A CONSISTENT ESTIMATION OF KERNEL FUNCTIONS IN THE MULTIPLE WIENER INTEGRALS

By Won Joon Park

Wright State University

- 1. Introduction. It is well known from the results of Itô [4] that any L^2 -functional F of Brownian motion with E[F] = 0 has an orthogonal representation, i.e., $F = \sum_{p=1}^{\infty} I_p(f_p)$ where $I_p(f_p)$ is the pth degree multiple Wiener integral. The estimation of the kernel function f_p $(p = 1, 2, \dots)$ is often required in solving various problems in nonlinear analysis and involves tremendous computations in the usual L^2 -norm approximation. As a direct application of a result of Isaccson [3], we give here a consistent estimator for the kernel function f_p of L^2 -functional of the form $F = \sum_{p=1}^{\infty} I_p(f_p)$.
- **2.** Notations and preliminaries. Let $\{X(t,\omega)\}_{t\in[0,T]}$ be standard Brownian motion defined on a probability space (Ω, \mathcal{F}, P) . Let B_t (for $t\in[0,T]$) denote the σ -field generated by sets of the form

$$(2.1) E = \{\omega; [X(s_1, \omega), \cdots, X(s_n, \omega)] \in B^n\}$$

where $s_1, s_2, \dots, s_n \in [0, t]$ and B^n is an *n*-dimensional Borel set. Let \mathbf{B}_t denote the completion of B_t under P.

We shall write $L^2(\mathbf{B}_t)$ for $L^2(\Omega, \mathbf{B}_t, P)$, the Hilbert space of \mathbf{B}_t -measurable, real-valued functions square integrable with respect to P. We assume that $L^2(B_T)$ is separable. Let $L_t(X)$ denote the closed subspace of $L^2(\mathbf{B}_t)$ spanned by all finite linear combinations of the form $\sum_{i=1}^n c_i X(s_i, \omega)$ where the c_i 's are real constants, and $s_1, s_2, \dots, s_n \in [0, t]$.

We refer to Itô [4] for its definition and the various properties of the multiple Wiener integral;

$$(2.2) I_p(f_p; t) = \int_0^t \cdots \int_0^t f_p(s_1, s_2, \cdots, s_p) dX(s_1) dX(s_2) \cdots dX(s_p)$$

for $f_p \in L^2([0, T]^p)$, where $L^2([0, T]^p)$ is the Hilbert space of Lebesgue square integrable functions on $[0, T]^p$. Denote $I_p(f_p) = I_p(f_p; T)$. The following results are due to Itô [4]. Any $F \in L^2(\mathbf{B}_T)$ can be expressed in the form:

(2.3)
$$F = \sum_{p=1}^{\infty} I_p(f_p) = \sum_{p=1}^{\infty} I_p(\tilde{f}_p), \quad \text{furthermore if}$$

(2.4)
$$\sum_{p=1}^{\infty}I_p(f_p)=F=\sum_{p=1}^{\infty}I_p(g_p)\;,$$
 then
$$\widetilde{f_p}=\widetilde{g}_p\;,$$

where $\tilde{f}_p(s_1, \dots, s_p) = 1/(p!) \sum_{(\pi)} f_p(s_{\pi_1}, \dots, s_{\pi_p}), (\pi) = (\pi_1, \dots, \pi_p)$ running over all permutation of $(1, 2, \dots, p)$.

When a sequence of random variables Y_n converges to a random variable Y in probability, we shall write $P \lim_{n\to\infty} Y_n = Y$.

Received May 7, 1970.

983

We quote the following definition and theorem from Isaacson [3]:

DEFINITION. A real-valued process $\phi(s, \omega)$ is in $M_1(X)$ if:

- (i) $\phi(s, \omega)$ is adapted to $\{B_s\}$
- (ii) $\phi(s, \omega)$ is measurable on ([0, T] $\times \Omega$, $\sigma([0, T]) \times \mathscr{F}$)
- (iii) $\int_0^t E[\phi(s,\omega)]^2 ds < \infty$ for all $t \in [0, T]$.

THEOREM [3]. Let $\phi(s, \omega)$ be in $M_1(X)$ and $Y(t, \omega) = \int_0^t \phi(s, \omega) dX(s, \omega)$. Then

(2.5)
$$P \lim_{\Delta t \to 0} \Delta Y(t, \omega) / \Delta X(t, \omega) = \phi(t, \omega) \qquad \text{a.a.} \quad t \in [0, T]$$

where

$$\Delta Y(t, \omega) = Y(t + \Delta t, \omega) - Y(t, \omega)$$

$$\Delta X(t, \omega) = X(t + \Delta t, \omega) - X(t, \omega) \qquad \text{for } \Delta t > 0.$$

3. A consistent estimator. We shall give a sequence of lemmas before stating our theorem.

LEMMA 1. Let $0 < s < t \le T$. Then

(3.1)
$$E^{s}[I_{n}(f_{n};t)] \equiv E[I_{n}(f_{n};t) | \mathbf{B}_{s}] = I_{n}(f_{n};s)$$

and

$$(3.2) E^{s}[\int_{0}^{t} \cdots \int_{0}^{t} f_{p}(t_{1}, \cdots, t_{p-q}, s_{p-q+1}, \cdots, s_{p}) dX(s_{p-q+1}) \cdots dX(s_{p})]$$

$$= \int_{0}^{s} \cdots \int_{0}^{s} f_{p}(t_{1}, \cdots, t_{p-q}, s_{p-q+1}, \cdots, s_{p}) dX(s_{p-q+1}) \cdots dX(s_{p})$$

for each $(t_1, \dots, t_{p-q}) \in [0, T]^{p-q}$.

PROOF. If f_p is a special elementary function (see [4]), this lemma is easily verified by the definition of the multiple Wiener integral. In the general case we can show it by approximating f_p with a special elementary function and making use of the properties of the multiple Wiener integral. This completes the proof.

For any $F \in L^2(\mathbf{B}_t)$, the projection of F into $L_t(X)$ is denoted by P_t , i.e., $P_t F = \operatorname{Proj}_{L_t(X)} F$. We consider P_t as the projection operator from $L^2(\mathbf{B}_t)$ to $L_t(X)$.

Lemma 2. Let
$$F \in L^2(\mathbf{B}_t)$$
 with $F = \sum_{p=1}^{\infty} I_p(f_p; t)$. Then

$$(3.3) P_t F = I_1(f_1; t).$$

The lemma follows easily from the orthogonality of the multiple Wiener integrals of different degrees and the fact that the linear space $L_t(X)$ is characterized by the ordinary Wiener integrals, i.e., $L_t(X) = \{I_1(f); f \in L^2([0, t])\}$ (see [5]).

We remark that any Z in $L_t(X)$ can be expressed in terms of the complete orthonormal system in $L_t(X)$.

From [4], we can express $I_n(f_n; t)$ as:

(3.4)
$$I_{n}(f_{n};t) = p \int_{0}^{t} \phi(s_{1}, \omega) dX(s_{1}, \omega),$$

where

(3.5)
$$\phi(s_1, \omega) = (p-1)! \int_0^{s_1} (\cdots [\int_0^{s_p-1} f_p(s_1, \cdots, s_p) dX(s_p)] \cdots) dX(s_2)$$
$$= \int_0^{s_1} \cdots \int_0^{s_1} f_p(s_1, s_2, \cdots, s_p) dX(s_2) \cdots dX(s_p).$$

Denote

$$(3.6) D_t I_n(f_n; t) = P \lim_{\Delta t \to 0} \Delta I_n(f_n; t) / \Delta X(t, \omega)$$

where

$$\Delta I_p(f_p; t) = I_p(f_p; t + \Delta t) - I_p(f_p; t).$$

LEMMA 3.

$$(3.7) D_t I_p(f_p; t) = p \int_0^t \cdots \int_0^t f(t, s_2, \cdots, s_p) dX(s_2) \cdots dX(s_p)$$

for almost all $t \in [0, T]$, and

$$(3.8) D_t\{\{s_0^t \cdots s_0^t f_p(t_1, \cdots, t_{p-q}, s_{p-q+1}, \cdots, s_p) dX(s_{p-q+1}) \cdots dX(s_p)\}$$

$$= q s_0^t \cdots s_0^t f_p(t_1, \cdots, t_{p-q}, t, s_{p-q+2}, \cdots, s_p) dX(s_{p-q+2}) \cdots dX(s_p)$$

for almost all $t \in [0, T]$ and each $(t_1, \dots, t_{p-q}) \in [0, T]^{p-q}$.

PROOF. We first show (3.7), and (3.8) then follows similarly. We note that $\phi(s, \omega)$ given in (3.5) belong to $M_1(X)$, since

- (i) $\phi(s, \omega)$ is adapted to $\{\mathbf{B}_s\}$ if f_p is a special elementary function and in the general case, approximating f_p by special elementary functions, we can have that $\phi(s, \omega)$ is adapted to $\{\mathbf{B}_s\}$.
- (ii) $\sigma([0, T]) \times \mathscr{F}$ -measurability of $\phi(s, \omega)$ follows easily from Theorem 2.1 of Doob [2] page 430, and

(iii)
$$\int_0^t E[\phi(s, \omega)]^2 ds = \int_0^t \{E[\int_0^s \cdots \int_0^s f_p(s, s_2, \cdots, s_p) \ dX(s_2) \cdots dX(s_p)]^2 \ ds \le (p-1)!/p \int_0^t \cdots \int_0^t \tilde{f}_p^2(s_1, \cdots, s_p) \ ds_1 \cdots ds_p < \infty.$$

Now we obtain from Theorem [3] that

(3.9)
$$D_t I_p(f_p; t) = D_t \{ p \setminus_0^t \phi(s, \omega) \, dX(s, \omega) \}$$

$$= p \phi(t, \omega)$$

$$= p \setminus_0^t \cdots \setminus_0^t f_p(t, s_2, \cdots, s_p) \, dX(s_2) \cdots dX(s_p)$$

for almost all $t \in [0, T]$. This completes the proof.

Since given $F = \sum I_p(f_p)$, it is only possible to estimate f_p uniquely up to a symmetric function according to (2.4), we assume that f_p $(p = 2, 3, \dots, n)$ is a symmetric function, i.e., $f_p = \tilde{f}_p$ in the following theorem.

The product of two operators is understood as successive operation and the following notations are adopted:

$$G_{t_1}F = D_{t_1}E^{t_1}(I - P_T)F$$

$$= D_{t_1}E^{t_1}F - D_{t_1}E^{t_1}P_TF$$

$$G_{t_j} = D_{t_j}E^{t_j}(I - P_{t_{j-1}})F \qquad \text{for} \quad j = 2, 3, \dots, p,$$

where I stands for the identity operator,

(3.11)
$$G_{i_j}^* F = D_{i_j} E^{i_j} F$$
 for $j = 1, 2, \dots, p$.

THEOREM 1. Let $F \in L^2(\mathbf{B}_T)$ with E[F] = 0 and $F = \sum_{p=1}^{\infty} I_p(f_p)$. Then $1/(p!) \times G_{t_p}^* P_{t_p} G_{t_{p-1}} G_{t_{p-2}} \cdots G_{t_2} G_{t_1} F$ is a consistent estimator of $f_p(t_1, \dots, t_p)$, for almost all $(t_1, \dots, t_p) \in [0, T]^p$ for $p = 2, 3, \dots, n$.

PROOF. Let $0 < t_p < t_{p-1} < \dots < t_2 < t_1 \le T$, and $F = \sum_{q=p+1}^p I_q(f_q) + F^*$, where $F^* = \sum_{q=p+1}^\infty I_q(f_q)$.

According to Clark [1] (Lemma 1, Theorem 2) and (3.4), we can write

$$F^* = \sum_{q=n+1}^{\infty} I_q(f_q) = \int_0^T \phi_1(s, \omega) dX(s, \omega)$$

where

$$\phi_1(s, \omega) = \sum_{q=p+1}^{\infty} q \int_0^s \cdots \int_0^s f_q(s, s_2, \cdots, s_q) dX(s_2) \cdots dX(s_q).$$

The above series converges in the sense of $L^2(\mathbf{B}_T)$ norm for a.a. $s \in [0, T]$. By the dominated convergence theorem,

$$E[\phi_1(s,\omega)]^2 = \sum_{q=p+1}^{\infty} q^2(q-1)! \int_0^s \cdots \int_0^s f_q^2(s,s_2,\cdots,s_q) ds_2 \cdots ds_q$$

= $\sum_{q=p+1}^{\infty} (q!)^2 \int_0^s \left[\int_0^{s_2} \cdots \left[\int_0^{s_q-1} f_q^2(s,s_2,\cdots,s_q) ds_q \right] \cdots \right] ds_2$

and

$$\int_0^T E[\phi_1(s, \omega)]^2 ds = \sum_{q=p+1}^\infty q! \int_0^T \cdots \int_0^T f_q^2(s_1, \dots, s_q) ds_1 \cdots ds_q
\leq ||F||_{L^2(\mathbf{B}_T)}^2 < \infty.$$

We can obtain that $\phi_1(s, \omega) \in M_1(X)$ and $\phi_1(s, \omega) \in L^2(\mathbf{B}_T)$ for a.a. $s \in [0, T]$. Now

$$P_T F = I_1(f_1)$$
 and $(I - P_T) F = \sum_{q=2}^{p} I_q(f_q) + F^*$ (by Lemma 2),

$$E^{t_1}(I - P_T)F = \sum_{q=2}^{p} I_q(f_q; t_1) + E^{t_1}F^*$$
 (by Lemma 1).

and

$$D_{t_1}E^{t_1}(I-P_T)F\equiv G_{t_1}F=\sum_{q=1}^{p-1}(q+1)I_q(f_{q+1};t_1)+G_{t_1}^*F^*$$
 for a.a. $t_1\in[0,T]$ (by Lemma 3).

By identifying $G_{t_1}^*F^*=\phi_1(t_1,\omega)$, we get $G_{t_1}F\in L^2(\mathbf{B}_T)$ for a.a. $t_1\in[0,T]$. Therefore,

$$P_{t_1}G_{t_1}F=2I_1(f_2;t_1)\;,$$
 and
$$(I-P_{t_1})G_{t_1}F=\sum_{\substack{q=2\\q=2}}^{q=1}(q+1)I_q(f_{q+1};t_1)+G_{t_1}^*F^*\;.$$

Again using the results [1] and (3.4), we get

$$G_{t_1}^*F^* = \int_0^{t_1} \phi_2(s, \omega) dX(s, \omega),$$

where

$$\phi_2(s,\omega) = \sum_{q=p+1}^{\infty} q(q-1) \, \int_0^s \cdots \, \int_0^s f_q(t_1, s, s_3, \cdots, s_q) \, dX(s_3) \cdots \, dX(s_q) \, ,$$

and $\phi_2(s, \omega)$ are in $M_1(X)$ and $L^2(\mathbf{B}_{t_1})$ for a.a. $(t_1, s) \in [0, T]^2$. Therefore,

$$G_{t_2}G_{t_1}F = \sum_{q=1}^{p-2} (q+2)(q+1)I_q^*(f_{q+2};t_2) + G_{t_2}^*G_{t_1}^*F^*$$

for almost all $(t_1, t_2) \in [0, T]^2$, where

$$I_q^*(f_{q+2};t_2) = \int_0^{t_2} \cdots \int_0^{t_2} f_{q+2}(t_1,t_2,s_3,\cdots,s_{q+2}) dX(s_3) \cdots dX(s_{q+2})$$
.

After repeating (p-1) steps of the above operations, we obtain

$$G_{t_{p-1}}G_{t_{p-2}}\cdots G_{t_2}G_{t_1}F=p!\; \int_0^{t_{p-1}}f_p(t_1,\,t_2,\,\cdots,\,t_{p-1},\,s_p)\,dX(s_p)\,+\,G_{t_{p-1}}^*\cdots G_{t_1}^*F^*\;,$$

where $G_{t_{p-1}}^* \cdots G_{t_1}^* F^*$ is the sum of multiple Wiener integrals of degree greater

than 1. Hence

$$P_{t_{p-1}}G_{t_{p-1}}\cdots G_{t_1}F=p! \int_0^{t_p-1} f_p(t_1, \dots, s_p) dX(s_p),$$

$$E^{t_p}P_{t_{p-1}}G_{t_{p-1}}\cdots G_{t_1}F=p! \int_0^{t_p} f_p(t_1, \dots, t_{p-1}, s_p) dX(s_p),$$

and

$$D_{t_n}E^{t_n}P_{t_{n-1}}G_{t_{n-1}}\cdots G_{t_1}F=p! f_p(t_1, \cdots, t_p)$$

for almost all $(t_1, \dots, t_n) \in [0, T]^p$. This completes the proof of the theorem.

Acknowledgment. I would like to thank Professor G. Kallianpur for helpful discussions, which led me to solve this problem, and to the referee and associate editor for their critical comments.

REFERENCES

- [1] CLARK, J. M. C. (1970). The representation of functionals of Brownian motion by stochastic integrals. *Ann. Math. Statist.* 41 1282-1295.
- [2] DOOB, J. L. (1953). Stochastic Processes. Wiley, New York.
- [3] ISAACSON, D. (1969). Stochastic integrals and derivatives. Ann. Math. Statist. 40 1610-1616.
- [4] Itô, K. (1951). Multiple Wiener integral. J. Math. Soc. Japan 3 157-169.
- [5] PARZEN, E. (1961). An approach to time series analysis. Ann. Math. Statist. 32 951-989.