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A NOTE ON METRIC TRANSITIVITY FOR STATIONARY
GAUSSIAN PROCESSES ON GROUPS!

By BENNETT EISENBERG
University of New Mexico

Maruyama (1949) and Grenander (1950) derive necessary and
sufficient conditions for stationary Gaussian processes on the real line
or the integers to be metrically transitive. Their work is based on
ergodic theorems for such processes. This paper studies conditions for
metric transitivity for stationary Gaussian processes for which there
are no ergodic theorems. Instead the work is based on results on the
absolute continuity of measures corresponding to random processes.

0. Introduction. The ergodic theorem implies that if X is a stationary
Gaussian process on the integers, then lim (1/N) 3V x, exists a.e. dp,. It
follows that the limit is invariant under the shift transformation T': x, — x, _,.
For processes parameterized by an arbitrary group it is more difficult to
generalize the sum (1/N) 3} x, and the corresponding ergodic theorems are
much weaker. Nevertheless, the notion of metric transitivity, that T, f = f
for all g € G and fin L'(dy,) implies f = constant, does generalize easily and
is a useful concept. It says that all shift invariant events have probability
Zero or one.

In this paper ideas of absolute continuity are used in place of ergodic
theorems to find necessary conditions for metric transitivity. A corollary of
the Feldman-Segal [3, 8] dichotomy theorem for Gaussian measures suggests
that these conditions are also sufficient. Sufficiency is proved here only for
the group R®. In a paper to appear, written with J. R. Blum, useful ergodic
theorems will be proved for such processes, and sufficiency of the above
conditions will be proved for a wide class of groups.

1. A necessary condition for metric transitivity. Assume X is a stationary
Gaussian process on a locally compact Abelian group G with mean zero and
continuous covariance R(g) = E(x,x,,). Most concepts for processes on the
real line extend trivially to such processes (cf. Blanc-Lapierre and Fortet [1]).
For example. '

R(9) = {1 g(a) dF(a)
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where F is the nonnegative spectral measure on the dual group I' = G. Also

x(9) = \r 9(a) dZ(a)
where Z is a Gaussian random measure on I' with E(dZ) = 0 and E(|[dZ(a)|*) =
dF(a). Butergodic notions seem to depend on ideas about order and genera-
tors for the group. In this section it is shown that if X is metrically transitive,
then its spectral measure F has no atoms. This corresponds to the Maruyama-
Grenander result where G = R or Z. The proof is different.

Blum and Hanson [2] have shown that if # and v are probability measures
invariant under a one-one bimeasurable point transformation T, where T4 =
A implies x(A) = 0 or 1; then if v is absolutely continuous with respect to g,
v = pu.

The first proposition is a modification of this result useful for our purposes.

PROPOSITION 1. Let y and v be probability measures invariant under a group
of transformations T,, where y is metrically transitive with respect to T,. Then
if v is absolutely continuous with respect to p, v = p.

PrROOF. Assume v € p. Then dv/dy € L'(dy) and

d d d
sAng—;dp = sT;Ad—;dﬂ = ppadv = §,dv = s,,d—;dy.
Hence
dv dv
T =2 =72 ae. du.
‘dp = dn Iz

But p is metrically transitive. Therefore dv/dy = constant = 1. []

Proposition 2 is a consequence of a theorem stated below due to Feldman
[4]. To keep the paper self-contained a simple proof of this particular result
is given.

PROPOSITION 2. Let X be a stationary Gaussian process on a locally compact
Abelian group with continuous covariance. If the spectral function of X has an
atom, there exists a stationary Gaussian process Y + X with p, and p, mutually
absolutely continuous. In fact, Y may be chosen to be non-Gaussian.

ProOOF. Assume the atom is at «. Then by the spectral representation
x, = \rg(a)dZ(a) = Sano 9(a) dZ(a) + Sao 9(a)dZ(a) = u, + v, ,
where the two integrals in the sum are independent random variables. As g
varies we write X =,,, U + V, where U and V are independent random pro-
cesses. But clearly V and ¢V are mutually absolutely continuous where ¢ is

any nonzero constant. It follows that x, and x, are mutually absolutely
continuous where ¥ =, U + cV. []
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PROPOSITION 3. Let X be a stationary Gaussian process with continuous covari-
ance function on a locally compact Abelian group. If p, is metrically transitive,
then the spectral function of X has no atoms.

Proor. By Proposition 1 any stationary process equivalent to X must equal
X. By Proposition 2 there is a stationary process Y # X with g, and g,
absolutely continuous. [J

COROLLARY. There are no nonzero metrically transitive stationary Gaussian pro-
cesses on a compact Abelian group.

Proor. The dual is discrete. []
Finally we mention a theorem of Feldman.

THEOREM (Feldman). Let X and Y be stationary Gaussian processes on a
locally compact Abelian group G and spectral measures F and G. Then p, and 1,
are mutually absolutely continuous if and only if F and G have identical non-atomic
parts, their points of positive mass are the same and if the masses are F; and G,
at a; then Y, (1 — F;/G,) is finite. Otherwise p, | p,.

The proof of this result is in [5] and uses no ergodic theorems. Rather it is
based only on the dichotomy theorem for Gaussian measures. The signifi-
cance of the result to this paper is that it suggests that if a stationary Gaussian
process is not metrically transitive, then its spectral measure is discontinuous.
That is, if a process X is not metrically transitive there is an f = 0 in L'(dp,)
with T, f = f and f = constant. Defining p, = (f/||f||) dr., we see there is
a stationary process Y # X with p, « p,. If Y were Gaussian the Feldman
theorem would imply the spectral measure of X must have had an atom.
This would complete the generalization of the Maruyama-Grenander
theorem. It remains to be shown that if there is a process Y with z, € p,,
there is a Gaussian Y, with », < ¢, and Y, # X.

2. Sufficiency. If X is a process on a group G, denote by X, the process
restricted to the subgroup K.

PROPOSITION 4. If X is a stationary process on G which is not metrically transi-
tive, then for every subgroup K C G, Xy is not metrically transitive.

LeMMA. If p is invariant under an invertible transformation T and if H is a
subspace of L*dy) with TH = H, then P, T = TP, where P, is the orthogonal
projection on H.

Proor. Exercise. []

ProOF OF ProPosITION 4. If X'is not metrically transitive 3f € L*dy,) with
T,f=f, Y9G and f + constant.
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Let H, be the Hilbert space of L* functions measurable with respect to the
o-field generated by x,,, k€ K, g € G. Then T,H, = H,Vk e K. Hence by the
lemma

PH,,f: PHg(ka) = TkPHgf'
Thus P, fis invariant in H,. If P, f were constant for all g, then f would
be constant. Hence there is a g with P, f + constant. The process X
restricted to gK is not metrically transitive. But x,, =,,, X,, 0 x, is also not
metrically transitive. []

Proposition 4, along with the following proposition, lends further support
to the conjecture that if X is a stationary Gaussian process which is not
metrically transitive, then the spectral measure of X is discontinuous.

PROPOSITION 5. If the spectral measure of a stationary Gaussian process X on
a group G is discontinuous, then for every closed subgroup K of G the spectral
measure of X is discontinuous.

Proor. Let E be the annihilator of XK. Then K = G/E. If df{a) > 0 and
if @F is the a coset of E then

dF(aE) = .., dF(ay) > dF(a) > 0,
where F, is the spectral function of X. []

The next proposition extends the Maruyama-Grenander result completely
in the case of G = R®. In this case X is known as a homogeneous random field.

PROPOSITION 6. Let X be homogeneous Gaussian random field on R® with
continuous covariance. Then X is metrically transitive if and only if its spectral
measure is continuous.

Proor. If X is metrically transitive its spectral measure is continuous by
Proposition 3.

Assume X is not metrically transitive. Then by Proposition 4 the process
Y where Y, =,,, X, ,,, is not metrically transitive for each choice of a.

R, (t) = R,((1, at)) = § exp (i4,t + iXat) dF,(4, &) = § exp (iut) dF,(y) .

It follows that .
dFy(/") = S/z:]l+a12 dF('zl’ 22) .

Since Y is not metrically transitive dF,(y,) > 0 for some z, by the Maru-
yama Theorem. Hence for each a, 3y, with

Sp0:11+a12 de('zl’ 12) > 0 .

If a # a,, then the lines 1, + ai, = pand 4, 4 a,1, = p, intersect in at most
one point. There are an uncountable number of such lines each of which has
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positive measure under F,. But F, is a finite measure. Hence there must exist
a point with positive measure. []

For the case R’ there is an ergodic theorem due to Wiener [9] to the effect
that if 7, and U, are commuting groups of unitary operators on L? induced by
measure preserving transformation, then

1

‘—TCMz S St2+82§M2 Tt Usde dt

exists.
For a homogeneous Gaussian random field on R* we can thus say X is
ergodic if and only if its spectral measure is continuous.
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