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FAMILIES OF INFINITELY DIVISIBLE DISTRIBUTIONS
CLOSED UNDER MIXING AND CONVOLUTION!

By J. KeiLsoN AND F. W. STEUTEL
University of Rochester

Certain families of probability distribution functions maintain their
infinite divisibility under repeated mixing and convolution. Examples
on the continuum and lattice are given. The main tools used are Polya’s
criteria and the properties of log-convexity and complete monotonicity.
Some light is shed on the relationship between these two properties.

0. Introduction and summary. The toncept of infinite divisibility [1], [5], [6]
has a central role in probability theory. It has been shown by Goldie [2], and
Steutel [7] that for many families of infinitely divisible distribution functions,
the property of infinite divisibility is preserved under mixing. Surprisingly,
this curious preservation of infinite divisibility can be shown to hold for certain
families even when mixing and convolution are applied repeatedly. Specifically
we will exhibit such sets of infinitely divisible probability distribution functions
on both the lattice and continuum which are closed under mixing, convolution
and weak convergence.

The main tools used are Polya’s criteria and the properties of log-convexity
and complete monotonicity. Some light is shed on the relationship between
these two properties.

In our discussion the following abbreviations and notation will be employed:

cdf: cumulative distribution function; e.g. F(x),
G(x);
pdf: probability density function; e.g. f(x), g(x);
ch.f.: characteristic function; e.g. ¢(¢), ().
We will frequently deal with symmetric distribution functions, for which the
characteristic function is real and even. If further ¢(¢) is completely mono-
tonic, it will have (Feller [1] page 416) the representation

(0.1) B(f) = {=.. €= dF(x) = |3 11" dF(x) .

It should be noted that F(x) and ¥(x) do not have a simple relationship, even
though F(x) is itself a cdf.

1. Some structural properties.

DEFINITION 1.0. A cdf F(x) will be said to be a finite mixture of cdf’s {F,(x)}
if F(x) = 3\ p;F,(x) for some 0 < p; <1, 31 p; = 1. It will be said to be

Received January 11, 1971.
t Supported, in part, by the Office of Naval Research under contract NOOO14-68-A-0091.

242

[
y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%

The Annals of Mathematical Statistics. IMKOJN ®

WWW.jstor.org



FAMILIES OF INFINITELY DIVISIBLE DISTRIBUTIONS 243

a general mixture or simply mixture if F(x) = {§ F,(x) dG(«) where G(«) is a
cdf. The same convention will be employed for mixtures of nonnegative

functions.
We shall use the following lemmas for the proof of which we refer to Lukacs

(1960).
LEMMA 1.1. An infinitely divisible characteristic function has no real zeros.

LEMMA 1.2. An infinitely divisible ch.f. which is analytic has no zeros in the
interior of its strip of regularity.

LemMaA 1.3. A ch.f. which is the limit of a sequence of infinitely divisible ch.f. s
is infinitely divisible.

DErFiNITION 1.1. Throughout this paper the symbol ¢~ will denote any
well-defined set of infinitely divisible ch.f.’s, closed under finite mixing and
multiplication. Specifically, if ¢, € &~, ¢, € &7, thenp, ¢, + p,é,'c &, p, =0,
P éoapl +p,= 1; and¢1¢zeg'

THEOREM 1.1. If ¢ € &7, then ¢ is real, positive and hence even.

Proor. If ¢ is not real then, for some real ¢, arg ¢(¢)) = 0. As ¢(0) =1
and ¢ is continuous, there is a ¢, such that arg ¢(¢,) = =/n for some integer
n > 0. Therefore {¢(z,)}* < 0 and {¢(t,)}** > 0. It follows that for a suitable
value of p, with 0 < p < 1, p{é(t,)}* + (1 — p){é(t,)}’" = 0. Hence, by Lemma
1.1, p¢™ + (1 — p)¢*™ is not infinitely divisible and, by definition, ¢ ¢ <~.
This proves that for all ¢ € &~ ¢ must be real, and hence even. Positivity is
required by Lemma 1.1. (]

THEOREM 1.2. If ¢ € &~, and ¢ is not identically equal to 1, then ¢ has no
second moment.

Proor. If ¢ is even with variance ¢* # 0, then

(1‘1) limn_m ¢”(t/n§) — ¢(t) — e..02t2/3 .
Suppose ¢(f) € &~ Then by definition of <~ the ch.f.
(1.2) B() = He (1) + ¢™(1)}

is in &~, and therefore infinitely divisible for all n. Hence f(¢/n?) is infinitely
divisible for all , so that by (1.1) and Lemma 1.3 the ch.f. {(¢) = 3{¢(?) + ¢*(2)}
is infinitely divisible. But {(¢) = 0 for #* = 2xi/s?, which contradicts Lemma 1.2.

Hence ¢(¢) cannot be in &~. []

CorOLLARY. If ¢ € &~ and ¢ is not identically equal to one, then ¢ is not
analytic in any neighborhood of t = 0. Moreover ¢ cannot have a convergence

strip.
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Proor. Analyticity in a neighborhood of zero implies the existence of a
second moment. Also, evenness of ¢(f) implies symmetry of any convergence
strip about the real axis, which would imply analyticity in a neighborhood
of zero, and a second moment contradicting Theorem 1.2. []

An alternative proof of the fact thata ch.f. ¢ € &~ cannot havea convergence
strip is the following.

Let t = u + iv, where u and v are real, and let ¢(¢) = (=, ei*“ dF(x). If ¢(¢)
has a convergence strip, there will be a set of values v, the “convergence
interval,” for which ¢(iv) = § e** dF(x) < oo. For each such v the function
(13) () = $u + )/g(iv) = § e~ dF(x)/§ e dF(x) = § e dF ()
will be a ch.f., and ¢, (u) will not be even in u for v % 0. Hence, as in the proof
of Theorem 1.1, for some r, u,, and p we will have pg,"(u,) + (1 — p)é,™(u,) = 0
and pg™(u, + iv)/¢™(iv) + (1 — p)¢*(u, + iv)/¢*(iv) = 0. Hence p,¢"(u, + iv) +
P (u, + iv) =0, p, >0, p, >0, p, + p, = 1. But ¢ e <& implies that ¢* =
Pd" + pp™ € &~ and ¢* is infinitely divisible. Moreover ¢* and ¢ have the
same convergence interval and ¢*(u, + iv) = 0. This contradicts Lemma 1.2.

The following related theorem may be of independent interest.

THEOREM 1.3. Let ¢(t) = \ e*® dF(x) be any infinitely divisible ch.f. having a
convergence strip S. For any real v in the convergence interval, the cdf

(1.4) F(x) = {La e dF(y)[§2. e dF(y)
will also be infinitely divisible.

Proor. By Lemma 1.2, ¢(¢) + 0in S, so that ¢(#) = exp {¢(#)} where ¢(r) =
§¢{o'(w)/d(w)}dwisanalyticin S. Also¢(t)={¢(?)}" where ¢, (t)=exp{N ¢ (1)}
is a ch.f. having the same convergence strip §. From (1.3) and (1.4) F,(x) has

the ch.f. &,u) = ¢(u + )/g(v) = {$ + V)/Px(V)}" = {,,w)}", and
&, 5(1) = ¢,(u + iv)/¢,(iv) is itself a ch.f. Hence ¢,(u)is infinitely divisible. []

2. Examples of classes &~.

Lemma 2.1. (Pdlya’scriterion). Ifareal function ¢ is even, continuous, convex
on (0, ), ¢(0) = 1 and ¢(t) > p(0 < p < 1) as t — oo, then it is a ch.f.

Proor. In[6]thislemma is proved under the additional condition that ¢(#)—0
for t — co. By considering p + (1 — p)¢, it is easily seen that this condition
can be relaxed to ¢(1) - p (0 < p < 1). [J

LeMMA 2.2.2 If a ch.f. ¢ is even positive and log-convex on (0, ), then it is

infinitely divisible.

2 Suggested by R. A. Horn, On certain power series and sequences, J. London Math. Soc.
(2nd series), Vol. 2, Part 1, 1970, p. 160-162.
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Proor. For every positive p, ¢ is log-convex and hence convex on (0, co),
i.e. ¢” satisfies the conditions of Lemma 2.1. As ¢® is a ch.f. for all p > 0 it
follows that ¢ is infinitely divisible. []

LeMMA 2.3. The family of log-convex functions is closed under mixing, multi-
plication and raising to a positive power. The limit of a sequence of log-convex
Sunctions is log-convex. (For a proof, see e.g. Kingman [4]).

DEFINITION 2.1. & is the class of all real (even), positive ch.f.’s that are
log-convex on (0, o).

THEOREM 2.1. The class <, is closed under (a) mixing, (b) multiplication, (c)
raising to a positive power, (d) scaling and (e) passage to the limit.

Closure under (a) and (b) has been defined in Definition 1.1. By (c) we mean
that if ¢ € &, then ¢? € & for all p > 0. By (d): if ¢(f) € &5, then ¢(pt) € &£
for all p > 0. By (e): if ¢, € &, and if lim ¢, = ¢, is a ch.f., then ¢, € .

Proor. Only (a) is non-trivial, and this follows from Lemma 2.3. []

An important subclass of .7 is the class of completely monotonic ch.f.’s.

DEFINITION 2.2. & is the class of all real ch.f.’s that are completely mono-
tonic on (0, o).
THEOREM 2.2. The class &~ is a proper subclass of £, and <, is closed

under mixing, multiplication, raising to a positive integer power and passage to the
limit. (We will see in Section 4 that &7 is not closed under raising to a positive

power.)

Proor. Any completely monotonic function ¢(t) is positive and has the
representation (cf. (0.1))
2.1) B(t) = Jr et d(x) , t=0,
where $§(x) is non-decreasing. It follows from (2.1) and Lemma 2.3 that every
completely monotonic function is log-convex on (0, o). The converse is not
true since log-convex functions need not be differentiable everywhere. Even
log-convex functions which are analytic need not be completely monotonic
as we will see. Consequently &7 is a proper subclass of <~. Every ¢, € &£
is of the form (2.1) on (0, c0), where F(x) is a cdf on [0, co). That the class
&, is closed under the operations stated, now follows from well-known prop-
erties of Laplace-Stieltjes transforms. []

We see from (2.1) that the distributions corresponding to .~ are all mixtures
of symmetric Cauchy distributions with ch.f.’s exp (—|¢[x).

DEFINITION 2.3. &7, is the class of all real (even) ch.f.’s that are completely
monotonic functions of |¢|*(0 < a < 1).
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THEOREM 2.3. The class .7, is closed under mixing, multiplication, raising to
a positive integer power, scaling and passage to the limit. If a < B, then 2, is
a proper subset of 2.

Proor. If ¢, e %7, then by definition ¢, is of the form
(2.2) $ult) = $u(|1%) 5

with ¢, € &,. As t* has a completely monotonic derivative on (0, o), it fol-
lows (cf. [1] page 417) that ¢, is completely monotonic in (0, co) and hence
infinitely divisible. The fact that &©, is closed as stated follows from (2.1)
and (2.2). As, for a < B, ¢,(|t|%) is completely monotonic in |#], and @,(|¢[*)
need not be completely monotonic in J|*, it follows that &<, is a proper subset
of LHifa < B [] :

As for (2.1) the set ..~, consists of ch.f.’s of the form ¢(z) = {5 e~!"!"* dF(x).
Hence the corresponding distributions for ./, are mixtures of the symmetric
stable distributions of index . (Instead of “index” someauthors use‘‘exponent,”
or “order.”)

ReMARK. Though every ch.f. which is even and log-convex on (0, o) is
infinitely divisible and convex on (0, co) a ch.f. may be infinitely divisible and
convex without being log-convex. An example of this is the ch.f. §(¢), of the
form

(2.3) ¢ = et
with
(2.4) C(t) = e + e

Here ¢ is the ch.f. of a compound Poisson distribution, and therefore infinitely
divisible. One easily verifies that ¢ is convex if 2 is sufficiently large. However
¢ is not convex, and hence ¢ is not log-convex.

3. An analogue for lattice distributions.

LemMma 3.1. (Pdlya): A real function f, which is even, continuous, nonnegative,
convex on (0, 7), periodic with period 2 and such that f(0) = 1 is the ch.f. of a
distribution on the lattice of integers.

Proor. See [6] and the proof of Lemma 2.1.

LEMMA 3.2. A ch.f. that is real, positive, log-convex on (0, m) and periodic
with period 2r, is infinitely divisible.

Proor. See proof of Lemma 2.2.

DEFINITION 3.1. * is the class of ch.f.’s satisfying the conditions of
Lemma 3.2.
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THEOREM 3.1. The class £,* is closed under mixing, convolution and passage
to the limit.

Proor. See proof of Theorem 3.

CorOLLARY. If ¢ € &, and if ¢ is integrable, then
(3.1) $H(t) = D5 Bt + 2kn)/{DE .. $(2K7))
is a ch.f. in £*.

PrOOF. As ¢(?) is even, non-increasing on (0, oo) and integrable, we have
(32)  Xm.é(2kn) = $(0) + 2 Ty §(2kn) < 1 + (2/27) §7 p(t)dt < oo .
For 0 < ¢t £ = the monotonicity of q;(t) yields

(3:3) Xiuan9(2kr + 1) = Ty $(2kr + 1) + Ly $(2kr — 1)
< Dnn(2kn) + T na $(2km) < 2 T vy $(2k7)

It follows that 3] ¢(2kr + t) is uniformly convergent, and that ¢*(¢) is a ch.f.
It is easily verified that ¢*(z) satisfies the conditions of Lemma 3.2. []

Using the above Corollary we prove

THEOREM 3.2. If f(x) is the pdf corresponding to an integrable ch.f. ¢ ¢ &,
then

(3.4 P = fR) L2 fin) (k

is an infinitely divisible probability distribution on (0, +£1, +2, ...).

0: il’ iz, ”‘)

Proor. From Poisson’s summation formula (see e€.g. [1] page 592) we have

(3.5) S Bt + 2kn) = D= fik)eitt .
From the Corollary to Theorem 3.1 it follows that
(3.6) P*(t) = L= flk)e™t | L= flK)

is an infinitely divisible ch.f. This concludes the proof. []

As an example we take the Cauchy distribution with ch.f. ¢(f) = exp(—|¢|)
and pdf f(x) = #~%(1 + x*)~'. From (3.4) we obtain the infinitely divisible
lattice distribution with

3.7 =_° k=0, +1, +2,...),
(3.7) P 11 i ( =1, )

where (c.f. [1] page 594) ¢ = 77}(1 — e7*)(1 4 e*7)7".

4. Complete monotonicity, log-convexity, and infinite divisibility. It has been
stated above that a function may be log-convex, real analytic, and monotonic
decreasing without being completely monotonic. We will demonstrate this by
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example and show its interest for questions of infinite divisibility. We will
need the following side-result.

THEOREM 4.1. If the ch.f. ¢(t) is completely monotonic, and ¢''"(¢) is itself a
completely monotonic ch.f. for all n then §(#*) is infinitely divisible.

As proof we need only note that if ¢*/(f) is completely monotonic then

(4.1) Un(le]) = (Z e d T (x) .
Hence
(4.2) ¢(|tf) = Sp e d F (%),

being a mixture of characteristic funetions is itself a characteristic function,
so that ¢(#?) is infinitely divisible. []

Examples illustrating Theorem 4.1 are ¢(f) = exp{—|t]°}, 0 < « < 1, and
pO =0+ 0sasl.

Let us now demonstrate that ¢(7) completely monotonic does not imply that
¢*"(t) is completely monotonic. ¢'*(f)is of course log-convex and real analytic
in (0, oo) since ¢(¢) is. Consider the ch.f. ¢(¢) = 3(e7!! + e~'*!) which is clear-
ly completely monotonic. If ¢'"(f) were completely monotonic for all n,
then from Theorem 4.1 it would follow that ¢(s?) = L(e~** + e~*) is infinitely
divisible. This contradicts Lemma 1.2. Hence for some n, ¢*/"(¢) will not be
completely monotonic.

It will next be shown, indeed, that for this example ¢"/*(¢) is not completely
monotonic for any n.

THEOREM 4.2. Let ¢(t) be a completely monotonic real ch.f. with representation
(4.3) #(2) = 5 e 1H® dF(x)

where F(x) is a cdf. Then ¢""(t) is completely monotonic if and only if F(x) is
the convolution of n equal distributions i.e. F(x) = G,*"(x).

ProoF. Suppose ¢Y"(f) is completely monotonic. Then ¢'"(¢) has the
representation

(4.4) ¢in(t) = (s e = d 2 (x)
so that
(4.5) $(1) = (e dZ ()} = (F e d T *(x) .

It is known however that two Laplace-Stieltjes transforms are equal if and
only if their cdf’s are equal (Feller [1] page 408). Hence from (4.3) and (4.5)
K(x) = G,*(x). The converse is also immediate from (4.5). [l

If follows from Theorem 4.2 that the function

(4.6) O.(t) = {A(e7¥ 4 eIy
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cannot be completely monotonic for any positive integral n, since the lattice
distribution §(x) with mass 2 at x = 1, and x = 2 is indecomposable (cf. Lukacs
(1960) Theorem 5.1.1).

The same behavior is of interest for probability density functions. For ex-
ample the probability density function f{x) = K(e* + e*)"/* is log-convex and
real analytic on (0, co) but is not completely monotonic. It has been shown by
F. W. Steutel [8] that such log-convex density functions on (0, o) are infinitely
divisible (see also [3]). The example shows that they need not be completely
monotonic.

From Theorem 4.1 and Theorem 4.2 we find the following extension of
Theorem 2.3 for the symmetric stable distributions.

THEOREM 4.3. Let (f) be any mixture of the symmetric stable ch.f.’s
exp {—|t]*x}, 0 < 2a < 2 of the form
(a.7) $(t) = {7 e dG(x)
where G(x) is itself infinitely divisible. Then ¢ (t) is infinitely divisible.
Proor. Writing ¢(t) = ¢(|t|*) we have
(4.8) B(1) = § e dG(x) .
By Theorem 4.2 ¢'"(t)is completely monotonic asa function of ¢« with0<a <1,

and hence as a function of . Hence, by Theorem 4.1, ¢(¢*) = ¢(?) is infinitely
divisible. []

5. Some unanswered questions. In Section 1 we saw that all ¢ € & are real
and even, and that no non-degenerate ¢ € .~ can have a finite second moment.
We shall now show that no non-degenerate ¢ ¢ ., can have a finite (absolute)
first moment. In fact, ¢(f) cannot have a derivative at r = 0. For there will
be a value #, > 0, at which ¢(z,) < 1. The convexity of ¢(¢) implies that

¢ —1_dt)—1_4 o, 0<t<t,.
P o

If ¢ were differentiable at # = 0, one would have ¢'(0) < ¢, < 0 violating the
evenness of ¢(?).

The following questions remain unanswered.

1. Can any ¢ € & have a finite first moment?

2. Can the class &%, be imbedded in a large class?

All mixtures of symmetric stable distributions of index a, with 0 < a < I,
are infinitely divisible (cf. Theorem 2.3). For a« = 2 (mixtures of normal
distributions) this is not true. Therefore the following question is of interest.

3. Is there any a > 1 such that all mixtures of ch.f.’s of the form e?!t*
are infinitely divisible?
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