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OPTIMAL STOPPING FOR PARTIAL SUMS

By D. A. DARLING,! T. LIGGETT?
AND H. M. TAYLOR®
University of California, Irvine
University of California, Los Angeles
and Cornell University

We determine sup E[r(ST)], where S, is a sequence of partial sums of
independent identically distributed random variables, for two reward func-
tions: r(x) = x* and r(x) = (e* — 1)*. The supremum is taken over all stop
rules 7. We give conditions under which the optimal expected return is
finite. Under these conditions, optimal stopping times exist, and we deter-
mine them. ’

The problem has an interpretation in an action timing problem in
finance.

1. Introduction and summary. Let X, X, X,,- - . be independent and identically
distributed random variables having partial sums S, = X, + --- + X, where
S, = 0. Let T be a stopping time relative to (S,), let 8 be a “discount factor”
satisfying 0 < 8 < 1, and let r be a nonnegative reward function. For two
reward functions, we solve the problem of finding a stopping time T* that
maximizes the expected discounted reward

(1.1) E[B"r(x + S1)] -

Dubins and Teicher [5] considered this problem with r(z) = z, assuming
B < 1. Here we solve this problem for two other cases, using an entirely dif-
ferent approach. Our first case is #(z) = z*, and 8 = 1 under the moment con-
ditions E[X] = —p < 0 and E[X?] = ¢ + p* < co. We show the optimal rule
is to stop at the first n, if any, for which x + S, > E[M] where M = max {S,,
S,, - --}. Under this optimal stopping time 7*, the optimal expected reward is

(1.2) E[(x + Sp)*] = E[(¥ + M — E[M])*] .
Our second case has r(z) = (e* — 1)* under the assumption SE[e*] < 1. Here
it is optimal to stop at the first n, if any, for which x 4+ §, = In E[e"] and
M = max{S;: 0 < j < t}, r being independent of {X;} and having the geometric
distribution P[r > k] = B*, k = 0.
The optimal expected discounted return is

E[pT(exp{x + Sp.} — 1)*] = E[(e*" — E[e"])"]/E[e"] .

We allow the possibility of never stopping and when this occurs, no reward
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is received. Thus we interpret E[r(x + S,)] as §,... "(x + S;) dP, where P is
the basic underlying probability measure. This convention was introduced by
Dynkin [6].

Since one would not wish to stop at a position having a cost, under the con-
vention, the same stopping problem results if a possibly negative r is replaced by
its positive part. Thus, it is no loss in generality to assume r nonnegative, which
we have done to ensure the existence of the expectation in (1.1). (The alter-
native is to restrict attention to stopping times for which (1.1) is defined.)

A model in mathematical economics formulated by Samuelson [10] motivated
one of us (Taylor) to study these optimal stopping problems. In these models,
x 4 S, (respectively, exp{x + S,} in our second case) represents the market
price of an asset on day n. Consider an option whose owner has the privilege
of purchasing this asset at a normalized price of zero (respectively, one) and
then reselling at the market price. Our stopping problem corresponds to the
owner’s problem of choosing the optimal time to exercise his option. Note that
in this context, never stopping has the natural interpretation of never exercising
the option. To say that the daily price changes X;, X,, - - - are independent and
identically distributed corresponds to the classical random walk model for
market prices that was first suggested by Bachelier [1]. A collection of more
recent studies on the random walk hypothesis is contained in Cootner [3].

2. Proof of optimality. The proofs in both cases result from the following
lemma. A quite general lemma with a similar content appears in Dubins and
Savage [4]. See Blackwell [2] for an early version.

LEMMA. Let X, X,, X,, - - - be independent and identically distributed random vari-
ables, let Sy =0and S, =X, + --- + X, forn = 1. Let r and f be nonnegative
functions and 8 a constant satisfying 0 < g < 1. If for all x,

(2.1) f(x) = r(x)

and

(2.2) f(x) = E[Bf(x + X)],
then

(2.3) f(%) = E[pr(x + S;)]

for all x and stopping times T.

Proor. Write T(n) = min {7, n}, where T is an arbitrary stopping time. In-
equality (2.2) implies that (8"f(x + S,); n = 0) is a supermartingale which leads to
J(x) = E[F"™f(x + Srw)]
= E[B"™H(x + Spm)]
= E[p"r(x + Sp); T < n],

where for any event 4, E[+; A] = {, - dP. The last two inequalities result from
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(2.1)and the nonnegativity of r, respectively. Finally by monotone convergence,
the last expectation increases to E[7r(x + S;)] as n increases indefinitely, which
concludes the proof. []

We apply this to the arithmetic problem, using for f the function

Jx) = E[(x + M — E[M])"] .
Kiefer and Wolfowitz [8] have shown that E[M] < co whenever E[X?] < co so
that f is well defined. Use Jensen’s inequality to see that

f¥) = E[(x + M — E[M])*] 2 x* = r(x).
Since M has the same distribution as (X 4+ M)* we have
Jx) = E[(x + M — E[M])"]

= E[(x + (X + M)* — E[M])"]

> E[(x + X + M — E[M])*]

= E{E[(x + X + M — E[M])*| X]}

It now follows from our lemma that
(2.4) J(x) = E[(x + S;)*]

for all stopping times 7. To complete the proof, we need only show that
T* =min{n = 0: x+ S, = E[M]}
achieves equality in (2.4). But
E[x+ M; T* < o] = E[M — Sy + x 4+ Sp; T* < 0]
= E[M — S,.; T* < 0] 4+ E[x + S;; T* < o] .
Since the process is spatially homogeneous and strong Markov,
E[M — 8,.; T* < oo] = E[M]P[T* < o] .
Thus
E[x 4+ S;; T* < 0] = E[x + M; T* < o] — E[M]P[T* < o]
— E[(x + M — E[M])*].
Since T* achieves an upper bound on expected rewards, T* is optimal.

It is of interest to compare the optimal expected reward in this case with the
best one could do if one could “look into the future” and observe the whole
sequence (S,) before deciding when to stop. With perfect information about the
future, one would of course choose to stop at that point at which the maximum
M is attained. So, for example, if x = 0 the optimal expected return would be
E[M]. The somewhat surprising result is that
E[(M — E[M])*] _,

(2.5) e < Ei] <
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where the bounds are independent of the distribution of X. (We exclude the
case M = 0, which is of no interest in this context.) Furthermore, both bounds

are best possible.
Since M = 0, the upper bound is clear. To obtain the more interesting lower

bound, we introduce the variables 7, = 0 and
Typy =min{n > T,: S, > S;,}
where the minimum of an empty set is taken to be infinity. Let
N =max{k: T, < oo}.
Then N has a geometric distribution with parameter
a = P[N = 0] = P[T, = oo].

Note that a > 0 since S, — — oo and that @ < 1 since M = 0. M can then be

written in the form
M=V, (STk — STk_l).

Using the strong Markov property of the process (S,), we conclude that
E[M|N] = CN
for some constant C. Taking the expected value of both sides of this relation

yields
C = E[M]/E[N].

Now we use Jensen’s inequality for conditional expectations to obtain
E[(M — E[M])*] = E[E{(M — E[M])*|N}]
= E[E[M — E[M]|N]]*
_ E[NM _ E[M]:I+ .
E[N]
So,

E[(M — E[M)*] - E[(N— E[N)"]
E[M] - E[N]
It is interesting to note that N = M if X takes on only the values +1 and —1,
and in this case, « = 1 — P[X = 1]/P[X = —1]. Thus we have reduced the
proof of the lower bound in (2.5) to this particularly simple case, where explicit

computations are possible.
Carrying out these computations, we see that since N is geometrically distrib-

uted with parameter a,
R(x) = E[(N — x)*]/E[N]
is obtained for x > 0 by linearly interpolating the values
Rn)y=(1 — a)

for nonnegative integers n. Since E[N] = (1 — a)/a, E[(N — E[N])*]/E[N] is
a monotone increasing function of a which approaches 1 as @ 11 and e™* as
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a | 0. This establishes the lower bound in (2.5) and shows that both bounds
are tight.
For the geometric stock option problem we use for f the function

J(x) = E[(e™™ — E[e"])"]/E[e"]
where now M = max{S,; 0 < j < r} and 7, independent of {X;}, has the geo-
metric distribution P[r > k] = g%, for k =0, 1,. ... (Note that this is consistent
with our previous definition for M, provided we interpret 8 = 1 as meaning

t = oco0.) To show that f'is well defined we need to show that E[e”] < oo, which
the following theorem, of independent interest, does.

THEOREM. Let T = min{n: S, > 0}. The following are equivalent:

(a) BE[]< 1,

(b) E[f"exp({S;}]1< 1,

(c) E[e"] < oo.

ProOF. (b) = (c): E[e"] = Yo ,a(l — a){E[exp{S,}|T < r]}* where a =
P[T = t]. So E[e"] < oo if and only if (1 — a@)E[exp{S,}|T < 7] < 1. But
(I — @)E[exp{S,}| T < 7] = E[" exp{S,}].

(€)= (a): {BE[e*]}" = E[exp{S,}; = > n] < E[e”] < co for all n. Hence
BE[e*] < 1. Suppose BE[e*] = 1. Then p~exp{S,} forms a uniformly inte-
grable martingale which converges to zero on the event {7 = co}. Hence
E[pT exp{S;}] = 1. Since (b) is equivalent to (c) this implies E[e"] = oo, a
contradiction. Hence BE[e*] < 1.

(a) = (b): {E[e*]} " exp{S,} is a nonnegative martingale. By Fatou’s Lemma

E[{E[e*]} " exp{Sp}] = 1.
Since T = 1, from (a) B7E[e*]” < BE[e*] and
{BE[e"]}E[B" exp{S,}] < E[{BE[e*]}7"B" exp{S,}] = 1
E[p" exp{S,}] = BE[e"] < 1

which concludes the proof. [J

or

Again, using Jensen’s inequality, it is easily seen that f(x) = r(x) = (¢* — 1)*
for all x. Also M has the same distribution as (X + IM)* where / = 0 with
probability 8 and 7 = 1 with probability 1 — 8, and is independent of X, X,
X,, - --. Hence, ‘

f(x) = E[(exp(x + X + IM)* — E[e"])*]/E[e"]
> E(E[exp(x + X + IM) — E["]]*| X}/E[¢"]
= BE[f(x + X)] .
We conclude
f(x) = E[B7(exp{x + Sr} — 1)7]

for all stopping times, T.



1368 D. A. DARLING, T. LIGGETT AND H. M. TAYLOR

To complete our argument we will show

for

J(x) = E[p"(exp{x + Sp.} — 1)7]
T* =min{n = 0: x 4+ S, = A} where 4 = In E[e¥]. Again
Elest"; x + M = A] = E[exp{M — Sp.}exp{x + Sp}; x + M = 4]
= E[e"] X E[exp{x + Sp.}ix + M = 4].

Hence

and

E[(es™™ — E[e"]); x + M = A]
= E[e"] X E[(exp{x + Sp.} — 1); x4+ M = A],

E[(exp{x + Sp} — 1) ¥ + M = A] = E[(e"** — E[e"])*]/E[e"].

To complete the proof note

E[(exp{x + Sy} — 1); x + M = A] = E[(exp{x + S} — 1); T* > 7]
= E[™(exp{x + S5} — 1)].

Using the theorem on page 573 of Feller [7] it is easy to see

[1

—

(2]
(3]
(4]
(]
[6]
(7
[8]
(9]

[10]

A=InE[e"] =In(l — B) 37 p*E[exp{M,}]
= Z;"%E[exp{Sf} —1].
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