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SAMPLING DISTINGUISHABLE ELEMENTS WITH REPLACEMENT

By JAN LANKE
University of Lund

In sampling with replacement from a finite population, the sample
mean is known to get a smaller variance if repetitions are deleted before
forming the mean. The asymptotic behavior of the variance just men-
tioned is studied.

0. Introduction and summary. When estimating a population mean using
simple random sampling with replacement, one had better average over the
distinct units in the sample if this is possible, i. e. if the elements are distin-
guishable. This fact was noted by Basu (1958) and Raj and Khamis (1958). A
simple expression for the variance of the estimator thus obtained was given by
Pathak (1961), independently by Thionet (1967) and, still independently, by
Korwar and Serfling (1970). Inequalities for the variance were given by
Korwar and Serfling (1970) and, independently, by Valembois (1971). In this
note we give inequalities from above and from below which for sufficiently
large population sizes are better than the previcus ones; in particular our
inequalities are “asymptotically correct.”

1. Results. Let u denote the number of different elements obtained when
performing simple random sampling of size n with replacement from a popula-
tion of size N and let Z denote the arithmetic mean of the values of the u
different elements. Then (see [3], [5] or [2])
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where S* is the population variance (defined with the factor N — 1 in the
denominator). The inequalities in [2] may be written
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where f = n/N. If n — 0o, N — oo, n/N — f, they obviously give
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In this note we will show that
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and furthermore that for finite » and N with 3 < n < N we have
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where f = n/N.
2. Proofs. Using the notation
g,(n, N) = (max (0, 1 — k/N))**
(1) can be written
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If n — o0, N — oo, n/N — f, we shall eventually have (n — 1)/N > f,/2 whence

0 < gy(n, N) < e~=DHN < Cekhl2

Since
gu(n, N) — e o

dominated convergence shows that provided f, > 0 we have
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and (3) is proved for f, > 0. If f, = 0, (3) follows from (2).

To prove (4), let B,(+) denote the Bernoulli polynomial of order z.

have
LI e = L (B,M) - B)
n

where B, = B,(0) is a Bernoulli number. Thus (1) gives
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and by the expansion
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we get
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. The desired inequality (4) can be written
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Then we
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Now the expansion
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is valid (since 0 < f < 1 whence in particular |f| < 2z) and thus (5) and (7)
give
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Since
fork=0,1: n® = nk
fork =2: n® —npt = —p and B, =1}
for k = 3: B, =0
for4a <k <n: 0<n* —n® < (¥)n*~* (induction on k)
fork = n: nt < nt if n=3
(8) gives
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Now it is easily seen that the last sum is approximately 0.0089, either by
numerical summation or by the fact that |B,| = i*~*B, for k = 2 whence the
sum equals g"/({)/2 — 1/12 where g(z) = z/(e* — 1) and thus

g"() = §sin?} — lcosisin=*l ~ 0.1844 .

But from
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(6) follows.
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