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SOME PROBABILITY INEQUALITIES RELATED
TO THE LAW OF LARGE NUMBERS'

By R. J. ToMKINS

University of Saskatchewan, Regina Campus

Let S1, S, - - -, S» be integrable random variables (rv). Upper bounds
of the Hajek-Rényi type are presented for P(maxi<k<n ¢Sk = ¢| £)
where ¢; = +++ = ¢ > Oarerv, ¢ > 0and & isao-field. The theorems
place no further assumptions on the Si’s; some, in fact, do not even
require the integrability. It is shown, however, that if the S)’s are partial
sums of independent rv or if 81, Sz, « -+, S» forms a submartingale, then
some well-known inequalities follow as consequences of these theorems.

1. Introduction. LetS,,S,,. - -,S,berandom variables(rv). Let¢,, ¢,,- -, @,
bervsuchthat ¢, = ¢, = --- = ¢, > 0. This paper is concerned with finding
upper bounds for P[max,_,., ¢,S, = ¢], where ¢ > 0.

If S, S,, -+, S, is a submartingale relative to the sigma-fields &, generated
by S, 8y -+, Sy, k<mandc¢, =Z¢,--- = ¢, > 0 constants, then a theorem
of Chow (1960) shows that, for any ¢ > 0,

P[max,_,., ¢, S, = ¢] < ¢, ES," + X5l (¢, — ¢)ES,*

— +
Cp S[max k<ncp Sy <el Sn *

This result generalizes the well-known theorem of Hajek and Rényi (1955)
which assumes that S, is the sum of independent rv which are centered at
expectations. (Professor Chow has subsequently observed that his inequality
remains true when c, is replaced by a &, ,-measurable rv ¢, where ¢, >

$y= - =, >0ae.).

In Section 2 we will prove similar inequalities where only certain integra-
bility fequirements are placed on S, S,, - -+, S,. The technique to be used
in the proofs follows a pattern similar to the one used by Kounias and Weng
(1969) whose inequalities will be generalized in Section 2 (see Corollary 3).
Another approach to obtaining inequalities of the desired type is demonstrated
by Csorgo (1968, Inequality3 ); one applies a martingale analog of the Hajek-
Rényi inequality to the martingale ((S; — E(S;| F;.)), F ;> ] < n). In Sec-
tion 3 some inequalities for non-integrable rv will be presented.

2. An inequality for integrable rv. Assume that (Q, &, P) is a probability
space. If &, c #,C---C &, C .~ aresigma-fields and X, is an 7 -
measurable rv, we write (X,, ¥ ,,1 < k < n). Let I, denote the indicator
function of the event 4. As usual, X* = max(X, 0).
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The main result of the paper follows.

TueoreMm 1. Let S,, S,, - -+, S, beanyrv. For 1 < k < n, let ¢, be a positive
rv, and assume ¢, = ¢, = - -+ = ¢, a.e. Foranye> 0, define the stopping rule

t = infk <n suchthat ¢,S, =¢
=n+1 if ¢;8,<e foradl i<n.
Moreover, let A = [max, <, 6,5, = ¢] = [t = n), and define

Z=9¢,5,+ Zi‘:i (¢ — ¢k+1)Sk+
4+ Yot Lia($iSe — 0SS — 1 (B — $i)SiT) -

Then, .

(i) eI, < ZI,; and

(ii) for any sigma-field & such that E(¢,S,"| €) < w0 a6, 1 Sk =mn,

cP(4]| T) < E($,5,7L,] L)+ T Eou(S," — St Misism| &) a-e.

Proor. Note that Z = 6,8, = ¢,8,7 on [t =1] and, on [t =j] where

I1<j=mn,
Z = §,;8;7 + DiT (5 — Pe)Sit = ST+ Dia 0ulSe” — Si) -

More compactly,
(1) ZI, = I Dik=s (S — S Miesizn -

Because of the monotonicity of the ¢,’s, it follows that Z = ¢,5;* = ¢ on
the event [t = j] if j < n. Hence Z = ¢ on the event A; this implies (i).

Taking conditional expectations on both sides of (i) and using (1) we arrive

at (i), and the proof is complete.
Now let us investigate some consequences of Theorem 1.

CoROLLARY 1. Let S,, ¢,, t and A be as defined in Theorem 1. Suppose that
S, = 0 a.e. and that E($,S,)" < o for all 1 < k < nand some r > 0. Then,
forany e >0,

e"PA < E($,"Sy L) + 2k E{¢,"(S," — St iisi<nr}
= E(¢,’S,’L) + Tizi E(($.7 — $1)SV)
+ T E{L (9 S — 84750 — T (4 — $E)STY -

Proor. Note that e’PA = e"P[maX,g,, 4."S,” = ¢']. The result follows by
applying Theorem 1 (ii) to the rv {$,}1 £k <n, with &= (¢, Q}.

Suppose that ¢, = la.e. (I = k < n)in Theorem 1. In this case it is evident
from (1) that Z = S, = S,* on [t < n]. Hence, in view of Theorem 1 (i), we
have the following result.

COROLLARY 2. LetS,, S;,---,S,be integrable rv. Fore > O,lett=infk<n
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such that S, z e, =n+ 1if S; < ¢ forall i < n. Then, for any o-field <,
eP(max, ., S, = ¢| &) < E(S,I,.| ©)ace.
In particular, cP[max,g, ., S, = ¢] < E(S,I;,<.1)-

REMARK. If(S,, 7, | < k < n) is a submartingale, it is an easy matter to

demonstrate that
ES, Iy < ES, Iz -

Thus the well-known result of Doob (1953, page 314) is a special case ot
Corollary 2.

CoroLLARY 3. LetS,, S, ---,S,and ¢, = ¢, = --- = ¢, > 0berv. Suppose
that, for some r > 0 and for some sigmd-field <&, E(¢,"(S,*)"| £€) < oo a.e. for
each k < n. Define X, = S,and X, = S, — S,_, for I'< k< n. Then, for any
e > 0 and any positive integer m < n,

) ifr<t,
e"P(max, ci<, ¢S, = ¢| &)
= B, X (X)) 37) + Dkemi1 E(¢Icr(Xk+)r' f);
@) ifrz1,
e"P(MaX, gz, 1S, Z €| &)
S [T ET G0 (X) | D) + Dienn BTG (XH) | D)
Proor. For brevity, define the events
A = [max, ., ¢S, = €] = [max, .., ¢S+ = ¢], and
E, = [max,,;, $;5; < €] where m<k<n.
Then, by Theorem 1 (ii),
(2) P(A] T) < E($,7(Sn") | ©)
+ Xiemi @A) — (SE) Mg, | ©) -

If r < 1, then, for any k = 1, (S,*)" < (Si_)" + (X1 < 23k, (X,7)" by the
C,-inequality so that (i) follows from (2). Now suppose r = 1. Define ¥ =

P Sn™ + Dhemir Pu(Se" — Sz e, -
By rearranging the terms it is easily shown that ¥ > 0 and Y > ¢ on 4.

Furthermore, since S,,* < S;._, + X,,* < X, X,*,
Y < ¢ 200 X" 4 Dicmin S X0
ePA| L) EY"|Z),
S E(¢n i X' + XDienn 0 X) | ©)

(ii) follows when Minkowski’s inequality for conditional expectations (see
Loéve (1963, page 348)) is applied twice.

Hence
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REMARK. Corollary 3 generalizes the results of Kounias and Weng, who
proved these inequalities for constant rv’s ¢,, & = {¢, Q} and the nonnegative

stochastic process {|S,|}.
This corollary also contains the Hajek-Rényi inequality (since that result is

also a special case of the Kounias-Weng theorems).

COROLLARY 4. Let(S,, #,, 1 < k <n) be a submartingale. Let ¢, be a positive
F r-measurable rv with ¢, =2 ¢, > --- = ¢,, and E($,S,") < o1 <k < n.
Let A = [max, g, ¢S, = ¢] for ¢ > 0 and let & C , be a o-field. Then

P(A| ) S E($,5, 14| ©) + Tict E($e — ¢S] ©) -

Proor. Since 4 = [max,,, ¢,S,".= ¢] and (S,*, &, k = 1) is a submar-
tingale (see Loéve (1963) page 391), there is no harm in assuming S, = 0 a.e.

Now

DSy — a8y — D150 (9 — i)t = — Dlopia $i(Si — Siva) -
But

E(Z?=k+1 ¢i(Si - Si—l) l %) = E(Z?:kﬂ ¢iE(Si - Si-—ll%—l) l fk)
=0.

So, defining ¢ as in Theorem 1,

B fremn($Sh — 98, — L5 (s — 6441)S0) | ©)
= E(Xi5 L= E($e St — 6,8, — Dizi (9 — $0)S:i | F )| )
<0.
So the result follows from Theorem 1 (ii).

REMARK. Taking & = {¢, Q} in Corollary 4 provides a slightly sharper
inequality than that of Chow (1960). Chow’s result has been proved inde-
pendently by Csdrgd (1968, Inequality 1), and using yet another approach, by
Whittle (1969). Some inequalities of the same type for the submartingale case
have been obtained by Burkholder (1966, Theorems 6 and 8).

3. Inequalities for non-integrable rv. The following theorem gives inequalities,
analogous to those in Theorem 1, for rv which may not be integrable. The
theorem is a modification and generalization of some work of Heyde (1968).

THEOREM 2. Let S,, S,, ---, S, be any rv. Let ¢,, ¢,, - -+, ¢, be rv such that
=z Z26¢,>0. AssumeT,, T, -- -, T, are any rv satisfying E(¢, T,")” < oo
Jor some r > 0 and all k < n. Define X,=S,, Y, =T, and X, = S, — S,_,,
Y, =T, — T, ,for L <k<n. Foranye>0and 0<y<1, letI, be the

indicator function of the event

[max, ;e 6;T; < e(1 — ), 6, T, = (1 — 7]
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Define the events A = [max,,, 9,5, = ¢],

B = [max, ., 4. T, = ¢(1 — )], and the rv
U=¢,T," + 23 — di)(T7)"
+ LSl T — 6T, — T (97 — ¢ia)(T3T)) -
Then
I,=(1 —n) e Ul + I[¢1(X1—Y1)zvya] + Zieadix,er, -
In particular,
PA = (1 —p)7e B(UL) + Pl¢y(Xy — Y1) = 9e] + Zies PLX, # V] -
Proor. Let C = [max,_, ¢,(S, — T,) = 7¢]. By a method similar to that

used in Theorem 1, it is easily shown that U = (1 — 5)"¢” on B. Also, it is
easily proved that

CcCo(X; —Y,) = 7e] U Up-s I[szkYk] .
Since 4 ¢ B U C, the theorem follows.

REMARK. Theorem 1 is contained in Theorem 2 since one can take S, = T,
and lety | 0. Furthermore, if Y, Y,, - - -, Y, are independent, EY,* < oo, and
the ¢,’sare constant, then the extension of the Hajek-Rényi inequality obtained
by Tomkins (1971) results.

Among the consequences of Theorem 2 are inequalities analogous to Corol-
laries 1; 2, 3, and 4. In particular, the next two corollaries extend the results

of Chow.

CoROLLARY 5. Let S,, S,, -+, S, be any rv and define X, = S,, X, = S, —
S,_nk>1. Let (T, = 3%, Y;, ¥, 1| <k < n)be a nonnegative submartingale.
And let ¢, be a positive 7 ,_,-measurablerv (1 < k < n, 7, = {§, Q}) such that
6 =¢,= - =0, and E($,"T,") < oo for some r 2 1, and all 1 = k = n.
Then forany ¢ > 0and0 < 9 < 1,

Plmax,g, ., ¢S, = ¢] < e77(1 — n){E($,"T,") + 255 E($ — S50 T")
+ Plpy(Xy — Y1) = 7e] + 2o P[X, # Y] -

Proor. Defining U as in Theorem 2, it is easily shown that U = Oa.e.
Then, using an argument similar to that in the proof of Corollary 4, one shows
that the expection of the second summation in the definition of U is non-
positive. (It should be noted that (7", %, 1 < k < n) is a submartingale for
all r = 1).

COROLLARY 6. Let (S, = X%, X;, &, k = 1) be any stochastic process. Let
¢y, €y, + - - be any non-increasing sequence of reals with limc, = 0. Let (T, =
k. Y; F 4 k= 1) be any nonnegative submartingale such that ET,” < oo
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(k= 1)forsomer= 1. If Y5, P[X, # Y, ] < coand 35, ¢, E(T, —T;_) <
oo, then lim,_c,S, = 0a.e.

Proor. By Kronecker’s lemma, c,"ET," — 0 as m — oo.
Also, by the Borel-Cantelli lemma, P[X, #+ Y, i.0.] = 0, so
lim,, . ¢, (S, — T,,) = 0a.e.

But (7,7, &, k = 1) is submartingale, so by Corollary 5, for any ¢ > 0,
0 < 7 < 1and any integer m = 1,

P[sup,., ¢S, = el = (1 — )" 7"[¢,,"ET,," + Ximn & E(T, — Ti)]
+ Plen(Sn,— Tn) = 7¢] + Diemi P[X, # Y]

.

T
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