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1. Introduction. It is well known from the results of Ito [4] that any L*-func-

tional F of Brownian motion with E[F] = 0 has an orthogonal representation,
ie., F= 5., I(f,) where I(f,) is the pth degree multiple Wiener integral.
The estimation of the kernel function f, (p = 1,2, --.) is often required in
solving various problems in nonlinear analysis and involves tremendous com-
putations in the usual L*-norm approximation. As a direct application of a
result of Isaccson [3], we give here a consistent estimator for the kernel function
f, of L*-functional of the form F = 2o L(f)-

2. Notations and preliminaries. Let {X(?, w)},.(, ,; be standard Brownian motion
defined on a probability space (Q, &, P). Let B, (for t¢ [0, T]) denote the -
field generated by sets of the form

(21) E = {a’; [X(SD w)’ R} X(Sn, w)] € Bn}

where s, s,, - - -, 5, € [0, f] and B is an n-dimensional Borel set. Let B, denote
the completion of B, under P.

We shall write L*B,) for L¥Q, B,, P), the Hilbert space of B,-measurable,
real-valued functions square integrable with respect to P. We assume that L*(B,)
is separable. Let L,(X) denote the closed subspace of L*B,) spanned by all finite
linear combinations of the form Y7, ¢; X(s;, ®) where the c;’s are real constants,
and s, 8, - -+, 8, € [0, £].

We refer to Itd [4] for its definition and the various properties of the multiple
Wiener integral;

(2.2) LS 1) = §o- - §ofol80 805 - - -5 5,) dX(s)) dX(s;) - - - dX(s,)

for f, e LX[0, T]?), where L*[0, T]*) is the Hilbert space of Lebesgue square
integrable functions on [0, T']*. Denote I,(f,) = I(f,; T). The following results
are due to Itd [4]. Any Fe L*B,) can be expressed in the form:

(2.3) F=35.01(f,) = 2o L(f,)» furthermore if
(2’4) Zp—l p(fp) - F Zp—l p(gp) ’ then
fo=10,>

where f(s;, - - -, 5,) = 1/(p!) Do folSepp - 05 8:,) (7) = (7 - - -, 7,) running over
all permutation of (1, 2, -- ., p).
When a sequence of random variables Y, converges to a random variable Y

in probability, we shall write Plim, . Y, = Y.
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We quote the following definition and theorem from Isaacson [3]:
DEFINITION. A real-valued process ¢(s, w) is in M, (X) if:

(i) ¢(s, ) is adapted to {B,}

(ii) ¢(s, ) is measurable on ([0, T] X Q, ¢([0, T]) X &)

(iii) §¢ E[4(s, 0)]*ds < oo for all 1€ [0, T1].

THEOREM [3]. Let ¢(s, 0) be in M,(X) and Y(t, w) = \} ¢(s, 0) dX(s, w). Then
(2.5) Plim,, ,AY(t, w)/AX(t, ©) = ¢(t, ®) aa. tel0,T]
where

AY(t, w) = Y(t + At, 0) — Y(t, 0)
AX(t, w) = X(t + At, 0) — X(t, ©) for At>0.

3. A consistent estimator. We shall give a sequence of lemmas before stating
our theorem.

Lemma 1. Let0 < s <t < T. Then
(3.1 EL(fy 0] = E[L(f,; 0)|B.] = L(f, 9)
and

(3'2) E‘[Sé et Séfp(tp ) tp—q’ Sp—gt1s ** " Sp) dX(Sp—q+1) o dX(Sp)]
= Sg e ngp(tl’ Tt tp—q’ Sp—qt1> * 7 Sp) dX(Sp—qH) e dX(Sp)

foreach (t, ---,t, )0, TP~

Proor. If f, is a special elementary function (see [4]), this lemma is easily
verified by the definition of the multiple Wiener integral. In the general case we
can show it by approximating f, with a special elementary function and making
use of the properties of the multiple Wiener integral. This completes the proof.

For any F ¢ L*(B,), the projection of Finto L,(X) is denoted by P,, i.e., P,F =
Proj,, x, F. We consider P, as the projection operator from L*B,) to L,(X).

LEMMA 2. Let Fe LXB,) with F = } 5., I(f,; t). Then
(3.3) P, F=1I(f;1).

The lemma follows easily from the orthogonality of the multiple Wiener inte-
grals of different degrees and the fact that the linear space L,(X) is characterized
by the ordinary Wiener integrals, i.e., L(X) = {I,(f); f € L*([0, £])} (see [5]).

We remark that any Z in L,(X) can be expressed in terms of the complete

orthonormal system in L,(X).
From [4], we can express I (f,; t) as:

(3.4) I(f» t) = p §§ (s, @) dX(s,, ) ,

where

(3:5)  Psp ) = (p— DI+« [§802 fols0s - - 5 5,) dX(s5,)] - - -) dX(s,)
= sgl e Sglfp(sla Sps + v s Sp) dX(sz) v dX(sp) .
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Denote
(3.6) D,I(f,; t) = Plim,, ,AL(f,; t)/AX(t, ®)
where
AIp(fp; t) = Ip(fp; t+ At) - Ip(fp; t) .
LeEMMA 3.
(3.7) D I(fpt)=p i Sflt: 85 - -5 5,)dX(sy) - - - dX(s,)

for almost all t € [0, T], and
(3.8) DS -« - St -+ o5 bygs Spogias =+ 05 8,) AX(S,_g4) - - - dX(s,)}
=9 S(t) e S(t)fp(tl’ Tt tp—q’ L Sp—qt20 "% Sp) dX(s —q+2) e dX(Sp)
for almost all t € [0, T] and each (t,, - - -, t,_,) € [0, T]P~.
Proor. We first show (3.7), and (3.8) then follows similarly. We note that
#(s, ») given in (3.5) belong to M,(X), since

(i) (s, ) is adapted to {B} if f, is a special elementary function and in the
general case, approximating f, by special elementary functions, we can have that
é(s, w) is adapted to {B,}.

(ii) o([0, T]) X # -measurability of ¢(s, w) follows easily from Theorem 2.1
of Doob [2] page 430, and

(i) §5 E[p(s, )] ds = S{E[§5 - - 315 8 -+ 8,) dX(5y) -+ dX(s,)] ds <
(p— V)2 6. S't)fpz(sl’ Tt Sp) ds - - dSp < oo.

Now we obtain from Theorem [3] that

D,L(fy 1) = Ddp §6 6(s, @) dX(s, w)}
(3.9) = pp(t, »)
=p 5o ot s -0 8,) dX(sy) - - dX(s,)
for almost all ¢ € [0, T]. This completes the proof.
Since given F = Y] I(f,), it is only possible to estimate f, uniquely up to a
symmetric function according to (2.4), we assume that f, (p = 2,3, ..., n)isa

symmetric function, i.e., f, = f‘p in the following theorem.
The product of two operators is understood as successive operation and the

following notations are adopted:
G, F = D, Ex(I — P,)F
(3.10) = D, E4“F — D, E“P,F
G,, = D,,E'(I — P,,_)F for j=2,3,-.-,p,

where I stands for the identity operator,
(3.11) G{.F = D, E'iF for j=1,2,---,p.

THEOREM 1. Let Fe L*(B,) with E[F] =0and F = } 5_, I(f,). Then 1/(p!) X
Gy P, G, G, , - G,G, Fis a consistent estimator of f,(t,, - - -, t,), for almost
al (t, ---,t,)e[0, T forp=2,3, ---,n.
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ProOF. Let 0< £, <1, , < -+ <t <t =T, and F= 35 I(f) + F*

where F* = 37 .. L(f,)-
According to Clark [1] (Lemma 1, Theorem 2) and (3.4), we can write

Fx = 35 0 L(f) = §§ $u(s, @) dX(s, @),
where
Gu(s, @) = D pir g 85 -+ S5 Su(s) 800 -0 5,) dX(sy) - - - dX(s,) -

The above series converges in the sense of L*(B,) norm for a.a. s€ [0, T]. By
the dominated convergence theorem,

E[¢y(s, o) = Do-p119°(9 — IS IR VORI 1 5 (AR s,) ds, - - - ds,

= e (@) S5 [8%2 - - e [S8 1 (5 8s - o o5 ;) dsg] - -] s,
and

§5 E[$i(s, ®)] ds = X711 ¢! YRR T 4 PR 5,)dsy - - ds,
= [|Fllzempy < o0
We can obtain that ¢,(s, ) € M,(X) and ¢,(s, ®) € L(B,) fora.a. se [0, T]. Now
P,F=I(f) and (I— P,)F= 33,I(f,)+ F* (by Lemma 2),
En(I — P,)F = 32, I(f, 1) + E9F* (by Lemma 1) .

and
D, EN(I — P)F = G, F = £33 (¢ + DI(fyri 1) + GLF*
fora.a. t,e[0,T] (by Lemma 3).

By identifying G} F* = ¢,(t;, ), we get G, Fe L*B,) for a.a. t, € [0, T]. There-
fore,
P, G, F=2I(f;t),; and

I— Ptl)thF = nhz(g + DI(fo405 ) + G;‘(IF* .
Again using the results [1] and (3.4), we get
G F* = \p &y(s, ) dX(s, v) ,
where
Gols, @) = Dy Qg — 1) §5 - -+ $5Sfoltis 885 -+ s,) dX(s) - - - dX(s,) »
and ¢,(s, ®) are in M,(X) and L*(B, ) for a.a. (t, 5) € [0, TT*. Therefore,
GG, F = 51219 + 2)(q + DL*(forss ) + GLGLF

for almost all (¢, t,) € [0, T]?, where

L¥(frass ) = Si2 -+ $8 faratis s Sps -2 s 1+2) AX(s5) -+ - dX(S1) -

After repeating (p — 1) steps of the above operations, we obtain

G, G, _, - G,G F=p\ S fo(t, by - - o5 Ly s,) dX(s,) + G} _ --- GEF*,
where Gf,_, -+ G} F* is the sum of multiple Wiener integrals of degree greater
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than 1. Hence

P, G, -G F=pl§ifyty, -, s)dX(s,),

Etthp_thp_l - thF = p! §or folts s tyss 5,) dx(s,) ,

and
D, E+P, G, ---G F= P ot - esty)

for almost all (¢, - - -, t,) € [0, T]*. This completes the proof of the theorem.
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