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This is a selective review on robust statistics, centering on estimates of
location, but extending into other estimation and testing problems. After
some historical remarks, several possible concepts of robustness are criti-
cally reviewed. Three important classes of estimates are singled out and
some basic heuristic tools for assessing properties of robust estimates (or
test statistics) are discussed: influence curve, jackknifing. Then we give
some asymptotic and finite sample minimax results for estimation and
testing. The material is complemented by miscellanous remarks on: com-
putational aspects; other estimates; scale, regression, time series and other
estimation problems; some tentative practical recommendations.
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1. Introduction. This review neither claims to be exhaustive nor attempts to
be impartial. I have tried to give a reasonably coherent, but not too technical
account of one line of development—the one to which I have contributed myself.
The presentation centers around the simplest, best known and most important
special case: that of estimating one single location parameter. We have now
attained a sufficiently strong foothold there, both with regard to rigorous theory
and to intuitive insight, that we may confidently transfer ideas and methods to
other, more complicated situations, both in estimation and testing. This pre-
sent review considerably revises and updates an earlier survey (Huber (1968b)).
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2. Historical remarks, or: the dogma of normality. The dogma that measure-
ment errors should be distributed according to the normal law is still widespread
among users of the method of least squares; I hope that the following historical
remarks will help to clarify some of the issues. I am indebted to Churchill
Eisenhart for drawing my attention to two crucial nineteenth century references.

The theory of estimation originated with problems where almost all of the
statistical variability is due to measurement errors. This situation should be
clearly distinguished from the opposite case where the data shows a large in-
ternal variability and where good reasons can be advanced for the use of the
sample mean, or of the sample median, as estimates of the corresponding popu-
lation parameters. But in the first case, statistical variability is just a nuisance
to get rid of, and one is mainly interested in finding that combination of the
observations which lies on the average nearest to the frue value.

It is illuminating to witness how the normal, or Gaussian, distribution was
introduced by Gauss himself. I quote Gauss (1821):

The author of the present treatise, who in the year
1797 first investigated this problem according to the prin-
ciples of the theory of probability, soon realized that it
was impossible to determine the most probable value of
the unknown quantity, unless the function representing
the probability of the errors is known. But since it is
not, there is no other recourse than to assume such a
function in a hypothetical fashion. It seemed most natu-
ral to him to take the opposite approach and to look for
that function which must be taken as a base in order
that for the simplest of all cases a rule is obtained which
is generally accepted as a good one, namely that the
arithmetic mean of several observations of equal accuracy
for one and the same quantity should be considered the
most accurate value. This implied that the probability
of an error x must be assumed proportional to an expo-
nential expression of the form e~*#**, and that then just
the same method which he had found by other consider-
ations already a few years earlier, would become neces-
sary in general. This method, which afterwards, in
particular since 1801, he had almost daily opportunity
to use in diverse astronomical computations, and which
in the meantime also Legendre had happened upon, now
is in general use under the name method of least squares.

Note that Gauss here introduces the normal distribution to suit the sample
mean. It is amusing to observe how the use of the arithmetic mean became
almost sacred over the years—I believe mostly because one misunderstood the
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Gauss-Markov theorem (‘“‘the best linear unbiased estimate of the expected value
is the sample mean”) and the Central Limit theorem (“the sum of many small
independent elementary errors is approximately normal”), in conjunction with
the theorem that for independent identically distributed normal observations
the sample mean is indeed best in almost every conceivable sense. I have itali-
cized the crucial words in the above paraphrases of the theorems; for instance,
there is no reason, except mathematical convenience, to impose linearity or
unbiasedness, and one might argue from sad experience that the model should
also allow for a few gross elementary errors occurring with low probability.

Moreover, one can hardly claim that the sample mean was universally ac-
cepted, as Gauss did. There is a charming contemporary paper (Anonymous®
1821), which first states that good reasons can be advanced for the use of the
sample mean in the case of inherent statistical variability of the data, as opposed
to mere measurement errors, but which then continues (page 189):

Though, even in this case [the case of inherent statis-
tical variability], the popular method [the sample mean],
has neither generally been followed nor has it been used
without some restrictions. For example, there are certain
provinces of France where, to determine the mean yield
of a property of land, there is a custom to observe this
yield during twenty consecutive years, to remove the
strongest and the weakest yield and then to take one
eighteenth of the sum of the others.

The author then continues to remark that a considerable arbitrariness is in-
volved here: why should not one exclude the two greatest and the two smallest
observations? But nevertheless he does not believe that all observations should
enter with the same weight into the determination of the mean.

Bessel (Bessel and Baeyer (1838) page 67) states that he never rejected an ob-
servation for internal reasons, i.e., because it deviated too much from the
majority of the observations, and that he gave them all the same weight. He
states: “We believe that only through a firm adherence to this rule we have
been able to remove arbitrariness from our results.”

It seems to me that this kind of discussion borders on dogmatism; a more
rational action would have been to look at actual error distributions in large
samples, to check whether they were compatible with a normal distribution
and, if not, to develop a different theory of estimation.

Actually, Bessel himself ((1818) page 19 ff.) had made such a comparison.
He notes that all three of his test samples show a slightly higher frequency of
large errors than the normal distribution would predict, but he discards this
discrepancy as very small and fails to recognize its potential significance (the

3 According to Czuber (1891), page 227, the author is Svanberg.
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sample mean is a poor estimate of location for longer-tailed distributions).
Compare also Bessel (1838). ' '

Around the middle of the century, Peirce (1852) and Chauvenet (1863) de-
veloped procedures for detecting and rejecting grossly erroneous observations
or “outliers”; incidentally, these procedures seem to be among the earliest ex-
amples of nontrivial statistical tests. For a recent survey of rejection procedures,
see Grubbs (1969). The statistics of choice for detecting and identifying out-
liers are the sample skewness and kurtosis (Ferguson (1961)). However, the
traditional philosophy behind rejection procedures is highly objectionable (cf.
Anscombe (1960)). First, the separation of the observations into normal and
grossly erroneous ones is artificial and does not make sense for distributions
which just carry somewhat more mass in the flanks. Second, there will be
statistical errors of both kinds (false rejections and false retentions), therefore
the retained observations do not form a sample from a normal population.
This has the unfortunate consequence that the performance of a composite
procedure (rejection plus estimation based on the retained observations) cannot
be deduced in a simple way from the performance of the two parts.

The first serious attempt to deal directly with somewhat longer-tailed distri-
butions seems to be due to Newcomb (1886). He states flatly: “In practice,
large errors are more frequent than this equation [the normal law] would indi-
cate them to be.” He suggests that the square exponent of the normal density
should be replaced by a less rapidly increasing function. “The management of
such an exponent might, however, prove inconvenient, and I shall adopt a law
of error founded on the very probable hypothesis that we are dealing with a
mixture of observations having various measures of precision.” Thus, he adopts
an error distribution with density

1 P1 p—a220p2) e L Pn -(ﬂ/zqm%}
(2.1) (Zn)‘%{al e S + o e
and proposes to use the Bayes estimate for a uniform prior distribution (i.e.,
what is now called the Pitman estimate). Roughly, this amounts to giving lesser
weights to more extreme observations.

There was little, if any, progress beyond Newcomb in the following sixty
years, even though the situation had been quite clearly recognized by eminent
statisticians like Student (1927) and Jeffreys (1932).

The estimates proposed by Newcomb and Jeffreys were excessively laborious;
according to the latter “each approximation took about 6 hours’ work, using a
Marchant calculating machine and the tables of Milne-Thomson and Comrie”
((1932) page 85).

Moreover, hardly anybody realized how bad the classical estimates could be
in slightly nonnormal situations. E. S. Pearson (1931) may have been the first
to note the high sensitivity to deviations from normality of some standard pro-
cedures (tests for equality of variances); incidentally, in connection with the
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same test problems, G.E.P. Box later coined the term “robustness” (Box (1953)).

In the late forties, the emergence of distribution free procedures brought
some relief for testing problems. The turning point for estimation came at the
same time, when Tukey and the Statistical Research Group at Princeton began
to propagandize the problem, to emphasize the shortcomings of the classical
estimates and—most important of all—to establish properties of several really
practicable alternatives to them. In particular, the a-trimmed mean was redis-
covered and investigated—the old French custom of removing a fixed fraction
a of extreme observations from each end of the sample before taking the mean.
Unfortunately, most of the material was disseminated only in technical reports,
which are almost inaccessible now. A survey paper was later published by
Tukey (1960); compare also Tukey (1962).

Hodges and Lehmann (1963) noticed that estimates of location could be de-
rived from the Wilcoxon and other rank tests; that confidence intervals and
asymptotic variances could be computed from the power functions of these
tests, and that these estimates never have much lower but sometimes infinitely
higher efficiencies than the sample mean.

So far one was mostly concerned either with parametric families (as for ex-
ample Newcomb’s mixture of normals, or the z-family), or with the set of, say,
all symmetric continuous distributions, as alternatives to the normal law. Huber
(1964) then proposed an intermediate approach, the use of small, but rather
full neighborhoods (e.g., the set of all distribution functions differing less than
¢ from a normal one), and he solved some corresponding asymptotic minimax
problems. The minimax approach is also able to yield exact, fixed sample size
results (Huber (1965), (1968a)).

Hampel (1968) recognized and sorted out the stability aspect of robustness,
in close analogy to the stability of a mechanical structure (say of a bridge):
(i) the qualitative aspect: a small perturbation should have small effects; (ii)
the breakdown aspect: how big can the perturbation be before everything breaks
down; (iii) the infinitesimal aspect: the effects of infinitesimal perturbations.

3. What is a robust procedure? By 1960 one had recognized that

—one never has a very accurate knowledge of the true underlying distribu-
tion;

—the performance of some of the classical tests or estimates is very unstable
under small changes of the underlying distribution;

—some alternative tests or estimates (like the Wilcoxon instead of the z-test,
or the a-trimmed mean instead of the mean) lose very little efficiency for an
exactly normal law, but show a much better and more stable performance
under deviations from it.

While for years one had been concerned mostly with what was later called
“robustness of validity” (that the actual confidence levels should be close to,
or at least on the safe side of the nominal levels), one realized now that
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“robustness of performance” (stability of power, or of the length of confidence
intervals) was at least as important and usually brought for free a satisfactory
robustness of validity (but not vice versa).

From the beginning, “robustness” has been a rather vague concept; for ex-
ample, Box and Anderson (1955) had introduced the notion as follows: Pro-
cedures are required which are ‘robust’ (insensitive to changes in extraneous
factors not under test) as well as powerful (sensitive to specific factors under
test).

But if one wants to choose in a rational fashion between different robust
competitors to a classical procedure, one has to make precise the goals one
wants to achieve. Unfortunately, a consensus has not been reached; although
the goals rarely are stated in an explicit fashion, one can discern at least five
or six conflicting ones, and I do not think that all of them should be called by
the same name “robust.”’

To fix the idea, let us consider the problem of estimating a location parameter
0 from a large number of independent observations X, - - -, X,,, distributed ac-
cording to P(X; < x) = F((x — 0)/s), where the shape F is not exactly known.
For most good estimators n#(T, — ) will be asymptotically normal, and one
will have to judge estimators in terms of their asymptotic variance ¢,*T); or
their absolute efficiency 1/(/(F)o*(T)), where I(F) is the Fisher information; or
their relative efficiency ¢, X(T")/o ;*(T).

According to the first goal, a robust estimator should possess

(i) a high absolute efficiency for all suitably smooth shapes F.

While this goal can be achieved asymptotically for large sample sizes, the
convergence seems to be much too slow for practical purposes. Compare Hijek
and Sidak ((1967) page 264 ff.), van Eeden (1970); Takeuchi (1971).

Thus, one modifies the requirements to one of the following:

(ii) a high efficiency relative to the sample mean (and some other selected
estimates), and this for all F (cf. Bickel (1965));

(iif) a high absolute efficiency over a strategically selected finite set {F;} of
shapes (e.g., the normal, logistic, double exponential, Cauchy and rectangular
shapes), cf. Birnbaum and Laska (1967), Crow and Siddiqui (1967), Siddiqui
and Raghunandanan (1967), Hogg (1967), Birnbaum and Miké (1970).

A variant of (iii) is

(iii") a high absolute efficiency over a strategically selected parametric family
of shapes, cf. Box and Tiao (1962, 1964a, b).

(iv) A small asymptotic variance over some neighborhood of one shape, in
particular of the normal one (Huber (1964)).

Neither of these goals guarantees the qualitative stability requirement (the
convergence in (i) and (iv) need not be uniform):

(v) the distribution of the estimate should change little under arbitrary small
variations of the underlying distribution F, and this uniformly in the sample
size n (Hampel (1968), (1971)).
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Personally, I think that the local goals (iv) and (v) are the important ones.
With Anscombe (1960) I am inclined to view robustness as a kind of insurance
problem: Iam willing to pay a premium (a loss of efficiency of, say, 5 to 109,
at the ideal model) to safeguard against ill effects caused by small deviations
from it; although I am happy if the procedure performs well also under large
deviations, I do not really care—inferences based upon a grossly wrong statis-
tical model may have little physical significance.

Moreover, we often have quite a good idea of the approximate shape of the
true underlying distribution (say from looking at histograms and probability
plots of related previous samples) so that it should suffice to consider a neigh-
borhood of only one shape. On the other hand, we need a rather full set to
include all conceivable nasty nearby possibilities for the true shape.

While (iii) is very attractive for empirical small sample studies after one has
proposed some (parametric families of) estimates, it is dangerous as an inde-
pendent goal for optimization and might lead to rather unstable “nonrobust”
estimates.

For finite sample sizes, the appropriate criteria are much more difficult to put
down. Despite its seductive simplicity, the ordinary variance is not an adequate
measure of performance of a robust estimate; it is much too sensitive to the
irrelevant extreme tail behavior of the estimate. To see this, it suffices to con-
sider an extremely long-tailed symmetric distribution for the observations, say
with P(]X| > x) ~ c/log|x|. Then an estimate whose value is always contained
in the convex hull of the sample cannot have a finite moment of any order for
any sample size. In practice, where all random variables are bounded, this
means that the variance, although finite, may be much larger than the middle,
almost normal part of the distribution of the estimate would suggest. It is pref-
erable to look at selected quantiles (suggested minimal set: 0.25, 0.1, 0.025,
0.005, 0.001)—they will also indicate how fast the limiting (normal) law is
approached—and if one needs a single number, one may take the variance of
the best normal fit to the central part of the distribution.

For finite sample sizes one is almost forced to fall back to (iii) (with sophis-
ticated Monte Carlo techniques to obtain accurate quantiles, cf. Andrews et al.
(1972)). We have already noted under (i) that it may not be possible to achieve
a satisfactory overall performance. As it then might be too pessimistic to mini-
mize the maximum loss of efficiency over {F;}, I propose to give the model dis-
tribution a preferential treatment and limit the loss there.

It may sound provocative if I maintain that the notions “nonparametric” and
“distribution-free’” have little relation to robustness. The sample mean and
the sample median are the nonparametric estimates of the true mean and median
respectively. But it is rather the exception than the rule that the user knows
precisely which functional of the distribution he wants to estimate. Ultimately,
he might select the functional with the better efficiency or robustness properties
at and near the assumed model.
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Many of the so-called “distribution-free” procedures derived from rank order
statistics have good robustness properties. However, this seems to be a for-
tunate accident: distribution-freeness stabilizes the level, but not necessarily the
power of a test; the performance of estimates derived from tests is intimately
linked to the power of these tests.

One sometimes forgets that robustness also should include insensitivity to
grouping effects and the like, and that some estimates commonly accepted as
robust, like the sample median, are not robust in this sense. For a recent dis-
cussion of some effects of granularity, cf. Noether (1967).

There are other aspects of robustness about which little is known, for in-
stance insensitivity towards deviations from independence (cf. Hgyland (1968),
Gastwirth and Rubin (1969)).

Deviations from the assumption that the observations in the sample are iden-
tically distributed seem to be relatively harmless, at least for procedures which
are symmetric in the observations: since such a sample will behave very much
like one with identically distributed observations from the average distribution,
we can expect that any procedure which does well for random mixtures (say of
the type (2.1)) will also do well for a corresponding deterministic mixture, and
vice versa.

4. Three methods for constructing estimates. As before, let X,, .- -, X, be in-
dependent random variables with common distribution P(X; < x) = F((x — 6)/s).
We shall assume that F has a density f and that the scale ¢ = 1 is known; we
shall not bother about regularity conditions. Since all estimates will be trans-
lation invariant, it suffices to consider their behavior for 8 = 0.

4.1. Maximum likelihood type estimators (M-estimators). Let p be a real valued
function of a real parameter, with derivative ¢ = p’. Define a statistic 7, =
T.(X,, .-, X,) either by

2iga P(X; — T,) = inf, 37, o(X; — 1)
or by
Zisa $(Xs = T,) = 0.
Under quite general conditions, T, converges to T(F), defined by
§ (> — T(F))F(dx) = 0,

and n¥(T, — T(F)) is asymptotically normal with asymptotic mean 0 and as-
ymptotic variance

0 }(F) = § Qu(x)F(dx) ,

where

Q= YE=TE)
§ ¢'(x — T(F))F(dx)
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If we choose

(4.1) Po(x) = = X)[fo(*) »
for ¢(x), then T, is the maximum likelihood estimator of @ for the true under-
lying distribution F, and will under suitable regularity conditions be asymp-
totically efficient for F = F, (Huber (1964), (1967)).

We obtain a scale invariant version of this estimate if we replace the defining
equations by

Tiant (H572) =0

and by

x — T(F)> Fd .
S A X) = 0
5 0(* gy ) F)
respectively, where S, = S(F,) is any robust estimate of scale, e.g. the inter-
quartile range (compare also Section 12.1). If F is symmetric, then T, and S,
are asymptotically independent, and the variance of T, can be expressed as be-
fore, with

Q (x) = _PEISE)SE)
#(%) ; :
§ ¢'(¥/S(F))F(dx)

4.2. Linear combinations of order statistics (L-estimates). Let X ;, < X, <... <

X, be the ordered sample; put
T, = 2ica @Xy)

where the weights are generated by a; = §{/,,, J(f) dt from some function J
satisfying {; J(¢) dt = 1.

Under quite general (but not yet entirely satisfactory) regularity conditions,
T, converges to

T(F) = \ J(t)F~(t) dt
and n¥(T, — T(F)) is asymptotically normal with asymptotic mean 0 and asymp-
totic variance
o (F) = §o Uty dt — (§; U(r) dr)?
where U is an indefinite integral of
vy =20
JSE)
We may also write
o, (F) = § Qp(x)F(dx)
where
Q%) = UF() — §3 U dt .
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If we choose
1
J(t) = —— ¢ J(F,"(?)) ,

() = gy #E)
where ¢, is the derivative of (4.1) and

I(F 0) = S ¢0(x)2F o(dx)
is Fisher’s information, then T, is asymptotically efficient for F, (Jung (1955);
the best results to date are those of Chernoff, Gastwirth and Johns (1967);
compare also Bickel (1967)).

4.3. Estimates derived from rank tests (R-estimates). Consider a 2-sample rank
test for shift: let Y¥,, ---, Y, and Z,, ..., Z, be two independent samples with
distributions F(x) and F(x — A) respectively. Form the combined sample of size
N = 2n and take as test statistic for testing A = 0 against A > 0

W(Y, - Y Zy, oo, Z,) = 3 nJ<_i___>Vi
(% : )= T (5
where V, = 1 if the ith smallest entry in the combined sample is a Y, and

k2

V, = 0 otherwise.
One can derive estimates of location from such tests: determine T,(X, - - -, X,,)

such that
42 wWX,—T, - X,—T;—(X—-T,), -, —X,—T,)=0.

The asymptotic behavior of T, can be determined from the asymptotic power
of the rank test; it turns out that T, tends to the solution T(F) of

S J<F(x) + 1 — FQT(F) — x)) Fdx) =0,

2
and that n¥(T, — T(F)) is asymptotically normal with asymptotic mean 0 and
asymptotic variance
o (F) = § Qp(x)F(dx) ,
where Q,(x) is defined as follows. Standardize the location parameter so that
T(F) = 0, let U(x) be an indefinite integral of

U'(x) = J/(F(") + 12_ F(*x)>f(—x) :

then, assuming J(1 — #) = —J(?),

U(x) — § UMf(x) dx
§ U'(x)f(x) dx

In particular, if F is symmetric, then

J(F(%)
Qx) = — JEX)
) = ST F@) oy dx

QF(X) =
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For symmetric F, we obtain a locally most powerful rank test with

J(1) = P(FHD))
and then the estimate is asymptotically efficient for F,. For asymmetric F, one
cannot in general reach full efficiency with R-estimates. (Chernoff and Savage
(1958), Hodges and Lehmann (1963), Hajek and Sidék (1967).)

5. Stability aspects of the preceding estimates. The three estimates considered
in the preceding section can be written as functionals of the empirical distribu-
tion function T, = T(F,) (either exactly or at least approximately). In particular,
the L-estimate corresponds to

T(F) = § J(t)F~\(t) dt ;
the M-estimate is defined by the implicit formula
§ ¢(x — T(F))Fdx) = 0
and the R-estimate by
gJ(F(") +1-— g(ZT(F) - x)>F(dx) —0.

In a somewhat simplified form, Hampel’s (1968), (1971) ideas on stability can
be described as follows.

A basic requirement is that a small change in F, (either small changes affect-
ing most or all observations, like rounding or grouping, or large changes affect-
ing a few of them) should cause only small changes in T, = T(F,).

This means that 7 should be continuous for the Prohorov metric d, in the
space of probability distributions:

d(F, G) = inf {¢|F(4) < G(4&') + ¢ for all measurable sets 4},

where A4° denotes the closed e-neighborhood of the set 4.

For instance, L-estimates cannot be continuous unless J(¢#)=0 for ¢t ¢ [a, 1 —a]
for some 0 < a < 3.

But then up to a fraction a of the observations can be grossly erroneous before
anything catastrophic happens (“breakdown point”).

If the true underlying distribution F is sufficiently smooth, M-, L- and R-
estimates possess a von Mises derivative (von Mises (1947), Filippova (1962)).
That is,

lim

€

A = 9F + <6) = TF) _ ¢ (x)G(dx)

for some function Q,. (Note that this formula yields the value Q,(x) itself, if
we take G to be the distribution function of a point mass 1 at x.) In most cases,
a kind of Taylor expansion is valid:

n[T(F,) — T(F) — § Qn(x)F,(dx)] -0
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in probability. Since
1
§ Qp(x)F,(dx) = o 2 Qu(x;)

Q.(x) describes the influence of an observation with value x toward the estimate
T(F,), and Q, has therefore been called “influence curve” by Hampel. More-
over, it follows that n¥(7T(F,) — T(F)) is asymptotically normal and that its
asymptotic variance can be written as { Q,(x)?F(dx), as we already did system-
atically in the preceding section.

Note in particular that the influence function of the a-trimmed mean for a
symmetric F is

1

Q,(x) = — FY(a) for x < F7'(a)
-1 & for F-Y(a)< x < F¥(1 — a)
1 — 2«
=1 Py _a)  for xz=Fl—a)
1 — 2a

(for asymmetric F, a constant must be added so that § Q,(x)F(dx) = 0). In
other words, and contrary to naive intuition, a-trimming does what a-Winsoriz-
ing was supposed to do, namely to reduce the influence of extreme observations
to that of suitable order statistics.

The M-estimate given by

¢(x) = max (—k, min (k, x))

has the same influence function as the a-trimmed mean and hence the same
asymptotic behavior at a given symmetric F if k and « are related through
F(—k) = a.

If the true underlying distribution F is replaced by (1 — ¢)F + ¢H, then

e § Q(x)H(dx)

describes the bias introduced by the small perturbation ¢H.

In my opinion, Hampel’s influence function is the most important single
heuristic tool for constructing robust estimates with specified properties. One
will strive for influence functions which are bounded (to limit the influence of
any single “bad” observation), which are reasonably continuous in x (to achieve
insensitivity against roundoff and grouping effects) and which are reasonably
continuous as a function of F (to stabilize the asymptotic variance of the esti-
mate under small changes of F). At the same time, one will try to have an
influence function roughly proportional to —(log fy(x))’, to achieve a high ef-
ficiency at the model distribution F;.

6. Jackknifing. Let T, = T,(X,, ---, X,), n = n,, be a sequence of estimates
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such that we may reasonably consider T,_, and T, to be the “same” estimators
despite the different sample sizes.
By definition, the jackknifed pseudo-value T'Y; is

Ty =nT,(X,, -, X,)— (n— D)T,_(Xy, -+, X;_, Xipp, -5 X,) .
For instance, if T, is the sample mean, then T} = X.
Originally Quenouille (1956) had proposed this device to reduce bias: if the
bias of T, has an asymptotic expansion
ET)=%+% 4 0(1),
n n

nd
then the corresponding expansion for the jackknifed estimate

T =L yTs
n
lacks the O(1/n) term.
Tukey (1958) noted that the pseudo-values often can be treated as if they
were independent; in particular,
1
"(Tk — T,* 2
n(n _ 1) Zl ( n )
usually is a reliable estimate of the variance of both the original estimate T,
and of the jackknifed version 7,*. Thus, once one has a computer program
calculating the estimate, one is also able to assess the variability, which is a

tremendous advantage.
Moreover,

QX)=T} —T,*

is a finite sample version of the influence function Q.(X;) considered in the
preceding section. This allows a simple empirical assessment of robustness of
a complicated estimator. In particular, if the pseudo-sample contains outliers,
then something should be done about the estimator T, to improve its robustness.

For further information, cf. Miller (1964), (1968). It is hardly worthwhile to
write down precise regularity conditions under which the jackknife has these
useful properties—more work might be needed to check them than to devise a
more specific and better (in particular computationally faster) variance estimate.
Typically, the jackknife fails if the von Mises derivative Q,(x) is not continuous
as function of F (as in the case of the median, where Q(x) = sign (x)/(2F’(0))).

7. Studentizing. As a rule, jackknifing gives a usable estimate for the variance
of a robust estimate. However, it is often possible to find a simpler and some-
times better direct estimate. For instance, a glance at the influence function
of the a-trimmed mean shows that its variance can be estimated through the
a-Winsorized sample variance: assume a = g/n and put
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3 1 1
S, = P
nn—1) (1 — 2a)

;o 2 (G — XYy

where {X;"} denotes the a-Winsorized sample (i.e., where the g extreme values
on each side have been replaced by X,,,, and X, respectively). (Cf. Tukey
and McLaughlin (1963).)

For large n, (T, — 0)/s, then is asymptotically normal N(0, 1). For not-so-
large n, one may expect that it is approximately r-distributed. The proper
number of degrees of freedom depends on the true underlying distribution; for
normal observations n — 2g — | is a feasible approximation, but for longer
tailed distributions, this number has to be decreased (the same remark applies
to the classical r-statistic, g = 0), cf. Huber (1970).

For R-estimates, the parent rank tests furnish confidence intervals in a most
direct fashion (Lehmann (1963c)).

n—g)

8. Asymptotic minimax results. Let =" be a convex compact set of distribu-
tions F on the (extended) real line. The problem is to find a sequence T, of
estimators of location which have a small asymptotic variance over the whole
of &7 more precisely, the supremum over Z”of the asymptotic variance should
be least possible. We shall restrict attention to symmetric distributions and to
translation invariant estimates.

Let F, be the distribution in %’ having the smallest Fisher information
I(F) = § (f'[f)’f dx; there is one and usually only one such F, and in many in-
teresting cases F, can be determined explicitly through variational methods (cf.
Huber (1964)).

Thus, for any sequence 7, the asymptotic variance of n*T, under F, will at
best be 1/I(F,); our goal is to find a T, such that the asymptotic variance does
not exceed 1/I(F,) for any Fe <. More precisely, we shall have to require that
for every ¢ < oo there is an n,, such that for n > n,

Supy... Ex(min (nT,%, &) < 1/I(F,) .

In particular, this sequence 7, must be asymptotically efficient at F,, and we
shall therefore have a closer look at the estimates determined in Section 4.

Consider first the behavior of ¢, * F) under infinitesimal variations of F, where
the star stands for M, L or R. Let F, = (1 — y)F, + rF,, with F,e 57 0 <
7 < 1, then F, e & because of convexity. Explicit computation yields that

L WJo (F) =L 1F) =0 for 71=0.
dy dy

In the case of M-estimators, 1/s,%(F) is a convex function of F, hence s ,*(F) has
a global maximum at F, and the sequence of maximum likelihood estimates for
F, solves the problem.

At least in the following important special case, also ¢,*(F) and ¢,*(F) have
a global maximum at F; (Jaeckel (1971a)).



ROBUST STATISTICS: A REVIEW 1055

Assume that & is the set of all e-contaminated normal distributions, i.e.,
the set of all distributions of the form F = (1 — &)® + ¢H, where 0 < ¢ < 1 is
a fixed number, ® is the standard normal cumulative, and H varies over the
set of all symmetric probability distributions. Then, the least favorable F, has
the density

1 —
(8.1) folx) = a5 ; erots) |
where
8.2) 0o(%) = % x? for |x| <k

= kx| — k  for |x| =k,

with k depending on ¢ through

e _ 2 _ _
(8.3) = 2 — 20(— k).
where ¢(x) = @'(x) = (2r)~te~*¥». Thus
(8.4) Gu(x) = x for |x| <k

= k sign (x) for |x|=k.

The maximum likelihood estimate for this F, was treated in Huber (1964).
The best linear combination of order statistics for F, is the a-trimmed mean,
with @ = F(—k). The corresponding R-estimate does not seem to allow a
simple description.

The fact that ¢’ is discontinuous sometimes causes trouble (e.g., in connec-
tion with grouped data and with Studentizing), and one might prefer to smooth
¢, near +k.

Note in this connection that the ¢(x) = (1 — e~*)/(1 + ™) corresponding to
the logistic distribution F(x) = 1/(1 4 e~*) behaves much like a smooth version
of ¢,. The asymptotically efficient R-estimate for the logistic distribution is
the so-called Hodges-Lehmann estimate—the median of the pairwise means
3(X: + X;)-

9. Finite sample minimax results. According to the Neyman-Pearson lemma,
the most powerful tests of a simple hypothesis P, against a simple alternative
P, are given by likelihood ratio tests: form

h(X) = TLisa Po(X:)[P(X3)

and reject P, is A(X) > c (p; is a density of P;).

What happens if the P; are only approximately known? Clearly, likelihood
ratio tests may fail to be robust: a single factor p,(X;)/p(X;) equal (or almost
equal) to 0 or co might determine the outcome of the test.

If the uncertainty is formalized either in terms of e-contamination, Prohorov
distance, or total variation, e.g., if we replace P; by the composite hypothesis
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= {Q]]|Q — P;|| < ¢}, then it turns out that there is a least favorable pair
(Qp» 0y) € F, X P, such that the Neyman-Pearson tests of any level a between
0, and Q, coincide with maximin tests of the same level and same minimum
power between 7, and &°. The likelihood ratio

) _ min <c”, max <c’,M>> , <L
q4(%) Po(%)
is a censored version of p,(x)/p,(x) (Huber (1965)).

The existence of such a least favorable pair is essentially equivalent to the
assumption that each of the hypotheses .7°; consists of the set of all probability
measures majorized by some alternating capacity of order 2 (Strassen (1964),
Huber and Strassen (1971)).

This robustized version of the Neyman-Pearson lemma can be used to build a
finite sample minimax theory for estimates.

Assume that the measurement errors A, = X; — 6 are independent random
variables whose distribution functions F; lie anywhere within ¢ of some model
distribution G:

©.1) sup, |F(x) — G| < 0.

The logarithm of the density of G should be concave, but there are no symmetry
assumptions; the idea works also for some other neighborhoods. To fix the idea,
assume that G = @ is the normal cumulative.

Let @ > 0 be a fixed number; the goodness of any estimate T = T(X, - - -, X,,)
of 6 shall be assessed by the least « for which one can guarantee

PT<0—a}<a
PIT>0+al < a

for all ¢ and for all distributions satisfying (9.1)—the smaller «, the better the
estimate.

The corresponding minimax solution 7° can be described explicitly as follows.
Let ¢,(x) be defined by (4.1), where k depends on d and a (but not on the sample
size n) through the relation

e *®(a — k) — O(—a—k)y=(1+ e2k)j
Let T* and T** be the smallest and the largest solution T of

DisnPo(X; —T) =0
respectively. Then put T° = T* or T° = T** at random with equal probability
(Huber (1968a)).

The idea behind this result is very simple: one first constructs a maximin test
(with level a and power 1 — ) between § — a and 6 4 a, then one derives an
estimate from this test in the manner of Hodges and Lehmann (1963).

Note that this family of estimates happens to coincide with the asymptotically
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minimax M-estimates for symmetric contamination, determined in the preced-
ing section.

The actual value of the diffidence level a is difficult to determine, but asymp-
totic approximations (for n — oo, d = O(n~*), @ = O(n~%)) are available (Huber-
Carol (1970)). ‘

10. Criticisms and complements.

10.1. One might question the appropriateness of a minimax theory, especially
of an asymptotic one, since minimax methods generally are too pessimistic. I
think there are two answers: first, it seems that sample sizes reasonable for a
given amount of not necessarily symmetric contamination will not allow to
determine the nature of this contamination to a sufficient degree of accuracy
(cf. Huber (1964) page 82 ff.). Second, one might check some actual error dis-
tributions in extremely large samples. Romanowski and Green (1965) have
collected some quite impressive examples; it turns out that their largest sample
behaves very much like the least favorable F, for the 29;-contaminated normal
distribution (it lies between the slightly different curves for the least favorable
F, for location (8.1) and the least favorable one for scale (12.1)). In this case,
the 59%-trimmed mean would seem to be a very nearly efficient estimate. For
their smaller samples, the conclusions are less definitive, but also these suggest
trimming rates between 19 and 109%. In any case, safeguarding against the
family of least favorable distributions (8.1) might not be overly pessimistic.

10.2. There is the usual objection against any asymptotic theory: one never
knows whether it is applicable for any given finite sample size. Direct calcula-
tions are not very manageable except for rather small sample sizes (e.g., Tukey
and McLaughlin (1963), Anscombe and Barron (1966), Crow and Siddiqui (1967),
Gastwirth and Cohen (1970)); in addition, several Monte Carlo studies have
been reported (e.g., Leone, Jayachandran and Eisenstat (1967), Dixon and
Tukey (1968)); a very comprehensive one has just been completed at Princeton
(Andrews et al. (1972)). While such studies mathematically do not prove any-
thing about the applicability of the asymptotic theory, they furnish convincing
evidence that the better among the more “rigid” (non-adaptive) procedures ap-
proach their asymptotic behavior rather fast, i.e., confidence levels between
19 and 5%, derived from asymptotics seem to be sufficiently reliable for sample
size 20 and larger.

Then there is the more basic problem whether asymptotic optimality bears
any resemblance to finite sample optimality—after all, if, say, 19 of the ob-
servations are outliers, it makes quite a difference, whether the sample size is 5
(and 19 out of 20 samples are free from outliers) or whether it is 1000. But the
answer to this is affirmative (cf. the end of Section 9).

10.3. The asymptotic minimax approach of Section 8 restricted attention to
symmetric shapes. If one does not do so, the bias caused by the unknown small
asymmetries of the true F would ultimately take precedence over the statistical
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errors, leading to the sample median as the unique asymptotic minimax estimate
(cf. Huber (1964) page 83). But presumably the practicing statisticians would
then conclude that the sample size is unreasonably large. The finite sample
approach of Section 9 does not make any symmetry assumptions.

10.4. Adaptive estimates. 1t is very tempting to devise estimates which adapt
themselves to each particular sample. We already remarked in Section 3 that
this seems to need exorbitant sample sizes. A very moderate type of adapta-
tion—tailoring one parameter, say the trimming proportion & to the sample—
might however work (Jaeckel (1971b)). For sample size 20, Jaeckel’s procedure
performs well for heavy tailed distributions, but the loss of efficiency at the
normal model is rather high; the performance for not-so-long-tailed distribu-
tions is comparable to that of the 159, trimmed mean. A very promising ap-
proach is that of Takeuchi (1971); but there are some doubts whether it is robust
against extremely long tails.

10.5. Computational aspects. The trimmed mean is probably easiest to com-
pute; most of the work, O(n log n) operations, is spent for ordering the sample.
M-estimates do not need much more work; my favorites are scale invariant
versions of (8.4) (e.g. proposal 2 of Huber (1964) page 96 ff.). These are itera-
tive procedures, but both small sample experiments and asymptotic theory show
that it is hardly worthwhile to go beyond the first step of the iteration if one
starts with the median and the suitably scaled interquartile range as preliminary
estimates for location and scale.

The straightforward Hodges-Lehmann estimate—the median of the pairwise
means (X; + X,)/2—is prohibitively expensive for all but the smallest samples,
since it needs O(n?) operations. However, the Wilcoxon statistic W occurring
in (4.2) is asymptotically linear in T,, and one or two applications of the regula
falsi to (4.2) should give an entirely adequate approximation to the estimate.
(Jureckova (1969), Koul (1969), Jaeckel (1969).)

10.6. Monte Carlo methods. Small and intermediate sample properties (n =5
to 50) of robust procedures almost always have to be determined by empirical
sampling. Straightforward simulation is easy and wasteful, but sometimes
drastic savings are possible. For instance, for a normal sample X = (X, - -,
X,), the sample mean X and the residual vector Z = (X; — X) are independent,
and the approximate distribution of the translation invariant estimate T(X) =
T(Z) 4+ X can be found efficiently by convoluting the empirical distribution
of T(Z) with the known normal distribution of X. (Hodges (1967), Andrews

et al. (1972).)

11. A few other selected estimates.

11.1. The so-called “quick-and-dirty” methods are estimates based on a few
selected order statistics. One proposal (Gastwirth (1966)) for instance takes the
33}, 50 and 66% percentiles with weights 0.3, 0.4 and 0.3 respectively and
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achieves an efficiency of approximately 809, or better, simultaneously for the
Cauchy, double-exponential, logistic and normal distributions. Of course, some
care is needed if one works with grouped data—one should ‘“degroup” the ob-
servations near the quantiles in question. Compare also Crow and Siddiqui
(1967).

11.2. It may be desirable to cut to zero the influence of extremely outlying
observations. As we have seen, the trimmed mean does not do so. The simplest
way to achieve this is to use an M-estimate with a ¢ vanishing outside of some
finite interval (cf. the formula for the influence curve Q,(x) in Section 4.1),
and Hampel recently has proposed some extremely promising estimates of this
type (see Section 13). The so-called skipping procedures of Tukey also eliminate
the influence of extreme outliers, but show a somewhat poorer performance
(perhaps because their influence curves are rather jumpy): remove all observa-
tions from the sample whose distance to the nearest quartile exceeds the inter-
quartile range (or § times the interquartile range, etc.); repeat this until the
sample does not change anymore. Then use any reasonable estimate on the
remainder.

11.3. Bickel and Hodges (1967) have investigated a simplified version of the
Hodges-Lehmann estimate, namely the median of the pairwise means

(X + Xim)s o5 3( Xy + Xiaoiry)s -+
of symmetric order statistics. This estimate has a very good performance, as it
seems, but its asymptotic distribution is not normal (it can be represented in
terms of the time which Brownian motion spends above some curve).

11.4. Not every intuitively appealing estimate lives up to expectations. For
instance, the “shorth” (the mean of the shortest half of the sample) behaved
very poorly in an empirical sampling study (n = 20); a closer scrutiny reveals
that even its rate of convergence is of the wrong order: n#(T, — 6) has a non-
degenerate limiting distribution. For this kind of investigation, weak conver-
gence (the “invariance principle”) is an almost indispensable tool (Pyke and
Shorack (1968), Billingsley (1968), Chernoff (1964), Andrews et al. (1972)).

12. Other estimation problems.

12.1. The scale parameter problem can be reduced to that of a location pa-
rameter by taking logarithms. However, some difficulties arise because the
resulting distributions tend to be highly asymmetric, and it is not clear what
one is estimating if the underlying distribution is only approximately known.
But since one has taken logarithms, this uncertainty only acts as an unknown
additive constant, and it makes sense to try to minimize the maximum of the
asymptotic variance over a suitable neighborhood of some model distribution.
Also here the asymptotically efficient M- and L-estimates for the least favorable
distributions (=minimizing the Fisher information) seem to have good robust-
ness properties.
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For example, in the e-contaminated normal case, the least favorable F, has
the density

(12.1) fulx) = ‘(2;7 et for ¥ <q,
2 ‘
_ 12;): R < I%I )“’ " for M4,

where ¢ and ¢ > 2! are related through

2
(12.2) = 4 — 20(—9) -
—¢ ¢—1
The corresponding maximum likelihood estimate was treated by Huber (1964);
another asymptotically efficient estimate of ¢* for the distribution Fy(x/0) is the

suitably scaled a-trimmed variance, where a = Fy(—¢q).

12.2. The higher dimensional location parameter problem can be treated in
very much the same way as the one-dimensional problem, if one assumes that
the error distribution is spherically symmetric. In particular, one can determine
a least favorable F, just as in the one-dimensional case; it is somewhat surpris-
ing that —log f,(x) fails to be convex even in the simplest contaminated normal
case. The maximum likelihood approach works well, compare Gentleman
(1965), Huber (1967).

Much less is known about affinely invariant procedures. A higher dimensional
analogue to trimming has been called “peeling” by Tukey; it consists of delet-
ing extreme points of the convex hull of the sample and to repeat this operation
either a fixed number of times, or until a fixed percentage of the points has
been removed. Not much is known about the behavior of such a procedure,
but it might have quite intriguing properties, cf. Rényi and Sulanke (1963),
(1964) and Carnal (1970).

A multivariate version of the Hodges-Lehmann estimate has been considered
by Bickel (1964).

12.3. Relatively little is known about robust estimation in the general case,
where there is neither translation nor scale invariance. It is fairly clear that a
modified maximum likelihood estimate should have good robustness proper-
ties: put

(x, 6) = min (cz(ﬂ), max (cl(ﬂ), % log f(x, o)>> + b(6),

where f(x, ) is the probability density of the assumed family of distributions,
and define an estimator T, of & by

Dz 9(Xi, T,) = 0.
The difficulty resides in the proper choice of the truncating functions ¢,(f) < c,(¢)
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and of the function b(f) regulating the bias. A serious conceptual difficulty is
caused by the fact that one does not quite know what one is estimating; perhaps
one should define the parameter to be estimated in terms of the estimator. One
approach to this problem has been proposed by Hampel (1968), another one
has been tentatively explored by Huber-Carol (1970).
12.4. Regression and analysis of variance problems. Consider the general linear
regression problem
X, = 22, ¢50; + U;, 1<ign,
where the X; are observed, the 0, are to be estimated, the ¢;; are known coef-
ficients, and the U, are independent random errors whose distribution functions

F, are approximately equal, but only approximately known.
The classical least squares method is to minimize

2 (X — 245 cijéj)z )
which generalizes at once to minimizing

i Pp(Xi — 2 cikék)
with p, as in (8.3), for example. The procedure can be made scale invariant,
if one determines (6, - - -, 6,) and ¢ from the p + 1 equations

2 Gol(Xi — 200 cikék)/é)cij =0, j=1.--p

L 50X — Sy cny)fo)y = 8,

n—p
where B = Ey(¢y(X)?).

The asymptotic theory for these estimates is relatively straightforward if one
assumes that p stays fixed as n tends to infinity (Relles (1968)), but some dif-
ficulties arise in the more realistic case where p/n is small but not entirely neg-
ligible. I conjecture that for symmetric error distributions the following state-

ments are true.

Let ¢ be the maximum diagonal element of the projection matrix I' =
C(CTC)™'CT, where C = (c,;); since tr (I') = p, we have p/n < e.

Then all estimates of the form & = 3 a;0, are asymptotically normal, iff ¢ — 0.
If the errors U, have the common distribution F, then ¢ tends to ¢, determined
by E.¢(U;/o)* = B, and the asymptotic covariance matrix of the f is given by

EF¢0'(U'£/UF)2Z cot - (CTC) .
(Exd'(Usfar))
If p/n =~ ¢ is not entirely negligible, I would tentatively recommend to estimate
this covariance matrix by the expression

(1 420 =) g

nm

where m = 37, ¢/((X; — X, ¢:0,)/8) is the number of residuals falling into the
middle, linear part of ¢,, and the matrix W is determined by
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Wi = 2:9/((Xs — 200 ci,0,)[8)ei; ¢, -

Thus, the customary methods of linear regression and analysis of variance
can be carried over in a relatively straightforward way. Compare also Anscombe
(1967).

Also other robust estimates can be generalized to the regression problem. A
little consideration shows that it suffices in principle to robustize the special
case p = 1, the simple straight line regression. If one can do that, one may
attack the general problem iteratively by estimating one parameter at a time,
keeping the others fixed at trial values.

Lehmann and his students have attacked several regression and analysis of
variance problems with the aid of rank tests (Lehmann (1963a, b), plus a number
of papers by different authors in subsequent volumes of the Annals of Mathe-
matical Statistics). To illustrate the basic idea, consider the straight line regres-
sion problem (Adichie (1967)):

X;=a+ pe; + U;,

where a and $ are to be estimated.

Every test of the hypothesis 8 = 0 furnishes an estimate of : apply the test
of the pseudo-observations X" = X; — fc;, and adjust the value of fin such a
way that the test is least able to reject the hypothesis. The asymptotic power
of these tests then can be used in a more or less straightforward way to compute
the asymptotic variances and covariances, and hence the asymptotic efficiencies
of these estimates.

Recently, Bickel (1971) has been able to extend the L-approach to the general
regression problem.

On purpose, I have described the regression problem in terms of the classical
least squares theory, where the matrix C = (¢;;) is thought to derive from a
fixed and rigorous mathematical model. In statistics, it is more customary to
treat the coefficients ¢,;; as “independent variables,” possibly also subject to
errors. Next to nothing is known about how to robustize regression procedures
with respect to errors in the c;;.

12.5. Time series problems. Stationary time series seem to pose different and
in some sense unique robustness problems. Consider spectrum analysis of an
observed stochastic process X;, ---, X,. Against which deviations from what
model should one safeguard, especially if one does not have a specific parametric
model? In my (admittedly limited) experience, isolated “outliers” (e.g., iso-
lated malfunctions of the recording apparatus affecting a single X;) are quite
rare. What occurs are “bumps” and “quakes”—the first being a local shift in
the mean value, extending over several consecutive X;, the second being a local
shift of variance. Both cases correspond to grafting a short piece of an extra-
neous process onto the process under consideration. Also here, sample skewness
and kurtosis are excellent for detecting the presence of such accidents and one
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might blot them out by smooth data windows. This would be a close analogue
to rejection of outliers.

The following procedure is related to the one-step M-estimates mentioned in
Section 10.5. Subtract first a (robust) average and trend, i.e., filter out the
lowest frequencies, then apply a “smooth limiter”: replace the process X, by

X, = 20(X,[c) — 1

where @ is the normal cumulative and ¢ is some constant. The case ¢ = 0 cor-
responds to “‘hard limiting”

X, = sign (X)) .
For a Gaussian process, the covariance functions of the two processes are re-
lated by
R(1) =2 arcsin RO)_
bis 1 4+ ¢
(assuming R(0) = 1), cf. Thomas (1969) page 298 ff. But some care is needed—

a strong low frequency component might mask a weak high frequency com-
ponent, if one applies a limiter.

13. Concluding remarks. “Which estimate do you recommend for practical
use?” This question is frequently asked but does not have a simple answer.
The variety of situations (and also attitudes of statisticians!) occurring in prac-
tical applications will always demand a variety of tools. And the ever increas-
ing number of good robust estimates makes the choice progressively harder.
Nevertheless, in the light of the large empirical study we have just completed
at Princeton (Andrews et al. (1972)), I shall venture some conditional suggestions.
We looked at some 65 estimates of location under some 30 different situations
(mostly symmetric distributions and mostly sample size 20).

In a poorly specified and presumably long-tailed situation, I might use
Gastwirth’s estimate (Section 11.1), which is very simple, or Hampel’s estimate
12A (see below), which seems to admit a better estimate of its own variability
(through its influence function, cf. Sections 5 and 7).

In a more tightly specified approximately normal situation, I might not want
to sacrifice more than 5 to 109, efficiency at the normal model. Then the sim-
plest good estimate is an a-trimmed mean (with « = 0.1 or 0.15).

If one objects to the relatively poor breakdown point (Section 5) of the
trimmed mean, a one-step M-estimate (Section 10.5) is an attractive alternative,
e.g. the following (identified as P15 in Table I):

(i) take the median T, = med {X,} as a preliminary estimate of location;
(ii) take S, = med {|X; — T,|} as a very robust estimate of scale;
(iii) estimate location by

ro1 4 SO =TS ¢
Z ¢((X: = T)/S)
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TABLE I
Monte Carlo variances of ntT, for selected estimates and distributions, sample size n = 20

(1 = &N, 1)
+eN/U%)

n=o0 n=20 ¢=0.1 ¢=0.25 ¢=1

(n — p)NQ, 1) plus 18N(0, 1)
1

NQO, 1) PN, 9), n = Cauchy

n=oc n=20 p=1 p=2 p=3 p:5p:102N(0, 100)

mean 1.000 1.00 1.40 1.80 2.20 3.00 5.00 10.90 oo — — — —

a=0.05 1.026 1.02 1.16 1.39 1.64 2.27 4.45 2.90 8.77 24.0 1.47 3.84 35.9

trimmed a=0.1 1.060 1.06 1.17 1.31 1.47 1.93 3.98 1.46 4.77 7.3 1.26 1.81 13.6
mean a=0.15 1.100 1.10 1.19 1.32 1.44 1.80 3.56 1.43 3.48 4.6 1.26 1.64 9.3
a=0.25 1.195 1.20 1.27 1.41 1.50 1.79 3.13 1.47 2.55 3.1 1.33 1.64 6.6

median 1.571 1.50 1.52 1.70 1.75 2.16 3.37 1.80 2.48 2.9 1.64 1.94 6.6

k=2.0 1.010 1.01 1.17 1.41 1.66 2.30 4.56 1.78 6.74 9.3 1.30 2.17 18.4

Huber (1964) k=1.5 1.037 1.04 1.16 1.32 1.49 1.96 4.09 1.50 4.4 5.7 1.24 1.74 11.4
prop. 2 k=1.0 1.107 1.11 1.21 1.34 1.44 1.78 3.40 1.43 3.02 3.7 1.26 1.62 7.5
k=0.7 1.187 1.20 1.27 1.421.49 1.79 3.13 1.47 2.52 3.0 1.33 1.64 6.6
Hodges-Lehmann 1.047 1.06 1.18 1.351.50 1.88 3.62 1.52 3.29 4.2 1.26 1.70 8.4
Gastwirth (1966) 1.28 1.23 1.301.451.521.82 3.12 1.50 2.50 3.1 1.36 1.67 6.6
Jaeckel (1969) 1.000 1.10 1.21 1.37 1.47 1.82 3.54 1.45 2.55 3.5 1.27 1.63 7.2
Hogg (1967) 1.000 1.06 1.28 1.56 1.79 2.42 4.83 1.79 2.48 4.4 142 1.90 9.4
Takeuchi (1969) 1.000 1.05 1.19 1.38 1.53 2.02 4.06 1.32 2.00 3.5 1.22 1.60 7.6
AlS5 1.037 1.05 1.17 1.33 1.47 1.91 3.78 1.49 3.77 4.5 1.24 1.69 8.8
P15 1.037 1.05 1.17 1.33 1.47 1.91 3.81 1.49 3.77 4.5 1.24 1.70 8.8
Hampel 25A 1.025 1.05 1.16 1.32 1.49 1.94 3.97 1.26 3.7 1.19 1.5 8.0
Hampel 12A 1.166 1.20 1.26 1.40 1.47 1.78 3.24 1.32 2.7 1.30 1.56 6.2

Max Likelihood Cauchy 1.72 1.66 1.84 1.84 2.14 3.24 .71 2,00 23 1.75 1.96 5.8

* N/U denotes the distribution of the quotient of a normal (0, 1) variable divided by a uniform (0, 1)
variable.

with ¢(x) = max (—k, min (k, x)), where k = 1.5/®~'(3) = 2.22 for P15.
Iteration of (iii), i.e. solving 3 ¢((X; — T)/S,) = 0 for T by Newton’s method
improves the estimate only very slightly (estimate A15).
Hampel’s recent proposals (Section 11.2) give even better performances for
long tails: let (i), (ii), with iterative (iii) as above, but put

P(x) = —P(—x) = x for 0x<a
=a for a<x<b
=¢"%*a for b<x<c¢

c—b
=0 for x=c¢

with, say, a = 2.5, b = 4.5, ¢ = 9.5 (estimate 25A)ora= 1.2, b= 3.5, c=8.0
(estimate 12A). These estimates (whose one-step versions have not yet been
investigated) certainly look very promising and will be investigated further.
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