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COMPARISON OF TRANSLATION EXPERIMENTS!

By ERIK NikoLAI TORGERSEN
University of California, Berkeley and University of Oslo

In this paper we treat the problem of comparison of translation experi-
ments. The “‘convolution divisibility’’ criterion for ‘‘being more informa-
tive”” by Boll (1955) [2] is generalized to a ‘‘c-convolution divisibility”
criterion for e-deficiency. We also generalize the ‘‘convolution divisibility”’
criterion of V. Strassen (1965) [13] to a criterion for ‘‘e-convolution divisi-
bility.”” It is shown, provided least favorable ‘‘e-factors’’ can be found, how
the deficiencies actually may be calculated. As an application we determine
the increase of information—as measured by the deficiency—contained in
an additional number of observations for a few experiments (rectangular,
exponential, multivariate normal, one way layout). Finally we consider
the problem of convergence for the pseudo distance introduced by LeCam
(1964) [8]. Tt is shown that convergence for this distance is topologically
equivalent to strong convergence of the individual probability measures up
to a shift.

1. Definitions, notations and basic facts. In [8] LeCam introduced the notion
of e-deficiency of one experiment relative to another. This generalized the
concept of “being more informative” which was introduced by Bohnenblust,
Shapley and Sherman and may be found in Blackwell [1].

An experiment will here be defined as a pair & = ((y, /"), (P,: 6 € ©)) where
(x, --7") is a measurable space and (P, : 6 € ©) is a family of probability measures
on (y, 7). (x, ") is the sample space of & and © is the parameter set of .

DEFINITION. Let & = ((x, -%7), (P,: 0 € ®))and . = ((7/, <), (Q,: 0 € ©))
be two experiments with the same parameter set ©® and let § — ¢, be a non-
negative function on ©.

Then we shall say that & is ¢-deficient relative to . if to each decision space
(D, /) (i-e. a measurable space) where > is finite, every bounded loss func-
tion (¢, d) — W,y(d) on © x D (W, is assumed measurable for each #) and every
risk function r obtainable in ..7 there is a risk function r’ obtainable in & so
that ,
r(0) < r0) + < || WI| . fe®

where ||W|| = sup,,, |W,(d)|-

If # is O-deficient relative to .7 then we shall say that < is more informative
than .~ and write this & > .7,

If #=. " and ../~ g ¢, then we shall say that < and .+~ are equivalent
and write this < ~ &7,
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1384 ERIK NIKOLAI TORGERSEN

The greatest lower bound of all constants ¢ such that & is e-deficient relative
to.7 will be denoted by (%, & ) and max [6(&, &), §(.F, &)] will be denoted
by A(&, 7).

If #, .7 and & are experiments then: 0 < §(%, &), 6(%, &) = 0 and
o(*, 7)) S0, 2) + 0(¢, 5 ) so that A is a pseudometric.

Let & = ((x, ), (P;: 0 €0)) and & = (7, Z), (Q,: 6 € ©)) be two ex-
periments such that (P,: 6 € ©) is dominated, 7/ is a Borel subset of a complete
separable metric space and .<7’is the class of Borel subsets of 2. It then follows
from Theorem 3 in LeCam’s paper [8] that & is e-deficient w.r.t. . if and
only if there is a Markov kernel M from (y, %) to (%/, 7)) so that:

1PoM — Qyl| < ¢ 0c®
or equivalently, that there is a sub-Markov kernel so that (see Section 2)
2|[(Qy — PyM)*|| < ¢y 3 6e®

A translation experiment will here be defined as an experiment &, = ((x,
S7)(Py; 0 € ©)) where y is a second countable locally compact topological group
with Borel class .7, ® = y, P is a probability measure on .%/" and

Py(A) = P(A07"); Ae 7, 0€0.
Clearly &7, is uniquely defined by P. x will always denote a right Haar measure
on (x, ). )
It will frequently be assumed that P is absolutely continuous i.e. that P € p.
This assumption is equivalent with each of the following conditions:

D.1. &, is dominated.

D.2. (Py:0e®) ~ p.

D.3. 6 — P,(A) is continuous for each Ae ..
D.4. 6 — P, is strongly continuous.

(These facts are well known ane may be derived as follows: It suffices—since
D.4 — D.3 — D.1 is trivial—to show D.1 = D.2 — D.4. Suppose D.1 and let =
be any probability measure equivalent with {P,: 6 ¢ ©}. If 7(A46,7') = O then
P,(A0,™") = 0 for all ¢ i.e. P,(A) = 0, for all #, and this implies 7(4) = 0. It
follows that {r,: 6 € ©} is homogeneous. By Fubini’s theorem: 7(4) = 0 =0 =
§ 7y(A)(d0) = § (0~ A)n(df) = p(A) = 0.  Scheffe’s convergence theorem
yields—using essentially the same reasoning as in the proof of Proposition 10—
the implication D.2 = D.4.)

A dominated translation experiment on the real line is always minimal suf-
ficient (this does not hold generally), it is not—however—necessarily boundedly
complete.

Some of the notations which will be used are: (y,.%") = a measurable space
where y is a second countable locally compact group and .7 is the class of
Borel subsets of y.

IfIl = sup, [f(x)l  and [lp|| = sup{|§ fex)u(@x)l}: IfI| = 1.
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The convolution P x Q of two probability measures on .& is the measure in-
duced from P x Q by the map (x,, x,) — x,x, i.e.

P Q(A) = P X O({(x, %) 1 (v € A)}) -

C(x) = the Banach space of continuous bounded functions on y with sup norm.
M(y) is the space of bounded measurable functions. Cy(x) (C,(x)*) is the space
of (nonnegative) continuous functions with compact support.

A subscript #—with or without affixes—on a probability measure P is the right
6 translate of P.

d, = the one point distribution in x.

Convergence of probability measures on C(y) is—unless otherwise stated—weak*
convergence.

Translation experiments as defined above are strictly speaking right transla-
tion experiments. Statements on right translation experiments may—by the map
x — x~'—be translated into statements for left translation experiments.

2. Some facts on invariance. It was shown by Boll in [2] that comparison
within “invariant pairs” of experiments—under regularity conditions may be
based on invariant kernels. In his paper [8] LeCam applied fixed point theo-
rems to e-comparison within “invariant pairs” of experiments.

We will below summarize a few facts on invariance in the space X of bounded
linear operators from a space Ly(x, -/, ) to a space C(#/)*. Here (x, 27, ) is
a probability space and 7’ is a second countable locally compact Hausdorff space
with Borel class <%. It may be shown that any T in X may be represented by
a kernel M: y X £ — R such that M(.|x) is a measure for each x in y and
M(B| ) is measurable for each B in <4 M is called a representation of 7 if

(eT)(f) = § w(dx) § M(dy|x)f(y); 1 € Ly(x), f € C(Z).

Two convex subsets H 2 K of X are of a particular interest in this connec-
tion namely:

H=4 (T:Tz0 and [[T|| =1}
K=4{T: T=0 and . [|uT| = |pl| when p = 0}.

A kernel M represents an element of H if and only if M(.|x) =0 and
[|M(+|x)|| £ 1 for almost all x in y. A kernel M which represents an element
of H represents an element of K if and only if |[M(-]|x)|| = 1 for almost all x
in y.

Each pair (y, f) where ¢z e L,(r) and f € C(/) determines a linear functional:
T — (uT)(f) on X. We choose as a topology for X the smallest topology which
makes these functionals continuous. With this topology X becomes a locally
convex linear topological space with H as a compact subset. K is compact if
and only if 7/ is compact.

Let us next consider a measurable group G which acts on y and #/ so that
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(%, 9) — g(x) and (y, g) — g7'(p) are both jointly measurable and such that the
maps x — g(x) are Borel equivalences of y and the maps y — g(y) are homeo-
morphisms of 2. We will also assume that g~ e L,(r) whenever p € L () and
geaG.

To each T in X and each g in G we define 77 in X by:

eT)f) = (g ™T)fe 975  rel(n), feC(?).

For each g the map T — 77 is a continuous linear map from X to X which
leaves H and K invariant. For each T the map g — 77 is a homomorphism
which is measurable in the sense that g — (177)(f) is measurable whenever
¢ € L(r)and f e C(Z/). If the kernel M represents T then the kernel M?: (x, B) —
M(9(B)|g(x)) represents T?. The operator T will be called invariant if T¢ = T
for each g in G. This is equivalent with the condition that the representing
kernel is almost invariant i.e.: M?(+|.) = M(-|+) a.e. r; g € G where the ex-
ceptional null set is allowed to depend on g.

Before proceeding let us briefly consider the problem of replacing almost in-
variant kernels with invariant ones. A kernel M will be called invariant if there
is an invariant N with #(N) = 0 and such that M?(. |x) = M(-|x) when x¢ N.
N may be replaced by ¢ provided there is at least one invariant kernel with
the empty set as the exceptional set.

The following considerations on invariant kernels borrow much from C. Boll’s
paper, they are, however, not entirely the same. We will assume that there is
a o-finite measure—which we always may and will take as a probability mea-
sure—r on G with the property that #(Bg) = 0 = r(B) = 0. Under this condi-
tion any almost invariant kernel may be replaced by an invariant one as follows:

Suppose M is almost invariant, let 57~ be a countable dense subset of C,(%/)
and let ¥ denote the measurable subset

{6, 9) 0 Zesn IM?(h]x) — M(h|x)| >0} of yxG.

By assumption z(¥,) = 0 for each g so that by Fubini’s theorem z(N) = 0 where
N = {x: z(V,) > 0}. Denote by A the measurable subset {x: M?(h|x) = con-
stant a.e. ¢ for each & in 277} = {x: M?(. |x) is constant in C(Z/)* a.e. t}.

For any x in 4 and any g, in G we have: (since t(Bg) = 0 = z(B) = 0),
M?%(. | x) is constant a.e. © — (M?)%(+ | x) is constant a.e. ¢ = M9(+ | g,(x))g, is
constant a.e. v — M?(+|g,(x)) is constant a.e. 7 = g,(x) e 4. It follows that
9((4) & A and—since g, was arbitrary—that g(4) = 4; ge G. Note that the
constants involved in the implications above all are equal to the element f —
§ Mo(f| X)2(dg) of C(7/)*.

Suppose next that x¢ 4. Then 3}, . |[M?(h|x) — M(h|x)| > 0 on a set of
positive r measure and this implies that xe N. Hence r(4) = 1. We may now
modify M to an invariant M by writing

M(f| %) = § Mo(f| x)r(dg) ; feC@); xcd.
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M is equivalent with M since x ¢ N implies x € 4 and M(f|x) = M(f|x). M is
invariant on 4 since—for any x € 4 and f e Cy(Z/)—

Moo(f|x) = M(f 0 97| 90(%)) = § M*(f © 97| 9o(¥))2(dg)
= § Mos(f| x)e(dg( = § Motf | ¥)(dg) = MI(f] ) .

We return to the considerations of invariant operators. The situation we will
encounter in this paper involves a set ©, for each g in G a function 6 — g(f)
from O to O and finally an invariant family of triples {(P,, Q,, ¢,); 6 € O} where
the P,’s are probability measures in L,(r), the Q,’s are probability measures in
C(Z)* and the ¢,’s are nonnegative real numbers. That the family is invariant
means that P,g~' = P, ,; 0,07 = Q4 and ¢, = ¢, for any 6 in © and any g¢
in G.

Two convex and invariant sets of interest here are

Hy={T: Te H; ||Q, — P,T|| + 1 — (P,T)(Z)
=2|(Qy — P, T)*|| < ¢: 0 € 6}
and K, = H, N K.

H, is compact, but may of course be empty. If, however, T ¢ H, is represented
by M, then any kernel of the form (x, B) —» M(B|x) + (1 — M(Z/|x)S(B|x))
where S represents an element of K defines an element of K;,. Moreover if T in
Hj is invariant then this operator is invariant provided S is almost invariant.
We may therefore restrict our attention to H.

It follows directly from Theorem 1 in Day’s paper [4] and part (a) of Section
4 in the same paper that there is an invariant T in H, provided H, + ¢ and
provided there is at least one invariant mean (left or right) on the class of
bounded measurable functions on G. A general reference on invariant means
on topological groups is Greenleaf [5]. It follows from the Kakutani-Markov
fixed point theorem that there are invariant means on any Abelian group.

The condition of the existence of invariant means is equivalent with the pos-
sibly more familiar requirement that there is a net {,} of probability measures
on G (which always may be chosen so that they have finite supports) which is
asymptotically right invariant in the sense that 2,(Bg) — 2,(B) — 0 for each
measurable subset B of G and each g in G. A proof of the existence of fixed
points in H, when H, = ( may be based upon this fact, using the same type
of arguments as in the proof of Hunt, Stein’s theorem in [10]. (This was the
approach used by Boll in [2].) Another formulation of the property of having
an invariant mean may be found in Kudd’s paper [7]. Suppose finally that G
is a second countable locally compact topological group with the Borel class as
the class of measurable sets. Then it may be shown (Theorem 3.6.2 in [5]) that
there is an invariant mean if and only if there is an expanding sequence {C,} of
compact sets converging to G and having the property that the corresponding
normalized restrictions {4,} of a left Haar measure are strongly convergent to
left invariance i.e.: supg[4,(9B) — 2,(B)] — 0 as n — oo for each g in G.
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ExamPLE. Let & be the experiment
(™ 7™); (P, 0 € ©)) where y ={--- —1,0,1, ...},

&7 is the class of all subsets of y and Py(4) = (4 — (4,0, ---,0)); Ae 7, 0€0.
We want to compare this experiment with the “total information” experiment
% which may be described as above with n = 1 and P = d, where 0 is the
one point distribution in 0. The deficiency d(=,.>) is then equal to
inf,, sup, [|P,M — 9,||. By invariance it suffices to consider invariant kernels
M from yx" to y so that 6(&, =) = inf||PM — 4]| = 2(1 — sup,(P"M)(0)) =
2(1 — sup, 23 7(%1 -+ -5 X,)P(%,, - -+, x,)), where y is and may be any function
from " to [0, 1] such that

Zxr(x1+X,x2+x,...,xn+x):1; Xy, Xy +or X, €Y -
It follows that

A&, 7)) =21 — Xppon, SUP, P(X, X + Xy, -+, X + X,))

As a particular case, consider the situation where P is the distribution of a sample
of size n from the uniform distribution on V = {a + d,a + 2d, --.,2 + Nd}
where a,d + 0 and N > 0 are integers. Then sup, P(x, x + X;, -+ -, x + X,) is
positive if and only if (x,, ---, x,) € V"~'-diagonal (V') and then sup, P(x,
X 4+ X, -++, x + x,) = N-". It remains therefore to find the total number of dis-
tinct (n — 1) tuples (x,, - - -, x,) which are of the form d(k,, - - -, k,) — d(k, - - -, k)
where k,k,, ---,k,e{l,2,---,N}. Putting 4, = V"' —dk, -, k); k=
1,2, ..., N this number may be written #(4, U -.-- U 4,) = 2}, #(4;) —
T HA N A) + - HAN - N Ay). Now #(4, N - N 4,)=(N—
(s, — s))"* whens, < s, < --- <s,. Hence

BAU o U A = NN B (=17 By aC ) = (s — )
= N* 4 T (=D DL (HN—0)" = N — (V = 1)

It follows that
g, )y =2(1 — I/N).

3. e-deficiency and e-factorization. It was shown by C. Boll in [2] (for the case
x = R¥) that a dominated translation experiment Z°, is more informative than
&, if and only if P is a factor in Q for convolution, i.e. that there exists a proba-
bility measure M so that Q = M = P. This implies that most factorization
theorems for probability distributions have “experiment interpretations.” For
example—if Q is normal then a dominated experiment &, is more informative
than &, if and only if P is a normal distribution with smaller variance.

The result above (as shown by Boll) and Theorem 1 below is an immediate
consequence of the simple fact that a Markov kernel M from y to y is transla-
tion invariant if and only if the auxiliary experiment defined by M is a transla-
tion experiment.
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THEOREM 1. Let P and Q be probability measures on (y, .>7") and let ¢ > 0 be
a constant.

(i) If there is a probability measure M on o7 so that
||MxP — Q|| <e then o(&p, &) < ¢.

(if) Suppose M(y) has an invariant mean and that P & p. Then (& ,, &,) < ¢
if and only if there is a probability measure M on .°7" so that |M x P — Q|| < e.

Proor.
i) Define the Markov kernel N from y to y b
x by
N(A|x) = M(Ax™); Ae .o/ xey.
Then
(PN)(A) = § N(A|x)Py(dx) = (M  P,)(4) .
Hence
1PN — Qll = ||M + P — Q|| S ¢

(ii) Suppose o(&,, &) < ¢. By the invariance considerations in Section 2
there is an invariant Markov kernel N with the empty set as the exceptional set
so that:

IINP — Q| <«
Define M on ./ by M(A) = N(A|0); Ae.%”. Then by invariance:
N(A|x) = M(Ax™Y); Ae %, xey,
so that NP = M « P.
COROLLARY 2. (& p, &) < inf, ||M « P — Q|| and “=" holds if P & p= and

M(y) has an invariant mean.

Consider now the testing problem: (P,: § € ©) against {Q}. For any prior M
and any a € [0, 1] let 3, (a) be the power of the most powerful level « test for
testing M « P against Q. Suppose M, is a least favorable prior distribution on
O for all significance levels a. Then:

ﬁ){o(a) = Bula) for all a€[0, 1]
so that

[|Mx P — Q| = 2sup,(By(a) — a) = 2sup,(By(a) — @)
=M« P — Q| for all M.
In particular, if P € ¢ and M(y) has an invariant mean, then 6(+#,, &) =
||M0 * P — Q]|
Let P, QO and M be probability measures on .5 and ¢ > 0 a constant so that

IMxP— Q<.
Let f be a bounded measurable function on (y, /). Then:

§/dQ = § f(x)(M « P)(dx) + § f(x)(Q — M « P)(dx)
= V[§ Co)P(dy)IM(dx) + <[|f]|
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so that
§ fdQ < sup, § f(xy)P(dy)P(dy) + ¢||f]| -

In [13] Strassen proved that this inequality for ¢ = 0 and all f e C(y) implied
the existence of a probability M so that

MxP=0.
The next theorem generalizes this to an arbitrary ¢ = 0.

THEOREM 3. Let P and Q be probability measures on (y, /) and ¢ = 0 a con-
stant. Then there exists a probability measure M so that

IM+P— Q| <e
if and only if
§fd0 = sup, § fe)P(dy) + <[lfIl; fec)-
ProOF. It remains to prove the “if.”
For each fe C(y) put
O(f) = sup, § fx)P(dy)
and ¢(f) = ¢[|f]]-

Then @ and ¢ are strongly continuous sublinear functionals on C(y). By
Theorem 10 in [13]

{M % P: M is a probability measure on .2/} = {1: 1€ C(y)*, 2 = D}
and it may be checked that
{:2e Co)* Al = ¢} = {2: 2 = ¢}
By assumption
§fd0 = ¢(f) + O(f); fec@)-

By Theorem 1 in [13] there are linear functionals 4, < ® and 2, < ¢ in C(x)*
so that
SfdQ = Z1(f) + Zz(f) .

It follows that there is a probability measure M so that:
10— MsP| <. 0

REMARK. Since [|2f — [|f| || = || fll \‘avhenfg 0 the condition could be re-

placed by § fdQ < sup, § f(xy)P(dy) + %ellfIl, f = 0, f € G(0)™
By the replacement f — — f this condition may also be written

inf, § f(xy)P(dy) = O(f) + <llfIl; feck)
or equivalently
inf, § f(xy)P(dy) < inf, § f(xy)Qdy) + <[l fI] 5 fe
so that
infy || M « P — Q|| = supy s [inf, § fxy)P(dy) — inf, § (0)Qdy)];  fe CQ) -

These relations may be interpreted as relations between risks for invariant
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procedures, since for example § f(xy)P(dy) is the (constant) risk for the invariant
procedure y — xy w.r.t. the decision problem (y, .57, (0, t) — f(107Y)).

Let f be a bounded measurable function on y, let P be any probability measure
on % and let us suppose that M(y) has an invariant mean. Let {2,} be a se-
quence of probability measures on . which is strongly convergent to left in-
variance and let W be the loss function (¢, f) — f(#60~) on (y, %7). Then we
have:

§ (PupW,)2,(d0) = § P(dx) § 2,(d0) § p(dt/x0)f(10-")
= § P(dx) § 2,(x~'d0) § p(d1/0)f(t0"x)
= § P(dx) § 2,(d0) § o(dt/0)f(t0~'x) + § r,(x)P(dx)
where
r(x) = § 2,(x7d0)) § p(de]O)f(10-"x) — § 2,(d0) § p(de[0)f(10-"x)
so that
()] = [12.(x7(+)) — A1) -
Hence
§ (PopWi)2,(d0) = § 2,(d0) § P(dx) § p(d[0)f(107'x) + § r,(x)P(dx)
§ 2.(d0) § p(dt]0) § P(dx)f(107'x) 4 § r.(x)P(dx)
= inf, § f(xp)P(dy) — § [[2.(x7(+)) — Al |If1|P(dx)
— inf, § f(xy)P(dy) as n— oo .

It follows that inf, §{ f(xy)P(dy) is the value of the statistical game—and is
therefore the minimax value. If we combine this with Theorem 3 we get the
following generalization of Theorem 1 (ii):

(ii") Suppose that M(y) has an invariant mean. Then there is a probability
measure M so that ||[M«P — Q|| <¢ if and only if inf,sup, P,oW, <
inf, sup, [Qy0 W, + ¢||W,||] for any loss function W of the form: (6, t) — f(107")
where fe Cy(x) (f is bounded measurable) and the inf is taken over all decision
procedures p. (In particular this holds if there is a Markov kernel M so that
[|PeM — Q|| < &5 0€0.)

We introduce now the notations:

3(P, Q) = infy [|M « P — Q|| = min,, |[M « P — Q]|
= supy sz (inf, § flxy)P(dy) — inf, § f(xy)Q(dy))
= supy ;s (inf, § flxy)P(dy) — Q(f)) ;

A(P, Q) = max (d(P, Q), 4(Q, P))
= Supy sy 5 [inf, § flxy)P(dy) — inf, § fxy)O(dy)| -

Then 6(P, Q) = o(Z, &) (A(P, Q) = A(Z,, &,)) provided Pis (Pand Q are)
absolutely continuous. The last expression for §(P, Q) implies that (P, Q)/2 =
SUPp<qsi (B(a) — a) where B(a) is the power of the most powerful level a test
for testing d, » P: 6 € © against Q. It is clear that:

oP,P)=0, 0Zd6P, 02, 0(P, Q) £ 6(P, R) + 4(R, Q)
and that A is a pseudometric.
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It follows from Theorem 5.2, Chapter 5 in Parthasarathy’s book [11] that—
in the Abelian case—A(P, Q) = 0 if an only if P is a shift of 0. It is trivial that
A(P, Q) = 0 when P is a left shift of 0. H. Heyer has [6] made me aware of
the fact that this condition is necessary in the non-commutative case also. This
may be demonstrated as follows: Let P and Q be probability measures on %7
If there are probability measures R and S such that P = R« Q and Q = S P
(i.e. A(P, Q) = 0) then we will show that P is a left shift of Q (i.e. R and S
may be chosen as one point distributions). We may—without loss of generality—
assume that the identity is a support point for both Rand S. Put ¥ = R x Sand
W=SxR. ThenP = Vx«Pand Q = W=« Qsothat P = (n' 22, V%) « P and
Q = (n' X7, W)« Q. It follows that (see [11] Theorem 2.1, Chapter 3) that
the sequences n~* 2, Vi;n=1,2, ... and n7' 337, Wi, n= 1,2, are tight.
Let ¥ and W be cluster points of respectively the first and the latter sequence.
Then ¥V and W are idempotent (i.e. Vx V=V and W« W =W), VxV =
V*V: 17, W* W= W= W= W,P: V*PandQ: W*Q By[ll]Theo-
rem 3.1, Chapter 3, ¥ and W are Haar measures on compact subgroups of y.
Since the identity is a support point for R as well as for S these relations imply
that the supports of R and S are contained in the support of ¥ and . Hence
WsxV=S«R«V=Vand WxV=WxRxS= Wsothat V=WV =W.
It followsthat P = Vx P=V*+ S« P =V« Q = WsxQ=0.

4. Product experiments, examples. One would expect that reasonable measures
of information could be constructed from the deficiencies. In the case of di-
chotomies for example we could use the deficiency of the minimum informative
dichotomy w.r.t. the dichotomies <7 as a measure of the information contained
in &7*. This measure behaves nicely as a function of n and is equivalent with
the Bayes risk for the uniform prior [3], [14]. Alternatively one could consider
the deficiency 7" w.r.t. the total informative experiment.

Neither of these constructions yield useful results for translation experiments.
To get an idea of the difficulties involved, consider a dominated translation ex-
periment &, on the additive group of real numbers. Let .7 and .7, denote
the experiments (({0}, {@, {0}}), (J; 6 € R)) and .77, = &; respectively (0 is the
one-point distribution in 0). Then by the Markov kernel criterion:

AT <A,

for any experiment .& = ((7/, %), (Q,: 0 € ©)) such that § — Q,(B) is measur-
able for each Be <%.

By the Markov kernel criterion: d(.7;, &,*) = inf, sup,||M — P,"||. Let S
be the map (x,, - - -, x,) — X7, X;- Then

1M — || 2 |MS™ — P = |MS~ — Pyl »2  as 0 oo

By the Markov kernel criterion again: o(&,", .#,) = inf, sup,||MP," — d,|.
Let the additive group G of real numbers act on y, yand © so that g(x) = x + g,
g(xy - x) =+ 9, x,+9). 900)=0-+9;, xey, (X, -, Xx,)€EY"
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and 6 € ©. It follows by invariance that we may restrict attention to invariant
kernels.
Let M be an invariant kernel. Then:

sup, [|[MP;" — de|| = ||MP* — 4| = 2(1 — MP({0}))
=2 — 2§ M({0}| %y, -+ -, X)f(%,) - - - f(x,) dx, - - - dx,
=2 = §2M{0} [y y1 + po - s 10+ P 1 + pa) - - -
S+ ya)dy, -+ - dy,
=2 =2§[§ M{—=p}10, s, - -, p )1 + p)s - -

f(yl +)’n)d)’1]d)’2 Tt dyn
=2

since there is, for each (y,, - - -, y,), at most a countable number of numbers y,
so that M({—y,}|0, y,, - -+, »,) > 0. Hence

NEr, A) =2,

It follows that the deficiencies o(.7, &™) and §(#™", _#,) are useless as mea-
sures of information in the translation case. Deficiencies may, however, be used
to study the amount of information contained in an additional number of ob-
servations. To see this, let us consider a few examples of semigroups (w.r.t.
experiment multiplication) of translation experiments. We will use the notation
a, ~ b, to indicate that lim,_, a,/b, = 1. The y* distribution with n degrees of
freedom (and its distribution function) will be denoted by T',.

ExampLE 4. (Rectangular distribution, unknown scale parameter). Let y =
10, oo[ with multiplication as group operation. Let R be the rectangular dis-
tribution on 10, 1]. Then R, is the rectangular distribution on ]0, #]. Consider
the experiments &,*, n = 1,2, ... .

By sufficiency &, ~ &, where

dP,|dR = nx""'I,, ;|(x) .
Consider the problem of testing:
P, ,:0 > 0 against the alternative P, .

It is then easily checked that the least favorable distribution assigns mass 1 in
6 = 1. Hence

5(gn’ gmﬂ) — S |nx"‘1 — (n+ @)x"+o Y dx = 2<1 n _:_)—n/a[n —z a:l .

It follows that §(Z™, Z"**) ~ (2/e)(a/n) = (0.73 .. .)a/n.

EXAMPLE 5. Let T,, T), - - - be independently and identically distributed, each
having the density de=*; ¢ > 0 where 2 > 0 is unknown. Let .& " be the ex-
periment obtained by observing T,, T,, ---, T,. Then by sufficiency & ™ is

n
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equivalent with the translation experiment &, ~on (]0, co[+). We will see in
the next example that
(s m, At
2\ta a
= Cansze = Lonrvaall ~ () 5 = (048 ) 2.

we/ n

ExaMpLE 6. Consider the translation experiments grn; n=1,2,... on
(10, oo[,¢). For testing {I", ,} against I',, , the one point distribution in (1 4 a/n)
is least favorable at all levels. Hence:

F;+.,<<1 + i)X)
n

L,(X)

01 #1000 = ase = Conpanll = E[L = (14 2)

where X is a random variable which is y* distributed with n degrees of freedom.
If we introduce the random variable Z = (X — n)/(2n)}, then—Dby Stirling’s ap-
proximation and the asymptotic normality of Z—this implies:

0y @) ~ 5o EIUT = 1]

<& F nta
where U is standard normal. Now:
E|U? — 1] = 2(T(1) — Ty(1)) = 2 <3>5 since T'y(1) = I'y(1) + <£>*.
e e

It follows that:

2\t a a
o5 B ) ~ <_> 4 _(048...) %,
re/ n n
ExaMmpLE 7. Let X = (Xi, ---, X,)’ be multivariate normal with unknown
mean & = (£, ---,&,) and known positive definite covariance matrix D. Let

™ be the experiment consisting of n independent observations of X. Then
o(em, wrray ~ 2kT /(k)a/n as n — co. We may without loss of generality as-
sume that D is the identity matrix and, then, this is a particular case of the next
example.

ExaMmpLE 8. Let X be as in the previous example, and let 2# "v"»" " denote
the experiment obtained by taking r, observations on X;;i = 1,2, ..., k. Then
o7 ™ot is equivalent with 7, on (R¥, +) where P, ., is the joint
distribution of k£ independent normally distributed variables Zl, ..., Z, where
EZ, =0and VarZ, = l/n,. Leta, >0;i=1,2, , k. The least favorable
distribution for testing P, ,, ...,: §¢€R against P is the one
point distribution in (0, 0, - - -, 0) so that

nytag,ngtag,--,nptay

5(%7;1 e S mte nk+ak) _ E‘l k 1<<1 + &>%expl:—'%‘aiYi2:|>2
n

n.

1 (1

where Y, Y,, - - -, Y, are independent standard normal variables. Put N = 3%

111
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and suppose n;/N — 2, > 0 as N - co. Then
O e, e ~ E|TE a (Y — 1)|2N)
as N — co. In particular, if ¢;/2, = C; i = 1, 2, -+, k, then

5.~ CEIZin Y — k| _ 2kC(T (k) — T1a(K))
o 2N 2N

Since I',(k) — I';,4(k) = 2T,’(k) this may be written 6, ~ 2CkT/(k)/N as N —
oco. The asymptotic equivalence in Example 7 follows now by putting C = ka
and N = kn.

The asymptotic behavior of the powers of the experiments in these examples
is very different from the asymptotic behavior of powers of experiments with
finite parameter sets. If & = ((7/, <2); (Q,: 6 € ©)) is an experiment with finite
parameter set ©, then 6(Z™", _#,) — 0 as n— co with exponential speed—pro-
vided 6 — Q,is 1 — 1, and & ~ _#Z,.

5. Convergence of translation experiments. When is gPl’ ?5,,2, - - - asymptotically
equivalent with &7 A sufficient condition is clearly strong convergence of
P,, P, ... to P up toa shift. The necessity—under regular conditions—of this
condition is the essential part of Theorem 9. It should perhaps be emphasized
that—in general—A convergence does not entail strong convergence of the in-
dividual probability measures. In the case of finite parameters space LeCam
[9] has shown that A convergence of standard experiments is equivalent with
the weak convergence of the individual probability measures.

as N — oo.

THEOREM 9. Let P be absolutely continuous.® Then A(P,, P) — O if and only if
there exist elements a,, a,, - - - in y so that |10, * P, — P|| = 0.

REMARK. This result is analogous to the result [14] that a net of experiments
on a finite and fixed sample space converges to a minimal sufficient experiment
if and only if the individual probability measures converge up to permutations
of the sample space. This theorem could have been formulated for nets as well,
since it merely states that two pseudometrics on the set of absolutely continuous
probability measures are topologically equivalent—the other pseudometric being:
(P, Q) — inf,||o, + P — Q||. The proof follows directly from Proposition 10 and
Proposition 11 below. '

PROPOSITION 10. Let y be a second countable locally compact group with Borel
class 7. Let N,;n=1,2, ..., N and P be probability measures on o7 such that
N, — N and P is absolutely continuous. Then ||[N, x P — N x P|| — 0 as n — co.

Proor. Let v denote a left Haar measure on ;. Let f be a version of dP/dy,
and let g be a nonnegative continuous function with compact support. Put:

s(x) = § fy7x)N(dy); Hx) = § g(y'x)N(dy)
5u(¥) = S 0)N(dy);  and  £,(x) = §g(y XN, (dy) .

* Absolutely continuous without further qualifications is always w.r.t. Haar measure.
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Then:
:dN”*P S:‘ﬂf——lf, §t,dv=\tdv = (gdv.

s, -,
dv dv

Moreover ¢,(x) — t(x) for each x € y so that by Scheffe’s convergence theorem
[12]

§|t, —t|ldv—0.
We get successively:

§ |t — sldv = §[§ g(y7x)N(dy) — § f(y~)N(dy)|»(dx)

= 1§ 90r™'%) — fy~'X)N(dy)|v(dx)
= S5 l9(r7'%) — fy~'x)|N(dy)]v(dx)
= §[§ lo(y™'x) — fy="x)|x(dx)IN(dy)
=S§[Sl9 — flavIN(dy) = § |f — gldv.

And similarly
§1t, — s, |dv < §|f — g|av.

Hence

[Ny« P— NxPl| = § s, — sldv < s, — t,|dv + § |t, — 1] dv

+ 51— sy =25 |f — gldot I, — 1 do
so that
limsup,|[N,« P — N« P|| <2§|f—g|dv.

The right-hand side here may be made as small as we wish since the set of
continuous functions with compact support is dense in L,(v). Hence

IN,+P — N« P|| >0.

PROPOSITION 11. Let y be a second countable locally compact Abelian group with
Borel class .-/
LetP;n=1,2,.-. . M;n=1,2,..-,N;n=1,2. ... and P L p be proba-
bility measures on .5/ such that:
M,«P,— P
[|[N,* P — P, - 0.
Then inf, ||P, , — P|| — 0.

PRrOOF.
1°. Let us first prove the proposition under the additional assumptions that
P, — P and that N, — N. By Proposition 10

[|N,* P — NxP|| >0
so that ||P, — N x P|| — 0. It follows that N + P = P. Hence
[|P, — P||—0.

2°. Consider the general case. Put ¢, = inf, ||P, , — P|| and let ¢ be a point
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of accumulation of ¢,;n = 1,2, .... Let Ty k=1,2, ... be a subsequence
such that lim,_,, Oy, = 0. By [11] Theorem 2.2, page 59, M,;n=1,2, ...
and P,;,n=1,2, ... are, respectively, right and left shift compact. It

follows that we may without loss of generality assume that there is a sequence
a,, a, --- so that M, %4, 1— Mand P, =9, *P, — P. Hence MxP =
lim(M, 3, -1+ P,) = lim M, P, = P.Byassumption: ||N, P — P, [[—0
so that ||9,, * N, * P — P,|| —» 0. We may—again without loss of generality—
assume, since P, — P, that 4, = N, — N where N« P = P.

This relation together with the relation M « P = P implies A(P, P) = 0 or
equivalently that there is an a so that: P = g, = P. We have altogether shown
that: M, « P, > P, |[N,«P — P,J| >0, P, > P and N, >N where M, =
0, %M, %08, -1, N, =30, N, *d,1and N = N x4§,-1. It follows from 1° that
0 = lim||P, — P|| = lim||d,, * P,, — 6, x P|| = limo, = o sothato =0. []

ExAMPLE 12. Let us—in two extreme cases—compare convergence as studied
so far, with convergence for restrictions to finite subparameter sets.

A sequence <, , @, , - - - converges for restrictions to finite subparameter sets
to . #(. 7)) if and only if ||P,, — P,|| — O (||P,, — P,|| — 2) for any ¢ (+ iden-
tity) in x. Ordinary convergence to . Z{(#,), however, can never occur when
x is not compact (when y is uncountable and the P,’s are absolutely continuous)
since in this case d(..#;, &) = 2 for all P (d(&,, , #,) = 2 for all n).

COROLLARY 13. Suppose y is of the form R*Z*(R and Z are the additive groups
of real numbers and integers respectively), that P, P,, P, - - . are all symmetric, and
that P & p. Assume infy||P, , — P||—0 as n— co. Then ||P, — P|| -0 as

n— oo.

Proor. Let ¢ be a point of accumulation of ¢, = ||P, — P|;n=1,2, ...
and let Oy k=1,2, ... be a subsequence converging to ¢. By assumption
there is a sequence 6,; k = 1,2, ... in O so that

1Py, .0, — Pll = [|Pu, — Pyl >0
and by symmetry
[|Pu,.—0, — PIl = ||P., — Pyl > 0.

Hence [|P,,, — P|| — 0 so that #, — 0. Hence
P& p—o=lim,o, <limsup,|P, — P,|l + limsup,||P, — P||=0.

REmMARK. That some conditions in addition to symmetry and absolute con-
tinuity are unavoidable may be seen from the following example. Put y = {0, 1}

where0+0=1+1=0and0+1:1+0:1.PutP1:P2=~~-,5,P:5,
and¢, =0,= ... =1. Then||P,, — P||=0,n=1,2,...but|[P, — P|| =
2,n=1,2,.... Sequences {P,} and {6,} behaving like this may also easily be

constructed on the circle group.
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Let us next consider Cauchy sequences. It has been shown by LeCam [9] that
in general Cauchy sequences of experiments for the pseudometric

A(#, 7)) = sup{A(&F, F ) F finite subset of O}

converges in that pseudometric. (If & and % are dominated experiments then
A&, &) = A(Z, &7).) It follows for example that to prove A completeness
of the set L,(¢) of probability distributions in L,() it would suffice to show it
is closed. This, however, seems to be easier said than done. We will not rely
on this result here and instead demonstrate directly that Cauchy sequences (for
A) of probability measures on %" converge. This will then imply as is easily
seen that L,(y) is closed and therefore complete.

ProrosiTiON 14. Suppose sup,,., 6(P,,, P,) — 0. Then there is a P so that
o(P,, P) — 0.

ProoF. We may without loss of generality assume that (P, ,,, P,) < 27", n =
1,2, ... . By assumption there is a sequence M,, M,, - .- of probability mea-
sures so that ||M, ., * P,,, — P,|| < 27". Hence: |[M;* - -« M «M, *P, ., —
M, x ...« M, P, <2 Itfollowsthat M, -.. x M, = P, converges strong-

ly. [
ProrosiTION 15.  Suppose sup,s, o(P,,P,)— 0 and that P,— P. Then
é(P, P,) — 0.

Proof. Put e, = sup,,., 6(P,, P,) and let fe C(x)*. By Theorem 3 P, (f) <
sup, § f(xy)P,(dy) + 1¢,||f|| when m = n m — oo gives:

P (f) = sup, § f(xp)P(dy) + 3e.llf]] 3 fe Go*
so that 6(P, P,) < ¢,. [

THEOREM 16. Suppose A(P,, P,) — 0 as m,n— oo and that P, — P. Then
A(P,, P) — 0.

Proor. By the previous proposition §(P, P,) — 0. It remains to show that
é(P,, P)— 0. Let fe C(x)*. Then

Poin(f) = sup, § fxp)Pu(dy) + 3e.llfll where ¢, —0.
m — oo gives 6(P,, P) < ¢,. []

THEOREM 17. Suppose A(P,,, P,) — 0 as m,n — oco. Then there is a P so that
A(P,, P) — 0.

REMARK. Clearly P is absolutely continuous if infinitely many of the P,’s
are.

Proor oF THE THEOREM. By Proposition 14 {P,} is left shift compact. The
theorem now follows from Theorem 16. []

ExampLE 18. Let P(Q) be the probability measure on the integers assigning
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masses 3, 4and 1 to —1 (1), 0and 1 (— 1) respectively. Then{ = ||[P+ M — Q|| =
||Q + N — P|| where M(N) assigns masses % and £ to 0 and 1 (— ) respectively.
It follows that A(P, Q) < L. This is considerably less than § which is the best
approximation using translations only. It would be interesting to have an ex-
ample of sequences {P,}and {Q,}such that A(P,, Q,) — 0 while inf, || P, , — Q|| - O.
If-on the other hand- it could be shown that the pseudometrics A gand (P, Q) —
inf,||P, — Q|| are equivalent, then the convergence theory in this paper might
be greatly simplified.
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