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A CLASS OF RANDOM CONVEX POLYTOPES

By A. P. DEMPSTER!
Harvard University

0. Summary. In Section 1 it is shown that » interior points of the (k — 1)-
dimensional simplex S, define a partition of S, into (*;*;*) convex polytopes
R(n) which are in one-one correspondence with the partitions of # into a sum
of k nonnegative integers. If the n points are uniformly and independently
distributed over S, then R(n) becomes a random polytope. Basic properties
of the random R(n) are given in Section 2. Section 3 presents an algorithm
which can be used to compute the distribution of any, extremal vertex of R(n).

1. Introduction. The polytopes defined below arise in the context of a model
for multinomial sampling which is used as the main example of a system of
generalized Bayesian inference [1]-[6]. The parameter space in multinomial
sampling with k categories consists of the points

(1.1) X =[x}, X5, ++ ) X;]
with
(1’2) x’bgo for i:1’27"',k and lex,izl,

e., the points x of a simplex §,. For a given stochastic vector x defining
multinomial probabilities, a random drawing from one of the k categories may
be created by drawing a second stochastic vector x* from a uniform distribu-
tion over S, and declaring the outcome to be in category i for some i on
I1gigkif

(1.3) X, /%% < x;fx;* Yh+1i.

The validity of the model may by checked as follows. The simplex S, may
be characterized by its k vertices 1,0, ---,0],[0,1,---,0],---,[0,0, ---, 1].
The region in S, corresponding to category i, as defined by (1.3), consists of
the subsimplex of S, formed by substituting x for the ith vertex of S, while
leaving the remaining k — 1 vertices unchanged. The subsimplices formed
in this way fori = 1, 2, - - -, k cover all of S, and they intersect only in their
common faces. Furthermore, it is easily checked that the (k — 1)-dimensional
volumes of these subsimplices are proportional to the corresponding elements
of x. Thus the sampling model based on (1.3) is unambiguous with probability
one, and produces category i with probability x;, fori = 1, 2,. . ., k, asdesired.

In the inference situation, the vector of multinomial probabilities x is
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unknown, and n drawings are made, producing a vector of observations

(1'4) nz[nl’nz""’nk]’
where n; is the number of observations in category i,
(1.5) n,=0 for i=1,2,...,k and Eon,=n.

The observations are supposed to have come from n independent drawings
xM, x®, ... x™ each distributed uniformly over S, like x* above, and each
producing one count in some category i by the rule (1.3). Thus, for given
xW, x®, ... x™, the unknown probability vector x is known to lie in the
region R(n) given by:

e

DEFINITION. The region R(n) consists of points X such that XV, x?, ... x™
can be placed into k cells, with n; points in cell i, where a point X' in cell i must

satisfy
(1.6) X, /%,49 < x; /%9 Vh#i.
The model assumes that only n is observed, not x®, x®, ... x™ so that the
region R(n) remains unknown and random. Thus the inferences about x as
detailed in [1]-[6] say in essence that x lies in a random region R(n) with a
specified distribution depending only on n. In Appendix A of [5] certain distri-
butions associated with random R(m) are derived for k = 3. Properties of
random R(n) for general k are taken up beginning in Section 2 below. In
Section 1 the objective is to explore properties of the regions R(n) defined by
ﬁxed X(l), X(2), e, x(®),

The notation R(n) suppresses for convenience the dependence of R(n) on the
particular points x, x*®, ... x™, Tt is not obvious from the definition that

R(n) exists for any given x, x®, ... x™ or that R(m) is a convex polytope.

X =[1,0,0]

- [ ]

Xx=[0,1,0} X = [0,0,1]

Fig. 1. An illustration of the 3 regions R(n) in the case k =3, n = 1
labelled by their associated n = [1, 0, 0}, [0, 1, 0], [0, O, 1].
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FiG. 2. An illustration of the 10 regions R(n) in the case k =3, n =3

labelled by their associated n.  *

The reader may begin to develop an intuition by checking out the definition
for the regions shown in Figures 1 and 2 which illustrate respectively the cases
k=3,n=1andk = 3,n = 3. The picturesalso suggest the conjecture, whose
validity is established below, that for given x, x®, ... x™ the regions R(n)
partition the simplex S, into convex polytopes which correspond one-one to
the partitions n of n. The net result is a generalization of the intervals and
orderings produced by n points on a finite line segment. In the special case
k = 2 there are n + 1 intervals on the line segment whereas in the general case
there are (*{*;") convex polyhedra. In the special case k = 2 each decomposi-
tion of n into n, 4 n, determines a corresponding classification of the n points
on a line segment into the n, closest to one end and the n, closest to the other
end, whereas in the general case a set of n points in S, may be classified into
k subsets of size n; for 1 < j < k, such that the n; in the jth subset are closest
in some sense to face j of S, given any partition n of » into k parts.

The strategy in the succeeding paragraphs is to define the partition of the
simplex anew, without reference to the above definition of R(n), but in such
a way that it is obviously a partition into convex polytopes. Then it will be
shown that every such polytope is in fact a region R(n) as defined above.

By a partition of S, into closed convex polytopes will be meant a finite set
2 of closed convex polytopes whose union is S, and whose interiors are mutu-
ally exclusive. By the product of the partitions .7, for j= 1,2, ..., n will
be meant the partition of S, which consists of all different nonempty convex
polytopes of the form [\ P; where P, e &, for j=1,2, ..., n.

Given a fixed x' € §, and a fixedion 1 < i < k, a convex polytope may be
defined by the (k — 1) linear inequalities (1.6). Anyx e S, belongs to at least
one of the k polytopes so defined as i ranges over 1, 2, - . ., k while x'¥" remains
fixed, namely one corresponding to i satisfying

1.7) x,/%,9) = max, g, {Xu/% "}«
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Moreover, if X is interior to this polytope then the inequalities (1.6) must be
strict inequalities so that all can hold only for a single i. It follows that the
k polytopes defined in this paragraph by a fixed x'¥’ constitute a partition .7
of §, into k convex polytopes.

To simplify the following discussion it will be assumed that each x¥ is
interior to S, so that each of the k polytopes in .7°; has positive content. It
will be assumed further that the points x®, x®, ... x are arranged such that
every nonempty polytope in the product & of F,, G5, - - -, &, has positive
content. These assumptions clearly hold for the examples illustrated in Figures
1 and 2. To show that they pose no difficulty for the subsequent distribution
theory of this paper, it will now be:shown that the assumptions hold with
probability one when x®, x®, ... x™ are continuously distributed over the
n-fold product of S, with itself. The result clearly holds for n = 1. Assume
it holds for some n > 1, so that .7 as defined consists with probability one of a
finite number of polytopes each having positive content. The product of .Z”and
2, ., can fail to retain this property only if at least one of the ratios x, " /x, "1
coincides with a corresponding ratio x,'/x, "’ for some jon 1, 2, . . ., n, because
these ratios define the bounding hyperplanes of the polytopes. Since such a
coincidence occurs with probability zero, the product of &’ and &, ., has,
like .2, the desired property with probability one.

The following three lemmas are sufficient to establish a one-one correspond-
ence among partitions n of n, regions R(n) as defined, and polytopes in the

product & of F,, G, - -+, P,
LemMMA 1.1. Any polytope in 7 is entirely contained in some R(n).

LEMMA 1.2. Two different polytopes in G are not contained in the same R(n).

LemMa 1.3. The region R(n) is nonempty for every n.

The proof of Lemma 1.1 is immediate, for the definition of any region of
 as )} P; and the definition of P, from (1.7) together ensure that all of the
points ()} P; belong to the same R(n) by virtue even of the same partition of
xV x®, ... x™ into k cells.

Suppose that y and z are interior points of two different polytopes in .
Accordingly, there must exist a point x’ and cells i and 4 such that x) is in
cell i relative to y and in cell 4 relative to z, so that y,/x,') > y,/x,'¥ and
z,/%,9 < z;/x,'" from which

(1.8) Wlzn > Yilzi

If the points x¥ distribute themselves according to n relative to y, and redis-
tribute themselves according to n* relative to z, then (1.8) asserts that every
x4 which shifts cells does so monotonely relative to the ordering of the cells
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defined by the values y,/z;. Such a monotone shifting is not consistent with
n = n*, thus proving Lemma 1.2.
To prove Lemma 1.3 the following construction process can be used. Write

X =[x, X -+ vy X]
=[x, (1 — X)X (1 — X)Xy ¢ v s (r— X1)Xy1]
(1.9) =[x, (1 — X)X, (1 — x)(1 — Xpo)Xqs - -5 (1 — x)(1 — Xp)%5,]

:' [, (1 — xp)%x5, (1 =) (1 —Xg)X55, (1 — x3)(1 — Xap)(1 — X)X+ - -
(I —x)(1 — xg) v (1 = Xy pma)Xii] -

Note that x,, + xp3 + -+ + x5, =1, x5+ -+ + 3%, =1, -..,x, = 1. For
fixed x,y, - - -, x,, the curve of points x as x, ranges from 0 to 1 passes through
regions R(n) where n, varies monotonely from 0 to n, with any given n, achieved
for some x,. Define x,* = x,*(x,, - - -, X,;,) to be the smallest x, for which R(n)
with the given n, isencountered. For fixed x,, - - -, x;, a curve of pointsis defined
as x,ranges from 0 to 1 and x; is taken to be x,* (x,, (1 — X)Xy, - -, (1 — X3)x3,)-
This curve passes through regions R(n) for which n, has the desired value while
n, varies monotonely from 0 to n — n,. Define x,** = x,**(x,,, - - -, Xy;,) to be
the smallest x, for which R(n) with the desired », and n, is achieved. Continuing
in this way, one eventually constructs a point in R(n) for given n.

For certain purposes it may be convenient to replace the coordinates x of any
interior point of S, by coordinates

(1.10) t=[t,ty s t,]
satisfying

(1.11) —co L t; <o for i=1,2,...,k and k., =0,
where the relations between x and t are given by

(1.12) t; =logx, — k' 3k_, log x,

and

(1.13) x;, = ey k_ e,

fori =1,2, ..., k. Therelations (1.12)or (1.13) thus define a one-one corre-
spondence between interior points x of S, and points t in an ordinary (k — 1)-
space, say E,.

Since the convex polytopes R(n) in S, are defined by inequalities of the form
x;/x, < ¢, the corresponding regions in E, are defined by inequalities of the
form ¢; — t, < logc, and it is clear therefore that the regions are convex poly-
topes F(n) in E,. The regions F(n) have the conceptually simplifying property
that they are defined by hyperplanes belonging only to one of k(k — 1)/2 families
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of parallel hyperplanes. Their disadvantage lies mainly in the unfamiliar nature
of the representation t of stochastic vectors x.

2. Simple properties of a random R(n). Suppose that x*, x®, ... x™ are
independently and uniformly distributed over S,. For a fixed n, the region
R(n) determined by x, x*, ..., x® becomes a random convex polytope in
S,- From Section 1 it is known that R(n) has positive content with probability
one. Several other elementary stochastic properties of R(n) are collected in
this section.

The simplest of these is
(2.1) P(x € R(n)) = _——_n,'——_ XM X" e X

m!n!...n!

which is a consequence of the remarks following (1.3) together with the defini-
tion of R(n).

If the fixed x is replaced by a random y distributed independently of R(n),
then from (2.1) it follows that

!
(2.2) P(y e Rm)) = §;, ﬁ”___' XX e X f(X) dX
m!n!...om!
where f{(x) denotes the density of y over S,. In particular, if
I'(r)
(2.3) f(x) = X
L(r) T(ry) -+ T(r) ™
withr, >0 fori=1,2,...,kand 3 ¥r, = r, then (2.2) becomes
Pn,+r,) [T(n+r)

2.4 P(y € R(n)) = [~ i T 1 )
(2-4) (v € R(m) L T(r) n! I'(r)
Specializing further tor, = r, = ... = r, = 1, which is a uniform distribution
for y, yields
(2:3) P(y € R(m)) = (577"
Formula (2.5) can be interpreted as E{P(y € R(r)| R(n))} and therefore gives the
expected volume of the random region R(n). It is interesting that each of the
regions R(n) as n ranges over the ("/*;') partitions of n has the same average

volume.
Replacing the fixed x € S, by a fixed set T S, one can generalize (2.1) to

ry—1 r9—1 rp—1
b A B AL N

!
(2.6) P(R(m) D T) = ’_'LT {1 4 by + by + -+ + by} ™
N

nln! ...

{b21+1b+b23+ "'+b2k}_n2"

{bkl + bk2 + e+ 1}—%
where

2.7 by, = supy., {x,/x;}
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foriandh=1,2, ..., kandi + h. From (1.6), x'¥ belongs to cell i for every
x € T if and only if

(2-8) %)%, z by,

forh=1,2,...,kand A + i. The set of points x'¥ satisfying (2.8) consists
of the subsimplex of §, whose vertices are the some as the vertices of S, except
that [0,,, 0,5, - - -, 0;,] is replaced by the point such that all of the inequalities
(2.8) become equalities, i.e., the point with coordinates proportional to
[bi, byyy -+ -5 1, -+, b, ]. The volume of this simplex is {b,; + b, + --- +
1 + ... + b,}7*, and accordingly this is the probability that x’ lies in cell i
for all x e 7. Formula (2.6) follows immediately.

Any convex polytope R of the type studied in this paper is completely defined
by the k(k — 1) coordinates b,, as defined by (2.7) with R in the role of T.
Denote by B, the random coordinates of the random polytope R(n). Then
the right side of (2.6) is seen to express the cumulative distribution function

(2.9) Fb,;i and h=1,2,...,k and i+ h)
=PB,=b,;i and h=1,2,...,k and i+ h)

defined over the region in k(k — 1)-space such that the coordinates b,, define
a polytope R, i.e., the region defined by inequalities of the form b,, < b,,b,,.

Unfortunately, the formal characterization of the distribution of R(n) through
the cdf of (2.6) and (2.9) does not lead to easy analytical computations of
interesting properties of the distribution, such as the distribution of specified
vertices of R(n) assayed in Section 3. The reason for the difficulties is that
positive probability resides on hyperplanes of dimension less than k(k — 1) in
the space of the b;,, or in other words some of the inequalities b,, < b,,b,,
become equalities with positive probability. For example, if k = 3 the region
R(n) may have 6, 5, 4 or 3 sides each with finite probability, as the reader may
easily check by experimenting with drawings as in Figure 2. It is a plausible
conjecture that the number of hyperlanes required to bound R(n) can be any
number between k and k(k — 1) with positive probability.

Finally, suppose that R(m) and R(n) are independent random regions based
on given partitions m and n of m and n. Then
(2.10) P(R(m) N R(m) = @) = [Li (")~
and the conditional distribution of R(m) N R(m) given that it is not empty is the
distribution of R(m + m). To prove these results, consider first a fixed set of
m + npointsz®, z®, ... z™+ such that the associated R(m -+ m) has positive
content, and suppose that R(m) and R(n) are determined by independent uni-
formly distributed points y®, y®, ..., y™ and x¥, x®, ..., x™, respectively.

Given that the random points y, y®, ..., y™ x® x@ ... x™ coincide with
2V, 2%, ..., 2™+ in some unspecified order, the conditional probability that the
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m; + n; points in cell i in the definition of R(m 4 n) consist of m, points from
the y sequence and »; points from the x sequence, for i = 1,2, ..., k, is the
expression (2.10). But it is easily checked that R(m) and R(n) intersect if and
only if they intersect in R(m + n), so that (2.10) holds conditionally on a set
{zV,2®, ..., z*"} which has probability one, a result stronger than (2.10).
Since the distribution of z®, z?, ... z+» js independent uniform conditional
on any assignment of x’s and y’s to z’s, the distribution of R(m + n) is the
ordinary distribution even conditional on the assignment which makes

R(m) N R(n) = R(m + n),
as required to complete the proof. ¢

3. Random vertices of R(n). Most of the distribution problems associated
with applications of R(n) have so far proved intractable. To illustrate the
complexities encountered, an attempt will be made in this section to compute
the distributions of certain extremal vertices of R(m). Suppose that x is a fixed
point of §, and ax’ = 0 is the equation of a fixed hyperplane through x. (Since
x1’ = 1, the coefficients a can be adjusted so that ax’ takes the value zero.)
For almost all a, the random R(n) has a unique vertex v such that

3.1) ay’ = max,,pn, {au’} .

The problem posed is to find the probability density function of the random
vertex v at a specific point on the hyperplane ax’ = 0.

Suppose that R(n) is determined as in Section 1 to be a member of the partition
P defined by x®, x®, ... x™_  Itis evident that, with probability one, every
vertex of R(n) is defined by an intersection of k — 1 hyperplanes from the
family of hyperplanes defining .Z°. In terms of R(n), this means that the vertex
v is defined, with probability one, to be the intersection of k — 1 hyperplanes
defining actual faces of R(n), i.e., faces with positive (k — 2)-dimensional con-
tent. These faces are defined by a subset of (k — 1) of the coordinates b;, of
R(n), i.e., v satisfies

(32) vh/vi = bih

for some set of (k — 1) ordered pairs (i, ). In order that the (k — 1) hyper-
planes defined by the (k — 1) equations (3.2) intersect in a single point, it is
necessary and sufficient that the (k — 1) subscript pairs (i, #) form the branches
of a tree joining nodes labelled 1, 2, - - -, k. Consequently, one need only seek
among trees for potential vertices.

Moreover, if .7 is any tree where the (kK — 1) branches are not ordered,
then for almost all a there is a unique way to assign an order to the pair of
nodes defining each branch such that the vertex defined by the (k — 1) equa-
tions (3.2) using the ordered pairs (i, #) is a possible extremal vertex of the
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type (3.1). To be a potential vertex of the desired kind it is necessary and
sufficient that every u which satisfies

(3.3) uyfu; < by,

for pairs (i, #) in the ordered tree (i.e., u is potentially inside R(n) according
to (2.7)) must also satisfy

(3.4) an’ < av’,

where v is the point of intersection of the k — 1 hyperplanes (i.e., the vertex
defined by (3.1)). The condition can also be stated in terms of the lines of
intersection of the (k — 1) hyperplanes taken (k —2) at a time. The halves
of these lines which bound the orthant of points satisfying (3.3) must all lie
on the same side of the hyperplane ax’ = 0, specifically must all consist of
points u satisfying (3.4). The condition (3.4) thus implies the particular order-
ing which must be assigned to every unordered pair (i, #) in a given tree .77,
to wit: the pair (i, h) partitions the nodes into subset I and H where I consists of i
and the nodes connected to i when the branch (i, h) is dropped, and H consists of h
and the nodes connected to h when branch (i, h) is dropped; the particular direction
(i, k) must be chosen which makes

(3.5) 240 = —3,a89<0

at the vertex v. The reasoning is that along the half-line corresponding to the
desired ordering (i, #) the ratios among coordinates u, with £ ¢ I are fixed,
and likewise the ratios among coordinates u, with ¢ ¢ H are fixed. Thus,
as one moves away from the vertex v in the desired direction, the u, with
4 ¢ H must decrease in a fixed ratio while the u, with ¢ ¢ I increase in a fixed
ratio, and at the same time the overall au’ is decreasing. The combination of
conditions (3.3) and (3.4) thus yields (3.5) as claimed.

The density of v is the sum of the contributions from each tree. For a
particular tree, the density is easily computable, not in terms of the original
coordinates v, but rather in terms of a coordinate system special to that tree.
An additional step is required to transform back to the coordinates v.

Suppose that .7 is a tree and .7, denotes the set of (k — 1) ordered pairs
(i, k) which define the appropriate ordered tree as defined above. Suppose
that the vertex v is represented by the (k — 1) coordinates

(3.6) b, = /v, for (i,h)e.7,.

The contribution to the density of v from the tree .7, expressed in terms of the
coordinates (3.6), is found by the following operations on the expression (2.6):

(i) Differentiate with respect to b, for each pair (i, k) € 77,
and
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(ii) Replace each b,, for (i, h) ¢ .77, by the expression for v,/v; in terms of
b;, with (i, h) € 77, as defined by the inverse of (3.6). Step (i) here relies on
the fact that (2.6) is essentially a cumulative distribution function as in (2.9),
so that its derivative with respect to appropiate coordinates defines the desired
density. See Appendix A of [5] for a more detailed discussion of this point.

Step (ii) merely expresses the density in a consistent set of coordinates.

Since the coordinates (3.6) are to be replaced immediately by the coordinates
v, step (ii) above need not actually be carried out, and the conversion to v terms
is easy because the expressions

{14 by 4+ by + - by} {by + 1+ by + o by} ey
{bk1‘+bk2 + e+ 1}_1

reduce simply to v,, v, - - -, v,. The Jacobian of the transformation (3.6) is
easily checked to be

v
(3'7) J= H(«:,h)eTo '/;;,'L/H§=l Vy .

The results of the two preceding paragraphs may be summarized in analytic
terms as follows. Associated with the ordered tree .77, is a pair of vectors
3.8) r=1[r,r -, r] and

S =[8, 8, -+, 8],
where r; denotes the number of times index i appears as the first member of a

pair (i, h) € 77, and s, denotes the number of times 4 appears as the second
member of such a pair. The differentiation in step (i) above has the effect of

replacing the exponents —n,, —n,, - -+, —n,in (2.6) by —n, —r,, —n, —1ry,+ + -+,
—n, —r, and of multiplying the constant term by
(3.9) cm, ) = Tlhy T3 (0 + m)

where signs are dropped and factors corresponding to r, = 1 are unity. Sub-
stituting for v and multiplying by the Jacobian J yields the formula

!
(3.10) g(v) = C(n, 1) - _ﬁkn_’;_’ - Tk, v,retee?
=11

for the density contribution from the tree .77,

ExaMPLE. Take k = 4 and general n = [n,, n,, n,, n,], and ask for the vertex
v such that v, 4+ v, 4 v, is maximum or v, is minimum. The canonical form
of the hyperplane av’ = 0 has three positve terms a,v,, a,,, a,v, and one nega-
tive term g,v,, and the rule (3.5) is easily applied to yield for each of the 16
trees .7~ the directed trees .7, shown in Table I. Since s is the same for each
tree, each contribution from (3.10) is of the form Kv,"1=* v,"2 v;"s v," and the
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TABLE 1
The directed trees 7 o and their associated r and s for the vertex
with maximum v, + v3 + v4 when k = 4

% [r1, F2, r3, 14] [s1, 82, 83, 84]
1,2)(3,4) (2, 3) [1, 1, 1, 0] [0, 1, 1, 1]
(1,3)(2,4) (3,2 [1, 1, 1, 0] [0, 1, 1, 1]
1,4 (3,2) 4, 3) [1, 0, 1, 1] [0, 1, 1, 1]
1,4)(2,3) 4,2 [1, 1, 0, 1] [0, 1, 1, 1]
(1,2)4,3) (2,4 [1, 1, 0, 1] [0, 1, 1, 1]
1,3)(4,2)3,4 [1, 0, 1, 1] [0, 1, 1, 1]
1,2)(3,4)(1, 3) [2, 0, 1, 0] [0, 1, 1, 1]
1,3)(2,4) (1, 2) [2, 1, 0, 0] [o, 1, 1, 1]
2,3)(,4) (1,2 [2, 1, 0, 0] [0, 1, 1, 1]
3,2)(1,4)(1,3) [2, 0, 1, 0] « [0, 1, 1, 1]
1,2)4,3)(1,4 [2, 0, 0, 1] [0, 1, 1, 1]
4,2 (1,3 1,4 [2, 0, 0, 1] [0, 1, 1, 1]
1,2)(1,3)1,4 [3, 0, 0, O] [0, 1, 1, 1]
1,2)(2,3) (2,4 [1, 2, 0, 0] [0, 1, 1, 1]
1,3)(3,2) 3,4 [1, 0, 2, 0] [0, 1, 1, 1]
(1, 4) (4,2) 4, 3) [1, 0, 0, 2] [0, 1, 1, 1]

sum of the 16 contributions must yield the Dirichlet density

(3.11) Dy, n,+1,n,+ 1,0, + 1)
_ I'(n+ 3) v,
T(m) T(n, + 1) (T + 1) T, + 1)
As a check, the 16 normalizing factors C(m, r) may be computed and summed,
yielding

ny—1 n n n
TR T EATIN

n RN, + mnyn, + nngn, + nnLn,
+ mmn, + mmyn, + m(n + g + ny(n + )n,
+ my(n, + Dn, + ny(ny + D, + n(n, + Dn, + ny(n, + D)n,
+ n(n, + 1)(n, + 2) + myny(n, + 1) + mn(n, + 1) + nyn(n, 4 1)
=n{(n, + n, + n, + n) + 3(n, + ny + ny 4 n,) + 2}
=n(n+ 1)(n+2).
Multiplying this sum by the combinations factor n!/]{»;! yields the nor-
malizing factor in (3.11) as desired. The density of the random vertex with
maximum coordinate v, may also be found from Table I, for the revised table

appropriate to maximizing v, instead of minimizing v, merely replaces every
branch (i, &) with (k, i) and so interchanges r and s. The resulting density is

(3.12) D(n, + 1, ny, 1y, n,)

— F(}'l + 1)) /vl'nl vzz—l 1]3”3_1 vn4—1 .
L(n, + 1) I'(ny) I'(n;) T'(n,)
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The reader may easily check that the result just given for kK = 4 extends im-
mediately to general k. Specifically, the densities of the vertices with.minimum
and maximumv,are D(n,, n, + 1,n, + 1,-- -, n, + 1)and D(n, + 1, n,, 1y, - - -, ),
respectively. The key to this result is the validity of the obvious generalization
of the last column of Table I.

The author has not found any other instances of vertices with Dirichlet
densities, although it is obvious that any vertex must have a distribution which
is a mixture of Dirichlet densities, at least locally.

One difficulty in computing the density of the vertex associated with general
a is that the condition (3.5) changes as v moves among subregions of S, even
subregions within the same hyperplane av’ = 0. Consequently, the ordered
tree .7, corresponding to a given nonordered tree_ varies, and the analytic
expression for the density varies likewise. Under the exponential coordinates
defined in (1.10), (1.11) and (1.12), however, the difficulty does not arise. To
see this, consider the vertex with maximum ct’ where ¢ is a vector of constants.
Since Y t; = 0, adding a constant to each component of ¢ does not affect ct’,
and ¢ may therefore be chosen such that 3} ¢; = 0. In terms of the original
coordinates, the surface ct’ = ct,’ is a curved surface which passes through the
point x, with exponential coordinates t, and whose tangent hyperplane at x, has
the equation
(3.13) £ {efxax, = 0.

The desired extremal vertex at x, is therefore also extremal relative to the
hyperplane ax’ = 0 where a; = ¢;/x;, for i = 1,2, .-, k. Thus the theory
developed above can be used, and in particular the condition (3.5) reduces to

(3.14) = —2p6 <0,
so that the same .7, and the same analytic expression for the density holds,
given ¢, at all points v in S,.

Since the exponential coordinates lead to a simplification, it is natural to seek
to employ them in applications. In terms of the application to estimating para-
meters of frequency distributions, the corresponding approach is to use para-
meters linear in the log frequency. Thus, one may expect the theory to be
relatively simple for estimating the parameters of exponential families of
distributions such as are already widely used in statistical theory. Further
progress in such applications will require, however, an ability to compute
probabilities that the random polytopes intersect hyperplanes and subregions
of hyperplanes defined in terms of the exponential coordinates t. The present
work is but an introduction to these problems.
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