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REGRESSION OPTIMALITY OF PRINCIPAL COMPONENTS

By R. L. OBENCHAIN
Bell Telephone Laboratories

Consider p = 2 random variables, and let 4, - -+, 4, denote the hyper-
planes corresponding to the linear regression of each variable onto the other
(p — 1) variables. Let 4o denote the hyperplane which passes through the
centroid of the distribution and is spanned by the direction vectors defining
the first (p — 1) principal components. A new optimality property of A4, is
established; A, is the best single approximation to Ay, -+, 4, when each
regression hyperplane is given a certain weighting inversely proportional
to the variability associated with its orientation and its prediction rescaling.
When p >2and k=1, ..., p — 2, certain k-dimensional linear subspaces
of A, are also shown to have regression optimality propertles

1. Introduction. We adopt the notation of Okamoto (1969). Thus we let x
be a random p X 1 vector with mean g = E(x) and covariance X = V(x) =
Ex — p)(x — p)). Let 2, > 4, > ... = 4, be the eigenvalues of X, and let
7w -+ > 7, be a corresponding set of orthonormal eigenvectors of . Then, for
i=1, ..., p, the random variable &, = r;’(x — p) will be called the ith principal
component of x. Only the case ¥(§,) = 4, > 0 will be considered in this paper.
The principal components of a set of points are also defined as in Okamoto
(1969), so the details of this special case of the above formulation will not be
repeated here.

Let A4, be the hyperplane passing through g and spanned by the first (p — 1)
principal component directions, 74, - - -, 7,_,. Itfollowsthat 4,={y|7,/(y — &)=
0}, and 4, is uniquely determined if and only if 2, , > 2,.

Let @ be a non-null p X 1 vector, and let a* = a/(a’a)? denote the unit vector
in the (positive) direction of @. Consider the linear combination of random
variables, a’x = (&’a)}(a*'x), and note that V(a'x) = (a*’Za*)(a’a). Thus the
variance of @’x is the product of two factors: (a*'Za*) is the variance associated
with the direction of @ (orientation factor), and (&’e) is the effect of the scale
chosen along the direction of @ (rescaling factor).

2. The linear regression hyperplanes. The linear regression of x; onto x_; =
(%5 +++5 Xi_15 Xi4q5 + - -5 X,)" is expressed by the equation

(2.1) R = BI(X ) — s

where B, isa (p — 1) x 1 vector of regression coefficients. Whatever the dis-
tribution of x, B; is defined as if the joint distribution of x were multivariate
normal with moments g and Z. In this case, X; of (2.1) is the conditional ex-

Received September 20, 1971; revised November 24, 1971.
AMS 1970 subject classifications. Primary 62H25; Secondary 62J0S.
Key words and phrases. Principal components, linear regression, hyperplane.

1317

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[& )2
The Annals of Mathematical Statistics. IMNOIS

d ®
www.jstor.org



1318 R. L. OBENCHAIN

pected value of x; given x_;), and the corresponding conditional variance will
be denoted by .

Now (2.1) is rewritten by noting that, given x _;,, £, is the value of x; such
that

(2.2) Ci(x — o) = (% — ) — B/ (X_oy — p=y)) = 0,
where {;; = + 1. The hyperplane, 4;, corresponding to (2.1) and (2.2) is
(2.3) A, ={y|&*(y — p) = 0},

where §;* = §;/(€,/€;)!. Note that the prediction equation, (2.1) or (2.2), requires
a specific scaling along the direction 4-{,;* which defines 4,.

We now state a point which will be known to some readers: the elements of
¢; are simply related to those of the ith column (or row) of Z-*. The conditional
variance, ¢, of x; given x _;, is the reciprocal of the (i, f/)th element of £-*, and
the ith column of Z-'is §;/o%. Finally, note that ¢} = {,/Z,.

3. The relationship between 4, and 4,, - - -, 4,. Consider a direction a*, where
a*'a* = 1, and note that the ith element of Z-'a* is {,/a*/({,/Z{;), which is
proportional to cosine of the angle, 6,, between a* and {;. Now, if the hyper-
plane passing through g and orthogonal to a* is to approximate all p regression
hyperplanes, 4,, ..., 4,, all of the angles, 6,, - - -, ¢, should be made as close
as possible to zero or +=x. Specifically, it is reasonable to maximize, by choice
of a*, a weighted sum of the absolute values or squares of the cosines. The ith
term in the summation could be weighted in inverse proportion to the variability
associated with the regression of x; on x_;,.

In accordance with the above considerations, we note that

(3.1) avZar = yp, 080

(CEEHHEE)
is a reasonable criterion to be maximized. Note, in particular, that the weight
given to the ith term of the summation is more sensitive to the orientation
variance factor, ;*'Z§,*, associated with 4, than to the rescaling variance factor,
€€, associated with the ith prediction equation, (2.1) or (2.2).

THEOREM. (Regression Optimality of Principal Components.) A, is the optimal

approximation to A,, ---, A, in the sense that this choice maximizes (3.1). In
particular,
(3.2) a¥ i ta* < 2,77,

and the maximum is achieved if and only if a* = y,. The solution is not unique
when 2, , = 4,.

Proor. X =TATI’, whereT = (7,, - - -, 7,), implies that - = TA-"T". Thus
the eigenvector, 7,, corresponding to the smallest eigenvalue, 4,, of Z also cor-
responds to the largest eigenvalue of Z-2. The theorem thus follows from a
well-known lemma, cf. Okamoto (1969), Lemma 2.2.
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ComMENT. It should be clear that the choice a* = y, maximizes a*' X *a*
for any positive integer k. However, only when k = 2 does this criterion appear
to have a simple geometric interpretation, that of (3.1).

4. Concluding remark. In analogy with the three types of optimality properties
of principal components given by Okamoto (1969), it would be interesting to

display, for k =1, - - -, p, a regression optimality property of the k-dimensional
linear subspace passing through g and spanned by the first k principal component
directions, 7,, - - -, 7,. Rather than introduce the notation needed to formally

present such a characterization, the following argument shows that such an
extension is straightforward. A k-dimensional linear subspace passing through
p is orthogonal to (p — k) mutually orthogonal directions. To maximize its
fit to 4,, ---, 4,, each of the orthogonal directions should be taken to be, as
close as is possible, parallel to +§,*, - -+, =§,*. The goodness-of-fit criterion
would be the sum of (p — k) terms like (3.1), and the optimal orthogonal direc-
tions could be chosen to be 7., - -+, 7,
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