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MARKOVIAN INTERACTION PROCESSES WITH
FINITE RANGE INTERACTIONS'

By RicHARD HOLLEY
Princeton University

An elementary proof of an existence theorem for infinite particle sys-
tems interacting through a finite range interaction is given. The results
are then used to prove that the system preserves ergodicity of the initial
measure.

1. Introduction. Existence theorems for systems of infinitely many interacting
particles have been proved by Dobrushin (1971), Harris (1972), Liggett (1972),
and Holley (1970). All of these proofs have either been quite long or have used
strong theorems concerning semigroups of operators. In this note we present a
short elementary proof of an existence theorem by combining the ideas in the
papers of Harris and Liggett with techniques that were first used by Robinson
(1968). The price of the simplicity of our proof is that the resulting theorem is
not as powerful as the theorems of either Liggett or Harris. Liggett treats inter-
actions which may have an infinite range, and Harris’ method can be applied
to the individual trajectories. Our theorem covers neither of these situations.

In the third section we use the estimates obtained in the existence proof to
prove that under suitable conditions the adjoint semigroup preserves ergodicity
of the initial measure. When this result is applied to examples such as the speed
change with exclusion model of Spitzer (1970), the physical interpretation is that
if the system is initially in a pure phase, then it remains in a pure phase at all
future times.

2. The existence theorem. Let Z be the integers and Z* the v dimensional cubic
lattice. For each a € Z* let E, be a compact Hausdorff space. We will take

E = Haez“ Ea
with the product topology for our state space.
Let & be the Banach space of continuous functions on E with the uniform norm.
If A is a finite set, |A| will denote the cardinality of A.
For each finite A c Z* let 4, be those elements of <" which only depend on
the coordinates in A. Then
Z = Ui 4n
is dense in €.
Let . be the set of v dimensional cubes in Z* whose sides are of length L and
parallel to the axes. For each X ¢ & we have a linear operator, Q,, on %, and
we make the following assumptions about the Q,.

(2.1)  There is a finite K such that ||Q,]| < K for all Xe &,

Received December 22, 1971; revised March 1972,
1 Research partially supported by N.S.F. grant GP-33314X.

1961

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to Q%J%

The Annals of Mathematical Statistics. BINORN
WWw.jstor.org



1962 RICHARD HOLLEY

(2.2) If fed,and X n A = @, then
Q. f=0.

(2.3) Iffed,and XN A #= @, then Q,fe A, 4.
(2.4 There is an increasing sequence {M,} of finite subsets of Z* with
U. M, = Z* such that for all n

S, = Z}(cM” QX
is the infinitesimal generator of a continuous positive contraction semigroup,
T,™, of operators on & . (Clearly %7, is bounded and therefore

k
T = Do 4*
The assumption is that 7,™ is positive and has norm less than or equal to one.)
Finally, for fe =, let

(2.5) = Pyesr Uf-
Note that because of (2.2) and (2.3) the summation in the definition of &7 is
really only a finite summation, and .7 is again in Z.

Before stating the theorem we identify each of the objects mentioned so far
in the special case of speed change with exclusion. We first take each E, equal
to {0, 1}. Let L = 2L,. Then each X e . is a cube centered at some point
ac Z” and having sides of length 2L,. The operators Q, have the following
form. For each fixed X e.” we are given a function ¢(X, ), in 4, which is
positive and bounded by K. We are also given a transition function p(a, b) with
the property that p(a, b) = 0 if |a — b| > L,. If a is the element in the center
of X, feZ, and 5 € E, then

Qi f(n) = Zsex (X, n)p(a, (@)1 — 9(O)[[(2a,8) — f(D)] 5
7a,5(€) = 7(c) if ¢c#+a and c=#b
= n(a) if ¢c=2b
= 9(b) if c=a.

where

If X, denotes the element of & with center a, then

() = Zape s «(Xo» )P(@; O)p(@)[1 — 7(0O)1[f(0a,0) — f(0)] -

It is easily checked that (2.1)—(2.4) hold in this example (see Spitzer (1970)
where a description of the corresponding Markov process is also given).

(2.6) THEOREM. There is a continuous positive contraction semigroup T,, such
that for all t < oo and all fe &
(2.7) SUPogse [|7of — T,"f 1| = 0 as n—oo.

Moreover for fe < and t < [K(L + 1)*e'“*V"]~! we have

(28) Tf = T b 57
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T, is the unique semigroup whose infinitesimal generator, when restricted to <7, is
given by (2.5).

In the future we will denote [K(L + 1)*e'**V*]-! by K.

As in [3] we only do the proof for 1 < K,. The extension to arbitrary ¢ fol-
lows easily from the semigroup properties of the 7,™.

The following lemma is crucial. The proof is very similar to the proof of
Lemma 1 in [8].

2.9) LEMMA. Let fe A,. Then for all N and n
(2.10) 175" 1] = |1 {Int ™Ky
The same bound holds for || .7 "f||.

Proor. We do the proof for ||.%7"f||. The proof for [|-%5"f]| is similar.

For any finite set, A, contained in Z* we let

SA)={XeF: XnA=+Q}.
Now for fe 4,
S = Ty Dixgey 2y B, By U S

As noted after (2.5) this summation has only finitely many nonzero terms, and
there is no difficulty in rearranging the terms to get

le sz e an an Qx,,_l e Qxlf'
For X,, - -+, X,_, fixed we see by (2.2) and (2.3) that the summation over X,
can be restricted to S(A U X; U X, U .- U X,_,). By repeated application of
this argument we see that
Sf = leesm) ZXZES(AUXI) tee aneS(Auxlu---an_l) an T Qxlf~
Therefore

(2'11) ||Mnfll = leeS(A) e ZXneS(AUXIU---UXn_l) HQXn” e “QX1|| ”f“
é Kn”f” leeS(A) te aneS(Aquu“-UXn_l) L.

We next note that [S({y})] = (L + 1)*. Therefore the multiple summation on
the right side of (2.11) can be bounded by

ZyleA leesuyl;) e ZyneAuxlu--.an_l ZXneS((yn)) 1
S (LA (A + (n = 1)L + 1))
X ZuleA leesuyl)) e Z:y”_le/\uxlu~-ux,,_2 ZXn_leS((y,n_l})
S @+ DI UA + G — DI+ 1]
< (L + DAl 4+ n(L + 1)]"
= (L + Dal[JA] + n(L + 1)]"/n!
< (L + ly"nlexp{|A| + n(L + 1)} .
The proof is completed by substituting this into (2.11).
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Returning to the proof of the theorem, we next notice that if A, M;, and M,
are such that A ¢ M; c M, and the distance from A to the complement of M;
is larger than vipL, then

(2.12) = mf  forall fed, andall m<p.

This follows from (2.2), (2.3), and the definitions of .%/; and ..

Let A be any fixed finite subset of Z* and let a(p) be the largest integer such
that viLa(p) is less than the distance from A to the complement of M,. From
(2.4) it follows that a(p) goes to infinity as p goes to infinity. Using (2.12) and
Lemma (2.9) we see that for fe 4,, t < K, and j < k,

SUPg,z [| 7.7 — TOfN] < 201 flle™! Ximaes (1K™

which converges to zero as a(j), and hence as j, goes-to infinity.
Thus for all fe & and all s < K|, T 9f converges to a limit, which we denote
by T, f. Furthermore the convergence is uniform for 0 < s < ¢t < K, (i.e., (2.7)

holds for f e ).
An argument similar to the above shows that for t < K, and fe &

tn
(2.13) Do = Tof -

Since by (2.4) each 7,™ is a contraction semigroup we must have ||T,f|| <
||f]] for all fe . Thus T, extends to a semigroup on all of " and ||T,|| < 1.
For the same reason (2.7) extends from 7 to all of <. It follows immediately
from (2.4) and (2.7) that T, is positive and continuous. Also (2.13) makes it clear
that the infinitesimal generator of T,, when restricted to &, is given by (2.5).

Only the uniqueness remains to be proved. Suppose 7, and T,’ are two semi-
groups whose infinitesimal generators are given by (2.5) for fe . Since & is
dense it suffices to show that 7, and 7, agree on 7 for t < K,. Let fe 4,.
Then

t” 1
Tof = Dt 7 + < §6 0 = ) T,o7 " ¥if ds

and
T/f = S oo _Nl' §o(t — )T, o7 i ds |
n: .

Therefore

2
ITef = TSNl = 57 11

= 2e™M|IANCN 4 DK )Y

Since this is true for N arbitrarily large, we see that if + < K, and fe & then
T.f=T/f.

This completes the proof of the theorem.

E is a compact metric space and T, is a continuous semigroup on . Therefore
there is a standard Markov process, &,, whose transition function is determined
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by T, (see Blumenthal and Getoor (1968) Theorem (9.4) page 46). For & a
configuration in E and 4 a Borel subset of E we will let P¥(§, € A) denote the
probability that starting from &, the Markov process &, is at a configuration in
A at time s.

Let p be a probability measure on the Borel sets of E. We define the measure

T,*p by the formula

T*pu(A) = §5 P4(§. € A)p(dE) .
Note that for fe &

§f)T*p(ds) = § T, f(€)(dE) -

Therefore, since T, is positive and 7,1 = 1 (%1 = 0), it follows that T, *p
is again a probability measure. One is interested in the behavior of T,*x for large
t. The results in the next section are useful in this connection (see Holley
(1972)).

3. Preservation of ergodicity. In this section we want to consider shifts in the
lattice. Therefore we assume that

E, = E, for all x.
For each & ¢ E and a € Z* define 7,(£) by the formula
7 (€)(x) = é(x — a) .

For each f e & define
Ta(f) :f' Ta

A probability measure, g, is shift invariant if for all fe € and alla e Z2*
§ 2(/)E)(dE) = § f(§)p(de) -

Let _ be the set of shift invariant probability measures. In addition to
(2.2)—(2.4) we need two further assumptions about the operators Q. They are:

(3.1) QyiaTaf = 7. Qe f forall aeZ* and fe¥&
and,
(3.2) if fez and g e 4, with X n A = @, then

Qu(f9) = 99 f -

These two properties are easily seen to be true in all of the applications which

we have in mind (see [5] or [6]).

(3.3) LEMMA. Let fe ©. Then forallae Z*and 0 < t, 7, T, f = T, 7, f.
Proor. By the semigroup properties of 7, it clearly suffices to prove the lem-

ma for t < K,. Since both z, and T, are bounded operators it suffices to show

that 7, T,f = T,z f for all fe &. Note that r, maps < into itself. Therefore
by Theorem (2.6)

w I w I
T f =7, Zn:o%—' S = Zn=omra./9/”f.
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The definition of % together with (3.1) imply that r, % = .%%,. Therefore
Wl = Do f = Tonf .

3.4 CoROLLARY. T,* maps _# into itself.

Proor. Let pe #

§ 2T p(dE) = § T,z fiE) () = § 7, T, f(§) ()
= § T.(O)m(de) = )T * () -
REMARK. This proves (3.2) in [5] which was left unproven there.

3.5) LemMMA. Letf,ge A, and 0 < t < K,. Then
iy [T fe9) — (TS )Tz 9)l[ = 0.
Proor. From Theorem (2.6) and Lemma (2.9) it is seen that
(TNT29) = Do Bima (NS5,
and
T(fe8) = Do 57(fe0) -

Let ¢ > 0 be given and N be so large that

| B & S O )| < 6

and
| D Do) < <
Then
T (fr.9) — (T.f)NT.7,9)|]
= ” 2in=o ;—7: [ (fr.0) — X%, (g)(yjf)(yn_ffag)]u 42

Thus it suffices to show that for |a| sufficiently large
(3.6) S(fra9) = Lo U )S "7, 9)
forall n < N.

If |a| is large enough so that the distance from A to A 4 a is greater than
NutL, then (3.6) follows by induction from the definition of .97 (2.3), (3.2),
and the observation that if g € 4, then 7,9 € 4,,,.

We will say a measure ¢ in . is ergodic for the shifts r, if whenever z,(4) =
A for all ae Z*, p(A) is either zero or one. Let f>9€% and consider the
statement

(3.7 limy o N+ 1™ Foes, §fE)7.9(6)e(dE) = § f(6)1(dE) § 9(6)pu(dE)

where By = {a€Z*:a = (a, - -, a,) and max|q;| < N}.
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By using the ergodic theorem for groups of transformations with more than one
generator (see Wiener (1939)), it is not difficult to see that a necessary condition
for u to be ergodic is that (3.7) holds for all f, g € Z". It is also easily seen that
a sufficient condition for x to be ergodic is that # € _# and p satisfies (3.7) for
all f, g e 2.

(3.8) THEOREM. Let y e _# be ergodic for the shifts t,, and assume that (3.1)
and (3.2) hold. Then T *pu is ergodic for all t.

ProoF. As remarked above, it will suffice to show that if xe . satisfies
(3.7) for all f, g € €, then T,*p € _ and satisfies (3.7) for all f, g € Z.

We do this for all # < K,. The general case then follows because T.* is a
semigroup.

From Corollary (3.4) we know that T,*yu is in 2 Hence it suffices to choose
f> 9 € Z and show that (3.7) holds for 7' *p.

If f, g € & then there is some finite A such that f, g € 4,. By Lemmas (3.3)
and (3.5)

lim g e |§ Tl fra 9)(E)1(dE) — § (T, fE))(za T, 9(§))x(d€)| = 0.
Thus

limy 2N + 1) Zacny § Te(frag)O M) — Zaesy § T Te9(6)(d)| = 0.
But by the assumption on g

limy o 2N + 1) Zaeny § (TN Te9(8)) 1(45)

= § T f(§)(d€) § T, 9(E)p(dE) -
Therefore (3.7) holds with g replaced by T,*p.
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