Py(x, y)
is called the transition function of the random walk. Let F,(x, y)=P(Y,=y;
Y, #y,1<v<n—1]|Y,=x). Thenthe random walk is said to be recurrent
if Y1, F,(0,0).= 1 and is said to be transient otherwise. The random walk
is said to be aperiodic if the group generated by the set ® = {x: P(0, x) > 0}
is the group of all integers. It is said to be strongly aperiodic if for all x € Z,
the group generated by x + © is the group of all integers. If B is a finite
nonempty subset of the integers and P,(x, y) is as above, we will use the
following notation:

P,(x, B) = Xiyen Pu(*, y) 5
G,(x, By = >»_, P(x, B),
" Hy(x,B) =1+ G,(x, B).
Also define 1,(x) =1 if xe B and = 0 if x¢ B. Finally, let Z denote the
integers, N denote the positive integers, and let |B| be the cardinality of B.

3. Statement of results. Suppose that 4,(x), x€ Z are independent random
variables satisfying (i)—(iii) of Section 1 and that at time zero there are 4,(x)
particles at x e Z. Assume the particles then move independently according
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to the same transition function P(x, y) of a recurrent random walk. More
precisely, suppose the random variables X, for n, ke N, xe Z are inde-
pendent and identically distributed with P(X ¥ = y) = P(0, y). Also suppose
that the random variables 4,(x) and X% are independent. Then the process
{YB)e ,definedby Y =zand Y¥ =z X¥ ... + X fornx=1isa
random walk with transition function P(x, y) and represents the position of
the kth particle starting at z at time n.

The following assumption is made on the n-step transition function P,(x, y)
which regulates the movement of the particles: There is an a with 1 < a < 2

such that for all xe Z
(3.1) P,(0,X) ~ cnll=
where ¢ is a positive constant.

ReMARKs. Let {§,}>_, be a sequence of independent and identically dis-
tributed random variables and let F(f) = P(§, < ¢). The law F(¢) is said to
belong to the domain of normal attraction of the stable law V(#), if for some
a > 0 and some 4,

lim,H,QP<L T b — 4, = x> = V(x).
an'l«
Here «a is the exponent of the stable law V.

Now if the recurrent random walk with transition function P(x,y) is
strongly aperiodic and if F(¢) = },_, P(0, x) is in the domain of normal at-
traction of a stable law with exponent a, 1 < a < 2 then it follows (see [3],
page 236) that (3.1) holds. Also, for any strongly aperiodic recurrent random
walk with ¢ = 3, x*P(0, x) < oo we have (see [6], page 75) P,(0, x) ~ cn?
where ¢ = 1/o(27)t. Hence (3.1) is also valid in this case with a = 2.

Finally, we mention that results in [5] along with some theorems in [7] make
it plausible that (1.1) and (1.2) hold for arbitrary recurrent random walk.

Throughout, B will denote a finite nonempty subset of Z. Our first result
is the strong law of large numbers for the quantity S, (B).

THEOREM 1. Let S,(B) be the total occupation time of B by time n of all particles.
Then with probability one
(3.2) lim,_, S,(B)/n = 4B|.
The next theorem shows that the total occupation time of B is asymptotically
normally distributed.

THEOREM 2. Let the notation be as above and suppose that
(3.3) lim inf,_, Var S,(B)/n*""* > 0.

Then for any u € R,
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; S,(B) — ES,(B) _
(3.4) lim, . P|: S S u] — D)

where @ is the normal distribution function with mean zero and variance one.

. We conclude by showing that (3.3) will hold whenever the initial distribu-
tion of particles is a deterministic constant.

THEOREM 3. Suppose that the initial distribution of particles is Ay(x) = 2> 0
with probability one for all xe Z. Then
(3.5) liminf,_ Var S,(B)/n*""* = pA|B|*
where p = c[a(2 — a)7(1 — a™)7']7 .

Now, for each x € Z, let {Y,,} be a random walk with Y,, = x and n-step
transition function P(x,y). Let N, (B) = X4, 14(Y,,). Then EN,,(B) =
Yr, Py(x, B) = G,(x, B). Also, denote by Z{)(B) the total occupation time
of B by time n of the kth particle starting at x at time zero. Then Z»(B)
ke N, xe Z are independent for each n € N and are distributed as N, ,(B). If

S,.(B) is the occupation time by time n of the particles starting at x then S, ,(B),
x € Z are independent random variables for each n e N and

(3.6) S,.(B) = Ty ZW(B) (=0 if A(x)=0),
(3.7) S,(B) = 3. S..(B) .

Next we exhibit the first four moments of S,,(B). From the assumptions it
is clear that E(S,,(B)| 4,(x) = m) = mEN,,(B) and consequently

(3.8) ES,(B) = (1(x)EN,(B) .

Similar arguments give

(3.9) ES,,(B)* = 1(x)EN,,(B)* + m([EN,,(B)},

(3.10) ES, (B = iu(X)EN, (B + 3u(x)EN,(BY'EN,(B)
+ (X[ EN,(B)]

(3.11) ES,(B)' = (X)EN,(B)" + 3py(X)[EN,,(B)'T

+ 44(%)EN,,(B)'EN,,(B)
+ 641(X) EN,,,(B)[ EN,(B)J
| + t(D[EN, (B .

Using (3.7)—(3.9) and the independence of {S,,(B)}, we obtain for eachne N
(3-12) Var S,(B) = 2, t(¥)EN,,.(B)’

+ 2s (1a(¥) — (X)) EN,..(B)] -
Note that in the Poisson case p,(x) = p,(x)* so that the second term on the
right in (3.12) does not arise in that case.
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4. Proof of Theorem 1. The proof of the strong law of large numbers for
S,(B) is obtained by using a sixth moment argument. In order to apply this
argument it is necessary to establish several results concerning the asymptotic
behavior of such quantities as Y, E|S,,(B) — ES,,(B)*. Many of these results
require lengthy calculations and computations for verification and so most of
the details will be omitted. In order to indicate the general ideas involved,
however, we will prove the following lemma in some amount of detail. Before
beginning, note that it follows from (3.1) that

(4.1 H,(0,0) = O (V=)

For brevity write H, = H,(0, 0) and recall that for any random walk we have
for all x, ye Z and ne N that G,(x,y) < H,. HenceforallneN, xecZ

(4-2) EN,,(B) = G,(x, B) < |B|H, .
LEMMA 1. Let the notation be as above. Then

(4.3) Var S,(B) = O (n*~!%),

(4.4) 3. E|S,(B) — ES, (B)}* = O (n*~) .

Proor. To prove (4.3) first note that the independence of the random vari-
ables {S,,(B)}, implies Var S,(B) = };, Var §,,(B). Also we get from (1.3),
(3.7), and (3.8) that ¥, Var §,,(B) = O (3], EN,,(B)’ + 3, [EN,.(B)]*). Since
N, (B} = Npu(B) + 2 Xic; 15(Yi)15(Y;,) we have EN,,(B)' = EN,,(B) +
2 Ylye s Li<s Pi(% y)P;_i(p, B) and so
(4.5) 2 EN,o(B) = n|B| + 2 3, e 2ic;Pimi(y, B) -

Since a > 1 it follows that n = O (n*~"/*). Noting that Y, . P, .(y, B) =

*= Gi(y, B) < |B| 277 H, and applying (4.1) we see that 3}, P, (v, B) =
O (n*~Y=). Hence we conclude that
(4.6) 5. BN, (B = O (1) .

By (4.2), [EN,,(B)} < |B|H,EN, (B) and thus by (4.1) and the fact that
3. EN,.(B) = n|B| it follows that

4.7) 2. [EN,(B)] = O (n*1%) .

The validity of (4.3) now follows from (4.6) and (4.7). To establish (4.4) first
notice that 3, E|S,,(B)— ES,(B)' = O(5, EN,(B)' + ¥, EN,(By'EN,(B) +
>[EN,(B)F). We will show that each of the three terms above is O (n*~%#).
Arguments as above give Y, EN,. (B =0+ Y ,c5 Dic i Pi—i(ys B) +
Divzen Li<j<k Pi_i(¥s 2)P,_;(2z, B)), and some routine calculations show that
the last term is dominated by |B| Y 22} H,? = O (n*~%*). This and previous
results give

(4.8) > EN, (B! = O(n*~7) .
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To continue, note that };, EN, (B)EN,,(B) < |B|H, 3., EN,,(B)* and so (4.1)
and (4.6) imply that 3, EN,,(B)EN,,(B) = O(n*~*¢). Finally, note that
2. [EN,,(B)] < |B|’H,* 3., EN,,(B) = O(n***) by (4.1) and the fact that
2. EN,,(B) = n|B|. This completes the proof of the lemma.

The proof of Theorem 1 requires two more estimates similar to the ones in
the previous lemma. The general idea of the proofs of the validity of these
estimates is quite similar to that of the above proof. Consequently, we only
sketch the verification of the following lemma.

LEMMA 2. With the same notation as above we have

(4’9) Zz E[Snz(B) - ESnz(B)]4 = 0(,,4—3/&)
and .
(4.10) 5. E[S,.(B) — ES,(B)I = 0 ().

Proor. Using (1.3) along with (3.8)—(3.11) it is not too hard to show that
(4.11) X, E[S,.(B) — ES,.(B)]
= O(Z, {EN,.(B)' + [EN,(B)[" + EN,.(B)'EN,.(B)
+ EN,.(B)'[EN,.(B)]' + [EN,.(B)]}) -
Arguments similar to the ones above (see the previous lemma) show that for
any positive integer m

(4’12) Zxo,~~,xm_1rB Zi0<'“<im—1 H;n_:-‘l Pij-—ij_l(xj—l’ xj) = O(nm—(m—l)la)

and from this fact it follows that for any positive integer 7, and any finite non-
empty subset B of Z

(413) Zx ENW(B)m — O(nm-—(m-—l)la) .

Applying this fact along with the fact that sup, EN,(B)’ = O (n*~**) to (4.11)
yields (4.9).

To establish (4.10) it is only necessary to obtain analogous formulas to (3.8)-
(3.11) for the fifth and sixth moments of S,,(B) and use (4.13) in a manner
similar to the one above.

The next lemma gives the asymptotic behavior of ES,(B). In order to obtain
this we need the following fact: Suppose for each xe Z, {a,(x)}, is a non-
negative sequence of real numbers such that }} a,(x) »a as n— oo and
a,(x)—0 as n— oo for each xe Z. Also suppose {b(x)}, is such that b(x) — b
as [x| — co. Then

(4.14) lim,_., >, b(x)a,(x) = ba .
With this fact in mind we prove the following:

LEMMA 3. Let S,(B) be as before. Then



THE OCCUPATION TIME OF A SET 299

(4.15) ES,(B) ~ ni|B|.

Proor. We have ES,(B) = 3., ES, . (B) = X, m(x)EN, (B) by (3.8) But it
is easy to see that 31, #(x)EN,,(B) = X, (%) Xye 5 Dot Pu(x, y). Thus
(4.16) ES\(B) = Lyes L1 (Z: i(¥)Pu(x, y)) -

Now for fixed ye B let b(x) = p(x) and a,(x) = P,(x, y). Thenb(x) — 4 as
|x| — oo by (3.1). Also, a,(x) — 0 as n— oo for each x and };, a,(x) = 1 for
all n by the spatial homogeneity of random walks. Thus (4.14) shows that
>, t(X¥)Py(x, y) — 2 as n — oo for all ye Z. This fact along with (4.16) es-

tablishes the lemma.

We are now in a position to prové the strong law of large numbers for
S,.(B):

For convenience let 4,, = S,,(B) — ES,,(B). Then the random variables
{4,.}. ate independent for each ne N, EA,, =0, and EA’:= Var S, (B).
Moreover, it is clear that S,(B) — ES,(B) = };, 4,,. The idea of the proof
rests on establishing the fact that

(4.17) E[S,(B) — ES,(B)]° = O(n*%*) .
To obtain this fact, first note that we can write

[Zz Anz]B = Zx Asbx + cl Zz#y A:mAfzx + cZ Zx#u A?LzAiu
+ (’.3 Zx:ﬁy:ﬁz AfmAzbyAzz + Rn
where R, consists of a linear combination of those terms whose sum contains
a first power of 4,,. For example, },.,., 4,,4%,4%,and >, A, 4. . Using
the independence of the {4,,}, and the fact that E4,, = 0 we see that ER, = 0
and

(4’18) E[Zx Anz]G = Zx EA?M: + (& Zx#y EA:m:EAfw
+ cZ Zx#y#z EAfm:EAE;yEA:,z + C_«_, Zx#y EA:xEA?Ly .

From (4.10) we know that ; EAS, = O (n**/%). Using (4.3) and (4.9) we see
that 3, EA4, >, EAL, =0 (n***). Also, by (4.3) we get [}, EA2]* = O(n®/%).
Finally, (4.4) implies that [}, E|4,,*]? = O(n***). From these facts and
(4.18) we get (4.17).

Now by Chebychev’s inequality we have for any ¢ > 0

E[S,(B) — ES(B)]’
158 :

(4.19)  P[|S,(B) — ES,(B) > ne] <

From (4.7) we conclude that the term on the right of the above inequality is
O (n®=). Since a < 2 this fact implies that for any ¢ > 0

(4.20) 271 P[ISy(B) — ES,(B)| > ne] < oo
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Using the Borel-Cantelli lemma we conclude that P[|S,(B) — ES (B)| >
nei.0.] = 0 and from this it follows easily that with probability one [S.(B) —
ES,(B)]/n— 0. Lemma 3 and this last fact establish the theorem.

5. Proofs of Theorems 2 and 3. In order to prove the central limit theorem
for {S,(B)} it is first necessary to establish one more lemma. We will also use
the fact that if a,, b, = 0, a, ~ b,, and 3, b, = oo then 37 ,a, ~ i b,
Since a > 1, Y1 nY* = co and thus (3.1) along with the above fact show that

5.1 G.(0, N;c__nl—lla’
(5.1) 0. ~ 1S
(5.2) Hn ~ 4"___ nl—lla s
1 — 1/
5.3 "1 G,(0, X) ~ ¢ S
(5.3) G0, ) ~

LEMMA. 4. Let S,,(B) be as above. Then

(5.4) sup, Var S,,(B) = o(n —1a)
and
(5:3) sup, E[S,.(B) — ES,(B)} = o (™).

Proor. Using(1.3),(3.8),and (3.9) it is not difficult to see that Var S, (B)=
O (EN,,(B) + [EN,.(B)]*). In the proof of Lemma 1 we saw that EN, (B)’ =
G,(%, B) + 2 Y e5 Lic; Pi(x, Y)P;_{(y, B). Similar arguments to those in the
above lemmas yield sup, EN,,(B)’ = O (n*~**) and sup, [EN,.(B)] = O (n*~"'%).
These facts establish (5.4). To establish (5.5) first note that E|S,,(B) —
ES, (B)}? = O(EN,(B) + EN,,(B)EN, (B) + [EN,,(B)f). Then some esti-
mates show that each of the terms in the last expression are O (#°~*'*) uniformly
in x. This gives the desired result.

We now show that S, (B) is asymptotically normally distributed:

Let ¢, and ¢, be the characteristic functions of the random variables
[S,(B)— ES,(B)]/[Var S,(B)]* and [S,.(B) — ES,.(B)]/[Var S,(B)]*, respectively.
Since S,(B) = Y., S,.(B) and the random variables {S,.(B)}, are independent
for each n

(5-6) $.(0) = 11, ¢.:(0) -

If X is a random variable with finite third moment and if f{¢) is the charac-
teristic function of X then (see Feller [2], page 487) f(0) =1 + i0EX —
6?EX?|2 + &(6) where |¢(6)] < |0PE|X|*/3!. Applying this to ¢, we get

(5.7) ¢..(6) = 1 — 6* Var S,,(B)/2 Var S,(B) + R,.(6)

where
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(5.8) [R,.(0)| < |6]°E|S,.(B) — ES,,(B)]*/3 ! [Var S,(B)]!.

For convenience set B, (0) = ¢,,(0) — 1. By assump:on (liminf,
[Var S, (B)J/*/n*~*>*)>0. It now follows from the above facts that sup,|B,(6)|—
0 (See Lemma 4 and (3.3)). Using the Taylor expansion of log (1 + z) about
z = 0 one finds that for |z| < 1/2, log (1 + z) = z + &(2)|z|* where |e(z)| < 1.
Consequently, for large n we have log (1 + B,.(0)) = B,,(0) + A,.(0)|B,.(0)
for all xe Z, where |A,,(f)] < 1. From Lemma 1 and (3.3) we are able to
deduce that 37, |R, ()] — 0 as n — . Using this fact along with (3], Var
S,.(B)) = Var S,(B) it follows immediately that

(5.9) lim,_. 3, B,,(6) = —6%2
and
(5.10) limsup,_. 37, |B,.(9)] < 6%2.

Since |2, A,.(0)|B,.(0)["] < [sup,|B,.(0)|] L. |B,.(9)] and sup,|B,.(6)| - 0 it is
clear that (5.10) imples Y}, A, ,(6)|B,,(0) — 0 as n— co. Writing (5.6) in
the form ¢,(0) = exp[}], log ¢,.(f)] and noting that the above results show
2. log (1 + B, (0)) > —0%/2 as n — oo we conclude that ¢,(6) — e~ . The
continuity theorem now yields the desired result.

Finally we prove Theorem 3: Using (3.12) we can conclude that Var S, (B)=
A, EN, (B} — 3, [EN,,(B)]']- In the proof of Lemma 1 it was established
that 3  EN,.(B) = n|B| + 2 }},.5 2,221 G(y, B). For convenience let y =
/(1 —a*)and 0 =¢/(2 — a')(1 — a7?). From (5.3) and the fact that a > 1
it is clear that

(5.11) 3., EN, (B)* ~ 2|Bj* on*—Vl= .

Also using (5.2) we have 3, [EN,.(B)) < |B|H, Y., EN,,(B) ~ |B*yn*e,

This fact along with (5.11) implies
lim inf,__, Var S,(B)/n*~** = 2|B|*(20 — 7).

But (20 — 7) = ([@(2 — a*)™(1 — a™*)7']"". This completes the proof of
Theorem 3.
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