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ON THE DUBINS AND SAVAGE CHARACTERIZATION
OF OPTIMAL STRATEGIES!

By WiLLiAM D. SUDDERTH

University of Minnesota

An elegant characterization of optimal strategies for gambling
problems was given by Dubins and Savage in the finitely additive setting
of their book How to Gamble If You Must. An exposition of their ideas
is given here in a measurable, countably additive framework. With the
additional measurability assumptions, it becomes possible to treat a
larger class of payoff functions. Also, necessary and sufficient condi-
tions are given for a strategy to be ¢-optimal, a problem not considered
by Dubins and Savage.

1. Definitions and preliminaries. This section establishes the framework for
the sequel and reports certain technical measurability results needed there.
Most of the notation and definitions below are borrowed or adapted from [3].

The term Borel set is used here to mean a Borel subset of a complete separa-
ble metric space. Let X be a Borel set. Denote by <7(X) the Borel subsets of
X and by Z°(X) the set of all countably additive probability measures on
Z(X). If F(X) is given the usual weak topology, then it has the structure
of a Borel set and the Borel subsets of <7°(X) may be described as the smallest
o-field of subsets which makes 7 — 7(4) a measurable function from .7°(X)
to the Borel line for each 4 in <#/(X). (A thorough discussion of the weak
topology is in Chapter II of [6] and the Borel structure of .Z°(X) is explored
in [2].)

Let F be a Borel set to be regarded as the set of fortunes of a gambler or
possible states of a system. Set <2 = <Z(F) and .&° = .F°(F). An element y
of .7 will be called a gamble, although Dubins and Savage use that term to
mean a finitely additive probability measure defined on all subsets of F. A
gambling house I on F assigns to every fin F a non-void set I'( f) of gambles.
It is assumed that the set {(f, 7): y e ['(f)} is a Borel subset of the product
space F x .Z°. The implications of such an assumption were first studied by
Strauch in [7].

A strategy o is a sequence o, g,, - - -, where ¢, is a gamble and, for n > 0,
o, is a measurable map from F x ... x F (n-factors) into .7°. Let H be the
countably infinite product F x F x - - - with the product Borel structure. The
symbol “A” will always denote a typical element or history (f,, f;, - - -) of H.
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A history ¢ naturally induces a probability measure p(o) on <£Z(H). That is,
the p(o)-marginal distribution of the first coordinate f, is o, and, given the
first n coordinates are (f,, -- -, f,), the conditional p(¢)-distribution of f, ,
is 0,(f1, -+, f,)- When there is no danger of confusion, we shall use the
same notation ¢ for the strategy ¢ and the corresponding measure (o).

A strategy o is essentially available at f in T' if o,eI'(f), and, for n > 0,
o.(f» -+, f,) e I'(f,) o-almost surely. Thus the gambler must choose gambles
available in the house at his current fortune almost surely at each stage of
play. For fe F, let I'*(f) be the set of all strategies essentially available at f
inT" and let I'” = {(f, p(0)): ¢ e '*(f)}. Then the set I'* is a Borel subset of
F x Z°(H). For a proof see Theorem 2.1 of [10] and Theorem 5.1 of [12].

A partial history p is a finite sequence of elements of F. If ¢ is a strategy and
p = (fi, -+, f,) is a partial history, then the conditional strategy o[ p] is defined

by
(alpl)e = o.(fis -+ -5 f2)

and, for k > 0,
@lpDe(fs - i) = Onialfos s s S5 -0 i)
If is easy to check that o[ f}, - - -, f,] is a version of the regular conditional

o-distribution of (f, ., f,.s - -) given (fi, - -+, f,). Also, if ¢ e I'°(f), then
ol fi, -+, [l € T=(f,) o-almost surely.

Now let g be a measurable function from H to the extended reals. For
he H, the value g(h) is to be regarded as the payoff received by a gambler
who experiences the history 4 and g is called the payoff function. To simplify
the exposition, it is assumed that g is bounded above. (Many of our results
would still hold if other conditions on g or on the house I' were used to
insure the existence of § gdo for every available ¢. The assumption here
roughly corresponds to the common one of a nonnegative loss function.) A
gambler who plays the strategy ¢ has expected winnings § gdo. Let

V(f) = sup,cres, § 9do .

The function V is called the strategic utility of the house I' and V(f) may be
regarded as the most that can be achieved by a gambler with fortune f. The
function ¥ is bounded above and has been shown (Theorem 5.2, [12]) to be
universally measurable. (Recall that a function is universally measurable if
it is measurable with respect to the completion of every measure on the Borel
sets.)

2. The Dubins and Savage payoff function. For a reader familiar with
gambling theory, this section should serve as motivation for the sequel. It is
not, however, a logical prerequisite for what follows.
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Let u be a bounded function on F and let ¢ be a strategy. Dubins and
Savage in [3] define the utility of ¢ to be

0] u(o) = limsup, ., § u(f,) do .

The lim sup is taken over the directed set of stop rules. There are no measur-
ability requirements for u, s, or the stop rules ¢. (For a definition of
“strategy,” “stop rule,” and the integral in (1), consult [3].) If u is assumed

to be .£Z-measurable and ¢ is a strategy in the sense of this note, then, by
Theorem 3.2 of [12],

(2) u(o) = {u*do ,
where
(3) u*(h) = limsup, . u(f,) .

Thus the problem studied by Dubins and Savage is, under our measurability
assumptions, of the type described in Section 1 where the payoff function g is
u*.

Now assume u to be .2Z-measurable and bounded above. Let o be a strategy
and define u(c) as in (1) except that the lim sup is to be taken over all
measurable incomplete (i. e., not necessarily finite) stop rules ¢ which are
finite almost surely under ¢. Then, by Theorem 2 of [11], formula (2)
continues to hold, which is not the case if the stop rules are required to be
everywhere finite as in [3].

ExaMpLE 1. Let F={—1,1} and o, =0,(f;, -+, f,) = +0(1) + ;1 d(—1)
for all (fi, -- -, f,)- Thus o is the distribution of a fair coin toss process with
path space H. Consider also F' = set of integers and o,’ = 0, 0,'(f)/, - - -,
)y =%0(f, + 1)+ 56(f, — 1) forall (f/, -, f,). The strategy ¢’ on H’
is the distribution of the partial sums of a fair coin toss process. Let u( f') =
min (f, 1) for all f" e F".

Suppose #’ is an (everywhere finite) stop rule on H’. Let ¢ be the stop rule
on H given by

ot fo =) =t i+ foh+ it fo o).

Notice f; + - - - + f, has the same distribution under ¢ as does f;, under o’.
Now u(f,), u(f, + f,), - - - is an expecCtation decreasing semimartingale under
o and, since F is finite, ¢ is bounded (Theorem 2.9.1 of [3]). Hence,

0=1Su(f)do = §u(fi+---+fi)do = §u(fl)do’,
for every stop rule ¢'. A4 fortiori, limsup,. ., § u( f})do’ < 0. However, u* =1
o’-almost surely, so that § u*de’ = 1.
When it seems appropriate, results below will be specialized to the case
when g = u* for some u and connections made with the original work in [3].
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Notice that

wfofo o) =w(fo )
for every h = (fi, for -+ *)-

3. Properties of 7 when the payoff function is shift-invariant. It is assumed
for the remainder that the payoff function g, in addition to being bounded
above and measurable, satisfies g(f}, f;, -+ ) = 9(f;, --+) for every h =
(fofor ).

Intuitively, the gambler who has fortune f; after the first play should wish
to play exactly as though he were entering the game with initial fortune f;.

By the previous section, such shift-invariant payoff functions include, at
least in a countably additive setting, those studied by Dubins and Savage.
Moreover, many sequential optimization problems, which do not appear to
have shift-invariant payoff functions, can be formulated so as to fit the model
of this note.

EXAMPLE 2. Suppose r is a bounded function on F,0 < g < 1, and
g(h) = Xz, Br(f,). Such payoff functions have been studied by Blackwell
[1] and others. Of course, g is not typically shift-invariant.

Let us follow Section 12.2 of [3] and set f,' = (f, ---,f,) and K’ =
S5 fs o) Then, if w(f,)= >2r,Bu(f,), we have u*(h')=
lim sup,_., u(f,’) = g(h), and u* is shift-invariant on H’. Further examples
and a more complete discussion are in [3].

A function Q on F is excessive for I' if, for every fe F and yel'(f),

§ Qdr < O(f)-
THEOREM 1. The strategic utility V is excessive for I'.

Rather than prove Theorem 1, notice it is a special case of our next result,
for whose statement we need another definition.

A stopping variable t is a measurable map defined on H, having values in
the set {1,2, .-, + oo}, and such that, given A= (f, f,, ---) and A’ =
(AL 1 -+ ) if th)y = nand f = f; for 1 < i< n, then #(#') = n.

THEOREM 2. If feF, cel'=(f), and t is a stopping variable such that
o[t <+ o] =1, then ‘

§ V(f)do = V(f) -
(Here, f(h) = fum-)

Proor. Let g, be the distribution of f, under o. Since V is measurable
with respect to the completion of <2 under p,, there is a ZZ-measurable

function Q such that px{f": Q(f') = V(f")} = 1 and Q(f") < V(") for dll f'
in F.
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Let ¢ > 0 and define
A =A{(f" m(0"): § 9do’ = Q(f") — &, 0" eT=()} .

Then A4 is a measurable subset of F x .Z°(H) and each f’-section of A4 is non-
empty. Hence, by Theorem 6.3 of [4], there is a measurable map ¢:
F — Z2(H) such that px{(f", o(f")) e 4} = 1.

Now, for each f” € F, chose a strategy d(f”) such that x(d(f")) = ¢(f’) and
choose the G(f") so that p{f": 6(f")eI'=(f")} = 1.

Let o’ be the strategy which is the composition of ¢ with the family (-) at
time ¢. That is,

(0")0 = a9,
and, for every partial history (f, - - -, f,),
(g,)n(ﬁ’""fn):an(ﬁ3"'9fn) if t>n,
= (@(f)o if t=n,

= (O(fDn-e(fors -5 fo) 0 1 <m,

where t = t(fy, -+, frs + ).
Then ¢’ e I'°(f) and
§ V(f)do = § Qdp, < §{§ 9da(f) + e} dp, = § gdo’ + &
(by Fubini (Theorem II. 14, [5]) and the shift-invariance of g) < V(f) +¢. [J
Theorem 2 is essentially an optional stopping theorem and implies that
V(f1), V(fy), -+ is a (generalized) expectation decreasing semi-martingale
with respect to any ¢ € I'*(f). Perhaps the reader should be reminded that
such an optional stopping result does not hold for arbitrary (generalized)
semi-martingales which are bounded from one side.

ExAMPLE 3. Let f,, 0, and u be as in Example 1. Let #h) = min {n: f; +
.o fo=1}). Then o[t < co]=1 and §u(f,+---+ f)do =1>0=
§u(f))do. )

CoRrOLLARY 1. Let fe F, c eI'>(f), and t and s be stopping variables with
ot<s< o]l =1. Then

VV(f)do = § V(f) do .

Proor. For every he H, let p,(h) = (f,, -+, f,s,))- Then the conditional
strategies o p,] are essentially available at f, in I g-almost surely. Let s p,] be
the conditional stopping variable defined by

sSlp AL ) =s(fes o S AL ) — 8
Then, by Theorem 2,

§ V(fitw) dolp] = V(f)
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o-almost surely. By Fubini’s Theorem,

S V() = V(f)Ydo = §{V(f) — § V(fup) dolp.]} do .

The desired inequality follows. Interpret § V( Sin1) dolp.] as V(f,) when
s =1. D

The next result is a version of the so-called functional equation of dynamic
programming.

THEOREM 3. For every fe F, V(f) = sup,.r, § Vdy.

PrROOF. Let e > 0. Choose o € I'(f) such that §{ gdo = V(f) — . Then
g,eI'(f) and
SUp,erp) § Vidr =2 § Vido, = §{§ gdo[ fil}doy = § gdo Z V(f) — <.

This proves one of the needed inequalities. The other is immediate from
Theorem 1. []

Now let o be a strategy and {Q,},., a sequence of universally measurable
functions on F which are uniformly bounded above. Define

4) Q(o) = limsup,_.. § O,(f,) do,

where the lim sup is over the directed set of stopping variables ¢ such that
o[t < co] = 1. Also, define Q* on H by

(5) Q*(h) = llm Supn—vw Qn(fn) *
It will usually be the case below that all the Q, are equal to some fixed func-
tion Q.

THEOREM 4. If the functions Q, are universally measurable and uniformly
bounded above, then

Qo) = { Q*do .

Proor. If the Q, are .Z#-measurable, the desired formula is a special case
of Theorem 2 in [11].

If the Q, are universally measurable, then there is a sequence R, of <Z-
measurable functions such that

ofh: Q,(f,) = R.(f,) for n=1,2,...} =1.
The R, may be chosen to be uniformly bounded above. Hence,
§ 0*do = § R* do = R(s) = Q(0) . []
COROLLARY 2. If V is the strategic utility of T and o is any strategy, then
V(o) = V*do.

Another formula for V(o) is given by
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THEOREM 5. If V is the strategic utility of T' and o e T=(f) for some feF,
then

§V(f)do\ V(e) as n—co.

Proor. By Corollary 1, if n > m, then § V(f,)do < § V(f,)do. So the
limit exists.

Again by Corollary 1, if ¢ is a stopping variable, o[t < o] = 1, and ¢ = n,
then

§ V(f)do < § V(f)do .

Now take the lim sup as ¢t — co and then the limit as n — oo to get
V(o) < lim, .. § V(f,)do .
But, by Fatou’s Lemma and Corollary 2,
lim, ., § V(f,)do < {V*do = V(o). []

The next theorem exemplifies the sort of convergence result possible if the
processes under consideration are not allowed to grow too large in a negative
direction.

THEOREM 6. Let fe F and o € I'>(f).

(@) If V(o) > —oco, then V(f,) — V*(h) o-almost surely as n — co.

(b) If § gdo > —oo, then § gdal f,, - - -, f,] = 9(h) g-almost surely as n — co
and o[g > V*] = 0.

Proor. (a) Since V(f,) is an expectation decreasing process by Theorem 2
and inf, § V(f,) do = V(o) > —oo by Theorem 5, V(f,) converges almost
surely by a supermartingale convergence theorem (Theorem V. 17, [5]). The
limit is, of course, V* almost surely.

(b) By the assumption, ¢ is integrable with respect to ¢. Also, § gdol f,,
.., f.] is a version of the conditional g-expectation of g given (f,, - -, f,)-
Thus the convergence is by another martingale theorem (Theorem V. 18, [5]).

Finally,

Vifa) =z Sodalfi, -, 1ol

g-almost surely since o[ f;, - - -, f,] € ['°(f,) o-almost surely. Pass to the limit
as n — oo to prove the final assertion. []

The final result of this section will be the starting point for the discussion
of optimality here as its analogue was in [3].

THEOREM 7. Let fe Fand 0 e '>(f). Then V(f) = V(o) = § gdo.

Proor. The first inequality is immediate from Theorem 2 and the definition
of V(o) in (4). The second follows from Corollary 2 and Theorem 6(b). []
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4. Optimal strategies. Let fc F and ¢ € I'*(f) be fixed for the discussion in
this section.

The strategy o is said to be optimal (c-optimal) at f in T iff § gdo = V(f)
(§ 9do = V(f) — ).

The strategy o is thrifty (e-thrifty) iff V(o) = V(f)(V(0) = V(f) — ¢).

The strategy o is equalizing (c-equalizing) iff § gdo = V(o) (§ gdo = V(o) — ¢).

An immediate consequence of Theorem 7 is

THEOREM 8. A strategy is optimal iff it is thrifty and equalizing. A strategy is
e-optimal iff it is ¢,-thrifty and e,-equalizing for some ¢,, ¢, such that ¢, + ¢, < e.

Thus the notion of optimality will be characterized if we characterize
thrifty strategies and equalizing strategies. The results which follow give
formulae for the numbers V(f) — V(o) and V(o) — § gdo, which measure the
two ways in which ¢ may depart from optimality.

Let

&= V(f)— \Vdo,,
and, for n > 0 and he H, let

En(h) = en(ﬁ’ o ’fn) = V(fn) - S Vdan(.fl’ : ’fn) *

Notice that, by Theorem 1, ¢, = 0 g-almost surely for all .
THEOREM 9. The strategy o is e-thrifty iff

S (Z;f:o En) do <e.
In fact,

V(f) — V(o) = § (Zinee,) do .

Proor. It is easy to see by induction on » that

§ V(S do = V(f) — § (Zisie) do .
Let n — oo and the result follows from the monotone convergence theorem
and Theorem 5. []
The result corresponding to Theorem 9 for a finitely additive theory of
gambling is in [9].

THEOREM 10. The strategy o is thrifty iff, for all n, ¢, = 0 g-almost surely.

Proor. Immediate from Theorem 9. []

Thus a gambler is thrifty iff the V(f,) process is a (generalized) martingale
with respect to his strategy. In intuitive terms, he must play in such a way
that his prospective optimal winnings (i.e., his current values for V) almost
never decrease in expectation.

Stated still another way, a strategy is thrifty if the gambler almost always
chooses gambles y so that § V'dy attains the supremum of the functional
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equation in Theorem 3. A common error is to assume that strategies so con-
structed are necessarily optimal, which brings us to equalizing strategies.

THEOREM 11. If V(9) = —co, then ¢ is equalizing. If V(o) > —oo and
¢ > 0, then o is c-equalizing iff § (V* — g)do < ¢ and, in fact,

Vie) — §gdo = § (V* — g)do .

Proor. The first statement is obvious and the second follows from
Corollary 2. []

A sufficient condition for ¢ to be e-equalizing is given next. The notation
“i.0.” is used below as an abbreviation for the phrase “for infinitely many n.”

THEOREM 12. If ¢ > 0 and ofh: V(f,) < g(h) + ¢i.0.} =1, then ¢ is &-
equalizing.
Proor. We can assume FV(g) > —oo. Then, by the hypothesis and

Theorem 6(a), o[ V* < g + ¢] = 1. Now use Theorem 11. []
The corresponding necessary condition is in

THEOREM 13. Ife > 0, o is e>-equalizing and V(o) > — oo, then
alh: V(f,) < g(h) + cio} =1 —e¢.

Proor. By assumption, § gdo = V(s) — ¢ > —oo. So, by Theorem 6(b),
V* — g =0 og-almost surely. Also, by Theorem 11, § (V* — g)ds < &
Hence, o{h: V*(h) — g(h) < ¢} = 1 —e. The conclusion now follows from
the definition of V* as limsup,_.. V(f,). [

The previous two theorems imply

THEOREM 14. Suppose V(s) > —co. Then o is equalizing iff, for all ¢ > 0,
aolh: V(f,) £ g(h) + ¢io} =1.

Let us now assume that u is a .<Z-measurable function from F to the reals
which is bounded above, and consider the associated Dubins and Savage
payoff function u*. It is of some interest to reinterpret our results for such
a payoff function and thus make explicit contact with the original work in
[3]-

THEOREM 15. Let g = u* and suppose V(o) > —co. Then the following are
equivalent:

(a) o is equalizing;

(b) u(0) = V(o);

(¢) foralle >0, olh:u*(h) = V(f,) — ei.0.} = 1;

d) foralle >0, ofh:u(f,) = V(f,) —ei.0} =1;

(e) for all ¢ >0, v(s) =1, where v, is the indicator function of the set

{fru(f) =2 V(f) — ¢}
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Proor. Since u(s) = § u* do, (a) and (b) are equivalent. Also, (a) and (c)
are equivalent by the previous theorem; and (d) and (¢) are easily seen to be
equivalent if Q is set equal to v, in Theorem 4. It will be enough to show (c)
and (d) are equivalent.

Let {x,} and {y,} be sequences of real numbers and let x* = lim sup,_.., x,.
The following implications can be checked for any ¢ > 0:

(i) ifx, = y, — ¢i.o., then x* = y, — 2¢i.0.;
ii) if x* = y_— ei.o. and y, converges to a finite limit, then x, = y, —
= Yy D g n = Va
2¢ 1.0.

By (i), we see that (d) = (c). By Theorem 6(a), V(f,) converges s-almost
surely to V*, so that the opposite implication follows from (ii). []

Condition (b) was used in [3] to define equalizing and was shown there to be
equivalent to (¢). Theorems 13 and 14 can also be reinterpreted for g = u*.
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