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ORDER OF DEPENDENCE IN A STATIONARY NORMALLY
DISTRIBUTED TWO-WAY SERIES

By P. K. BHATTACHARYA
University of Arizona

Order of dependence is defined in a normally distributed two-way
series. Under certain stationarity and symmetry conditions it is shown
that when the extents of the series in both directions are large in compari-
son with the order of dependence, the joint density function reduces to a
simple form with a small number of parameters after some adjustments.
In this form a central role is played by the Kronecker products of some
matrices having common eigenvectors. Maximum likelihood estimates of
the parameters and likelihood ratio test criteria for certain hypotheses on
order of dependence are derived.

1. Introduction. If, ina normally distributed stationary time series {x,, - -, x,}
with zero means, the conditional distribution of x, given x,_,, - - -, x, depends
onlyon x, j, ---,x,_,fort=9q+1,..., 7, and if T is large in comparison
with ¢, the joint probability density function (pdf) of x,, - - -, x, can be brought
to a simple form by some small adjustments. Since these adjustments involve
only the end terms of the series, the interdependence in the rest of the series
remains practically unaffected and can be studied in a systematic manner in
terms of only ¢ + 1 parameters under the simplified probability model. The
above simplification was adopted by Anderson (1962) whose principal concern
was to develop optimum statistical decision procedures for determining the
value of ¢ which is called the order of dependence in the time series.

In this paper our aim is to develop a simple model for the interdependence in
a normally distributed two-way series {x,,, s = 1,..., S, t = 1,..., T}satisfying
some stationarity and symmetry conditions by limiting the order of dependence
in a sense to be defined in the next section. Note that for a time series, i.e., a
collection of random variables indexed by the integers, the definition of order
of dependence is based of Markov dependence. Since there is no natural order-
ing among 2-tuples of integers (s, ), the order of dependence in a two-way series
can be defined in various ways. The particular definition we have adopted here
is motivated by the following considerations, (i) in many physical situations x,,
denotes some observation on the plane at the point (s, ¢), e.g., the illumination
on a certain grid in a discretized black and white picture, where the dependence
of x,, on x,, tends to be weak as (s, #,) and (s,, #,) are far apart in the sense
that (s, — ;) + (1, — ,)* is large. This has determined the nature of Markov-
type dependence in our definition. (ii) This definition lends itself to the methods
involving Kronecker products of matrices and (iii) it generalizes (as indicated in
Remark ITI of Section 7) to higher dimensions without much additional difficulty.
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Starting from some stationarity and symmetry conditions we then show that
when the order of dependence ¢ in a normally distributed two-way series
{x»s=1,.-.,8,¢t=1, ..., T}is small in comparison with S and 7, its joint
pdf can be brought to a simple form by small adjustments. These adjustments
involve only those random variables x,, for which at least one subscript is either
too small or too large and results in a form of density function described in terms
of relatively few parameters. Maximum likelihood estimates of these parameters
when the order of dependence is known and likelihood ratio test for an unknown
order of dependence are derived.

2. Order of dependence. For a two-way series {x,,} = {x,,s=1, ..., 5, ¢t =
I, ..., T} we write
(1) X = Xy o0y Xgy) s t=1,...,T,
X = (xn’ ceey Xgpy vt vy Xips ...,xST),

We assume that x follows an ST-dimensional nonsingular normal distribution.
Let u,, = x,, — E(x,,|X,_;, -+, X;), t = 2, ---, T and by u, denote the S-dimen-
sional random column vector whose sth coordinate is u,. The following are
well-known facts in multivariate normal theory (see, e.g., Anderson (1958)).

Lemma 1. E(x,|X,_,, -+, X,) is a linear function of {x,,, s =1, ..., 8, t' =
1, .-+, t — 1) and u, follows an S-dimensional normal distribution with mean vector
0 and covariance matrix I', which does not depend on x,, - -, x,_,.

We now define order of dependence as follows.

DerINITION 1. The order of dependence in a normally distributed two-way
series {x,,} is defined to be the smallest ¢ = 0 so that

(a) For t =2, ..., T, the conditional distribution of x,, given x,_,, - - -, x, de-
pends only on the random variables x,,,, for which (s’ — s)* 4+ (' — t)’ < ¢*, and

(b) Fort=2,...,Tand s = [¢g] + I, ---, S, the conditional distribution of
u, givenu,_,,, -+, u, depends only on u,_, ., -+, Uy_r41,-

Clearly, the ordear of dependence ¢ in a normally distributed two-way series
can only be a number of the form (k* + k*)! where & and k are integers, viz.
0,1, 2% 2, 5% etc.

ReMARK 1. In Definition 1, condition (a) is on the nature of dependence
between the columns x, of the two-way series {x,} and condition (b) is on the
nature of dependence within the columns after eliminating the effects of between
column dependence.

REMARK 2. We may replace ¢ by ¢, in condition (a) and by ¢, in condition
(b) to obtain a generalization of Definition 1. All the results in this paper can
be easily modified for this slightly more general definition of order of dependence.
In fact, we can make condition (a) a little more flexible by allowing the condi-
tional distribution of x,, given x,_,, - - -, x, to depend only on those x,,, for which
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s—a(t—t)< s <s+a(t—t), ' =t—1,.-., 1 —q, wherea(l) = a2) = .- =
a(q,) are given numbers.

REMARK 3. Suppose the dependence in {x,} is of order ¢ according to our
definition. What can we say about the conditional distribution of x, on
X,_15 +++y X% and x,_;,, .-, X, i.e., the conditional distribution of x,, on the
random variables preceding itself in the lexicographic ordering according to
which the two-way series is arranged to form the vector x in (1)? Let§,, 7,, ¢,,,
s=1,...,8 t=1,..., T be independent normal random variables with mean
0, E§* =0 > En’ =0, > Eel, = o, and let a« = {1 — o,}/a?}}, = {1 — AT
Definex, = §,,s=1,---,8, x, = ax,, ,+9,t=2,-.-,T,and x,, = ax, ,_, +
BXy1o + ey 5=2,--+,8,t=2,...,T. Then {x,,} satisfies the conditions of
Definition 1 with g =1, but E(x,, | x,_1,-+ -, X;, X,y s+, X)) = X, 4 BX,_1, —
afx,_,,_,. Infact, it can be shown in general, that if the dependence in {x,,} is
of order ¢ according to our definition, then the conditional distribution of x,,
given the preceding random variables in the lexicographic ordering depends only
on {x, |5 —[¢ —(t— Y] —[qlS S Ss+[¢—(—F], r=1—1,...,
t—[g¢l}and on x,_, ,, -+, x,_1,; . However, the converse is not true in general.

We shall restrict our attention to series which satisfy the following conditions.

ConpITION 1. E(x,) = ¢ for all s, 7.
CONDITION 2.

Cov (X,0)s Xop1,) = COV(X, Lhiisn Xointyr) for all s, 1,, s, t,, h, k.
ConpITION 3. Covix,,s X, ih0k) = COV(X,y, X4 4is) for all s,¢, A, k.

Conditions 1 and 2 are stationarity conditions and Condition 3 is a symmetry
condition.
Let y,, = x,, — &. Then {y,} is a normally distributed two-way series satisfy-

ing Conditions 1—3 with E(y,) = 0. Defining y,, ---, y, and y from {y,} in
the same way as x;, ---, x, and x were defined from {x,} in (1), we see that
yst - E(.yst I.yt—l’ t "yl) = Xst - E(xst‘xt—l’ R xl) = ust‘ Thus the Order Of

dependence in {y,} is the same as the order of dependence in {x,,}. We shall,
therefore, study {y,,} for a while, remembering that
2) y=x—£1

where 1 is the ST-dimensional column vector with 1 for each coordinate.
In view of Lemma 1, the following lemma is an immediate consequence of
condition (a) in Definition 1 and the stationarity Conditions 1 and 2.

LeEMMA 2. If the dependence in {x,,} is of order q and if y,, = x,, — &, then there
exist S X S matrices B, -- -, B,y and I so that
E(p|Yecrs <3 ) = 20 B Ves
E({y, — 2 Byl — 2R Beyead) =T
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In the next two lemmas we shall draw some conclusions about the structures
of the matrices 5, and I'. Before stating these lemmas let us introduce a few
notations and a definition.

For k =0, 1, - .-, [q], we denote by (g, k) the largest integer so that k*
(¢, k) < ¢*. Then [q] = (q,0) = »(¢, 1) = --- = »(¢,[g]) = 0. If g is an in-
teger then v(¢q, 0) = g and v(q, ¢q) = 0.

Forr=1, ..., T, let E, denote the T X T matrix with {’s on the diagonals
r elements above and r elements below the main diagonal, and 0’s at all other
places. For r =1, .-, S, let F, denote the the S x S matrix with the same
property. We shall denote by E, the T x T identity matrix and by F the S x S
identity matrix whenever convenient, but when there is no danger of confusion,
we shall use the symbol 7 for both the § x S and the T x T identity matrix.

DEFINITION 2. An N X N matrix is said to have property =,, ., (5, ., for
my, my =1, - -, N, if it has 0’s everywhere except possibly in the first (last) m,
columns of its first m, rows and in the last (first) m, columns of its last m, rows.
Property =,, ., (7}, ) Will simply be mentioned as =, (=,,’).

LemMA 3. If the dependence in the series {x,} is of order q and if 2v(q, 1) < S,
then for the matrices f,, - - -, f;,;in Lemma 2, there exist constants {6, k = 1, - .-,
[q1,1=0,1, ..., vq, k)} so that

B = Zi%® 0uF + p,
where p, has property @, 1, .0 1+via k)

Proor. Since the order of dependence in {x,,}is g, the entry on the sthrow and
s’th column of 8,, being the coefficient of y,, ,_, in E(y,,|y,_1, ++ -, 31), is O for
|s" — s| > v(q, k). It now follows by definition of the matrices F, that the entry in
the sth row and s’th column of g, is 0 whenever |s" — s| > v(q, k). We therefore
have (a) the first v(¢q, 1) rows of p, can have nonzeros only in the first v(q, 1) +
v(q, k) columns, (b) the last v(g, 1) rows of p, can have nonzeros only in the last
v(¢9, 1) + v(q, k) columns, and (c) in all other rows of p, all entries that are more
than (g, k) elements to the right or to the left of the main diagonal are 0’s. To
complete the proof it will now be enough to show that except for the first v(g, 1)
and the last v(g, 1) rows in §,, all entries on the main diagonal are equal and all
entries on the diagonals r elements to the right and to the left of the main diago-
nal are equal for r = 1, - .., v(q, k). But this follows because for s = v(q, 1) 4
1,.+-,8 =g, 1)and! = 0,1, .., v(q, k) the coefficientsof y,_, ,_,and y,,, ,
are equal by the symmetry Condition 3, and these coefficients are the same for
all s by the stationarity Condition 2.

LEMMA 4. If the dependence in the series {x,} is of order q and if v(q, 1) 4
[9] < S, then for matrix ' in Lemma 2, there exist constants {r,, I = 0, 1, - .-, [q]}

so that
=34 nF + p

where p, has property &, 1).1,1-
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Proor. Consider uy,, - - -, ug, for any fixed ¢ between [¢] + 1and 7. By con-
dition (a) in Definition 1,
Uy = Yoo — E(Vor|Vier> =5 1)
=Y — EQulypes ' =1 =1, -+, 1 —[q],
s=s5s—v(q,t—1t), -, 5+ (g, t—1))
for s = v(¢q, 1) + 1, ---, § — v(q, 1). It therefore follows from the stationarity
Condition 2 that {u,,, s = v(¢q, 1) + 1, ---, S — »(q, 1)} is a normally distributed
stationary series with mean 0. Now let g and g* denote the joint pdf of u,,, - - -,
ug, and of uy,, -+, U, 1), TESPectively and let g (u,, | u,_, ,, - - -, u,,) denote the
conditional pdf of u,, given u,_, ,, - - -, uy,.
Then
3) 9(iys - -+ Ug,) = const. exp[—4u,'T"u,]
G (s + o5 Uyrgaiqne) = const. exp[—zd(uy, - - Uyiqn+1a1.0)]
where ¢, is a quadratic form. Also, by condition (b) of Definition 1 and due to
the stationarity of {u,, s = »(q, 1) + 1, - - -, S — ¥(q, 1)} already mentioned,

TT5- g +ta1er Go(ae | Homnor == o5 Uae)
(4) = comnst. exp[—(20%)7" 2 g1 (e — @1lyy, —
— A yty1,)' — 3PaUs_vign-ta1eres * s Hsi)]
where ¢, is a quadratic form, ¢* = Var(4,,) and «a, is the coefficient of u,_, , in
E(ug |Uy_y s+ +s Uy_ry,)- Now by the same argument that leads to formula (14)
of Anderson (1962), we have

—2 §18—v(g,1) . — o
g SO g (M — Uy — - A1 Uy_(q1,)

(5) = 2w/ Fru, + s 0 b nelale)
+ Pulls st —ta1en,er * > Esign,e) 5
where 74, 71, - - +» 7, depend on ¢?, a,, - - -, ay,), and ¢, and ¢, are quadratic forms.
Using (3), (4) and (5) and the fact that
G(ttys -+ s ) = GF (s -+ Uygatane) * Tlomviqntare Gollo [ Bomrs =+ o5 1)
we have,
u/pou, = u/{L~ — Zi% 7 Fiju,
= Gu(Mas -+ Wygguatare) T Polls—vign-tarsnes =+ *» Use)
+ Do(Uuig e s Hugn+a1,e)
+ s g n-ta1+1,00 0o Hs—yig,n,t) *

Since ¢, + ¢, is a quadratic form involving only the first »(¢, 1) + [¢] of the
random variables u,,, - - -, ug, and ¢, 4+ ¢, is a quadratic form involving only
the last »(¢, 1) + [¢] of the random variables uy,, - - -, ug, the matrix p, has
property =, , 141, a8 Was to be proved.
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The coefficient 6,, in Lemma 3 is the coefficient of 4(y,_, ,_, + V,41.._,) in the
regression of y,, on{ .., (s" — s)* + (' — 1)) < ¢*and ¢’ < t} and the coefficients
To» T1» ***» 711 Of Lemma 4 are related to ¢°, a,, - - -, a;,; in a way analogous to
relations (18) of Anderson (1962).

For convenience, we set y = 1, 0y, = --- =6, ,,, =0, and 5, = 1. Then
By = 274" 6, F, so that we can extend the structural formula for 8, given in
Lemma 3 to k = 0.

We shall now examine the form of the joint pdf of the series {y,,} when the
order of dependence in the series is g.

It follows from the stationarity Condition 2 that E(y, y;,,) is the same for all
t and depends only on 4. We therefore write E(y, y;,,) = Z,. By the symmetry
Condition 3, 2_, = Z,’ = Z,. Let usdenote by y,, the [¢]S-dimensional column
vector consisting of the first [¢]S coordinates of y and let X = E(y)’)and &, =
E(y., Vip)- We can then express £ and X, as partitioned matrices involving
2, h=0,1,...,T — 1. The (i, i)th element of X, isX; ;,i,j=0,1, ...,
[¢91 — 1, and £ = X,,. If we now denote by f, () the joint pdf of y , and
by fi(¥:|¥:_1» + - +» ,) the conditional joint pdf of y, given y, ,, - - -, y;, then the
joint pdf f(y) of y is,

(6) F0) = foD) izt f Vel Yimrs -5 1) -

Here f,,(y,) is the [¢]S-dimensional normal pdf with mean vector 0 and covari-
ance matrix X, and when the order of dependence in the series is ¢, it follows
from Lemmas 1 and 2 that f,(y,|y,_s, + -+, 1) is the S-dimensional normal pdf
with mean vector };}% 8, y,_, and covariance matrix I'". Incorporating these
facts in (6), we have

(M) fy) = @r)7871Z, [P - exp[ — 300, 20 Vo
— 3 Dttt (0 — ZW By ) Ty — ZAZ Buyi-a)] -

Now the exponent of (7) is easily seen to be —1 times

@) DL (X B/ T8
+ 2 i 25y (S BT B — 207 85)p.
+ (s s Vi) + Cel(Vr-ta1e -5 Vo)

where ¢, and ¢, are quadratic forms. So far we have proceeded exactly as
Anderson (1962), but at this point we shall find it profitable to express the sums
in (8) as quadratic forms in y. This is done by writing the sums in (8) in terms
of Kronecker products of matrices. We now have the following lemma which
summarizes the development in this section.

LEMMA 5. If the dependence in series {x,}isof order q and if y,, = x, — E(x,),
then the joint pdf of y is of the form
f(y) = const. exp[ —$)'{E, ® 2}, £,/T '8,
+ 2 XS E; @ (T BT Buss — 207801y + &5 + &4l
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where the structures of 8, and I'~! are as given in Lemmas 3 and 4, and ¢, is a quad-
ratic form in y,, - - -, y;,1 and ¢, is a quadratic form in y, 4141, ** 5 Vr-

3. A modified density function. The form of the density function f arrived at
in Lemma 5 is such that relatively few parameters 6,, and y, determine the
interdependence between most of the random variables in the collection {y,}
whereas the rest of the parameters (which are not mentioned explicitly) are
required only to complete the description of the relatively few remaining ran-
dom variables. To see this, we note that

(a) If Uisan S x S matrix with property z, and V is an § X S matrix with
property =,, then UV has property 7., and
(b) If U is an S x S matrix with property z,, then both U(3}{%} r, F;) and

(ZEG]O 7. F,)U have property m, ¢p141-

Using these two facts we now conclude from Lemmas 3 and 4 that

T BT B, = T (T 0, F) (S 1 FX SIS 0 F2) + 00"
and forj =1, .-, [q],
payiet BT By — 2718,
= DI (Zi%Y 0, F)' (21 1 FXZIS 7 O F)
— XIS PSS 0 F) + 05"

where the matrices p,*, p,*, - - -, pf; all have property my,y,,. If we now examine

the quadratic form
V(E,® po* + 2 L E; @ 0,%)y

we notice that it involves only those terms y,, y,.,. for which s and s’ are either
both among the first 3[¢] + 1 or both among the last 3[¢] + 1 of the integers
1, ..., S. Incorporating these facts in Lemma 5, we have the following lemma
which justifies the remark made at the beginning of this section.

LEMMA 6. If the dependence in the series {x,} is of order q and if y, = x, —
E(x,,), then the joint pdf of y is of the form
f(y) = const. exp[ —3'{E, ® LD, (1™ 0, F) (K12 1 F)(ZI® 0 F)
) + 2 D E; @ TR (S 0u FY (B r P21 7 Orys0 Fi)
— AT F)(Z% 7 05, F)Ly + ¢4(0)]

where ¢(y) is a quadratic form involving only those y,, for which at least one of the
subscripts is either among the first 3[q] + 1 or among the last 3[q] + 1 integers in
its domain.

When S and T are large compared to ¢, the quadratic form
V{E, @ Tty (1™ 0 B (Zi2 r F)(ZS® 0 Fi)
(10) + 2 DI E; ® 1957 (DY 0 FY (DI r F)ZES T O )
— 2Zi% nF)(Z”“’ 05 F))ly
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will tend to dominate ¢,(y) which suggestes a modification of f(y) by dropping
¢.(y) from the exponent of (9). The probability model that arises in this way
involves only a small number of parameters but the manner in which they enter
the form of the density function still makes it unsuitable for analysis. We shall
now investigate another modification of f{ y) by replacing the matrices E,, - - -,
Eg by Ay, - - -, A,y where the matrices 4,, - - -, A, are nonsingular, all having
the same eigenvectors and E, — A4, having property 7, or n-/ (see Definition 2),
and, similarly replacing the matrices F,, - - -, F,; by B,, - .., B;,; where the ma-
trices By, - - -, By, are nonsmgular all having the same eigenvectors and F, — B,
having property z, or z,’. Several such systems of matrices are known. One such
system (in which E, — A4,and F, — B, have property r,’) is obtained in the follow-
ing way. Let C, be the m X m circulant whose ith row, fori =1, ..., m — 1,
is the (i 4- 1)th row of the m x m identity matrix and whose mth row is the Ist
row of the m x m identity matrix. Then for ¢ < § min(S$, T), 4, = }[C,” +
(€)Yl r=1,---,[¢qland B, = §[Cs" + (C4)], r = 1, - -, [¢] have the desired
properties. These systems of matrices not only have common eigenvectors, but
their eigenvectors and eigenvalues are also expressed by very simple formulas.
For more information on these systems we refer to Anderson (1962).

We now note that the quadratic form obtained by replacing the matrices E,
by A4, and the matrices F, by B, in (10) differs from (10) by a quadratic form
¢(y) which like ¢,(y) involves only those y,, for which at least one of the sub-
scripts is either among the first 3[¢] + 1 or among the last 3[¢] 4 1 integers in
its domain. We thus arrive at the following theorem.

THEOREM 1. If the dependence in the series {x,} is of order q, then the joint pdf
of x is of the form

9(x) = const. exp[ —4(x — E1)'R(0, 7)(x — £1) + ¢(x)] where
RO, 1) = A ® Zi (Zi%* 0., B) (LI 1. B 0, B)
(1) + 2 550 A; ® T (B 0, B

XL B L 0,5, B)

— AXM i B)ZI%? 0, B)}
with Ay = E, =1, By=F,= 1, E, — A, and F, — B, having property =, or r,’,
r=1,--.,[ql, and ¢ is a quadratic form involving only those x,, for which at least
one subscript is either among the first 3[q] 4+ 1 or among the last 3[q] + 1 integers
in its domain. Furthermore, the matrices A,, - - -, A,y can be so chosen as to have
the same eigenvectors and the matrices B,, - - -, By, can be so chosen as to have the
same eigenvectors.

In view of Theorem 1, we propose to examine the interdependence in a nor-
mally distributed two-way series {x,,,s=1,...,8,r=1, ..., T} with S and
T large in comparison with its order of dependence ¢, under the model

(12)  p(x|§, 0,7) = (2x)#7(det R(6, 7))} exp[—§(x — E1YR(O, 7)(x — E1)] ,
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where 0 = 0,,, k=1, ---,[¢q],I=0,1, ..., u(q, k)}and y = {,, [ =0, 1, - - -,
[¢4]} are such that the matrix R(f, y) given by (11) is positive definite with 6, = 1,
001 = 00,»((1'0) =0.

The remainder of this paper will be devoted to the derivation of the maximum
likelihood estimates of &, # and y on the basis of independent realizations x; =
{x,;} of the process {x,} when the order of dependence ¢ is known, and to the
derivation of the likelihood ratio test of the null hypothesis H,: order of depend-
ence is g, against the alternative hypotheses H,: order of dependence is ¢,, where
9 < ¢, are two numbers of the form (4* + k*)3, k, k integers. To facilitate these
derivations, we shall first transform the observed random variables to independ-
ent random variables. This is done in the next section by taking advantage of
the fact that the A, matrices have the same eigenvectors and the B, matrices
have the same eigenvectors.

4. Transformation of {x,,} to independent random variables. Let a,, - - -, a, de-
note the normalized eigenvectors of each of the matrices A4,, - - -, 4;,; and let 4;,
denote the eigenvalue of A4; corresponding to the eigenvector a,. Similarly, let
by, « -+, by denote the normalized eigenvectors of each of the matrices B,, - - -,
B,y and let y;, denote the eigenvalue of B; corresponding to the eigenvector b,.
Define matrices P with columns a,, - - -, a, and Q with columns b, .. ., by, i.e.,
P=(a,---,a;), Q= (b, -+, 0bg), and let A; =diag(4,,), j=0,1,---,[q],
M; = diag(y,,), j = 0,1, - -, [¢q] where 2, = y,, = 1 for convenience.

The following properties of these matrices are easy to verify and we omit their
proofs. Note that in all the expressions of Lemma 7, the right-hand side is a
diagonal matrix.

LemMA 7. (a) P and Q are orthonormal, i.e., PP =1, Q'Q = I.

(b) Forany real ¢y, ¢y, « -, ¢, P(N5%¢; Aj)P = Y'd ¢, A, and
Q'(Zi%he;B)Q = Zithe; M; .

(c) Foranyj, k, A; and A, commute and B; and B, commute.

(d) Foranyj, k, P'(4; A, )P = A; Ay, Q'(B; B,)Q = M; M,.

() P® Q is orthonormal.

(f) Foranyj, k, (P® QY(4; ® B)(P® Q) = (P'4;P)® (Q'B,0) = A, ® M,.

Using these properties of P and Q, we note that the matrix R(f, y) given by
(11) is diagonalized when pre-multiplied by (P ® Q)" and post-multiplied by
P ® Q, and the determinant of R(6, 7) is also easily obtained. This is shown
in the following lemma.

LemMa 8. (P ® Q) R(f, y)(P & Q) is diagonal, and
(13) det R(0, ) = ITi- IT- Ha (O TT Ko(r)Y” where
(14) H,(0) = 4, A2 (Zf‘:‘{)’k) O ;)" + 2 ZE"Jl Zjt{Z;cQo_j (2159 04 11,)
XD ) Oy th,) — 2 20057 05, 1)
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and

(15) K(r) = 1 Ti s «
Proor. We first note that since the matrices B; are symmetric and since their
linear combinations commute, R(f, y) can be written as

R0, 1) = A, ®[(ZiZh 1, B) 2L (Xi%* 01 B))']
(16) + 2 T80 A; @ (S 7 B ZLY Y (S 0 By)
X (D15 0,y B) — 2 2347 0, B}
Using the properties of the matrices P and Q given in Lemma 7 we now see that
D0, y) = (P ® Q) R(f, r)(P ® Q) is obtained by replacing the matrices 4; by A;
and the matrices B, by M, on the right-hand side of (16). D is diagonal because
A; and M, are diagonal. It is easy to see that sth element in the rth block of D
is d,,(0, r) = H,(0)K,(r) where H, and K, are as given in (14) and (15). Further-
more, since P ® Q is orthonormal,
det R(0, y) = det D(0, v) = TI5, T1-. d.(0, 1)

from which (13) follows.

THEOREM 2. If xisa normally distributed two-way series with joint pdf p(x|&, 0, 7)
given by (12) and if z = (P ® Q)'x, then the joint pdf of z is given by
(17  p*l§, 0, 1) = [2n)~" 1 ITm Ha(OTT- K ()Y T

X exp[—3% X Ki(r) Zina Hu(0)(2, — € €)]

where z,, and c,, are the (t — 1)S + sth coordinates of z and (P @ Q)'1 respectively.

Proor. The theorem follows immediately from Lemma 8.

Note. If S and T are even and if 4; and B; are obtained from the S- and T-
dimensional circulants Cy and C, in the way mentioned in Section 3, then the
common normalized eigenvectors of A4; are

a, = (2/T)¥cos 2z¢t/T, cos 4xt/T, - - -, cos (T — 1)2xt/T, cos 2zt),

t=1,...,T)2 -1
= (2/T)*(sin 2z¢/T, sin 4xt/T, - . -, sin (T — 1)2x¢t/T, sin 2x1) ,
t=T2+1,...,T -1

ay,,=T-4-1,1,...,—1,1), a,, =T7¥1,1,...,1,1)
and the common normalized eigenvectors of B; are
b = (2/S)¥(cos 2xs/S, cos 4rns/S, - -, cos (§ — 1)2xns/S, cos 2xs) ,
s=1,...,82 -1
= (2/S)(sin 2zs/S, sin 4xs/S, - - -, sin (S — 1)2xzs/S, sin 2zs) ,
s=82-+1,...,8—1
bsp=8H—-1.1,..., —1,1), by = S¥1,1,...,1,1).
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Hence the T'th row sum of P’ is T%, the Sth row sum of Q' is S* and the sums
of all other rows of P’ and Q' are 0. Since c,, is the product of the sth row
sum of Q' and the rth row sum of P’, it follows that for the above choice of the
matrices 4; and B;, ¢s, = (ST)* and for all other (s, 1), ¢,, = 0.

5. Maximum likelihood estimation of the &, ¢, 7. Let {x,,,,s=1,--., 5, 1=
1,...,T},i=1, ..., NbeNindependent realizations of a normally distributed
two-way series whose joint pdf p(x|&, 6, 7) is given by (12). Asin (1), let x;
denote the ST-dimensional column vector whose (t — 1)S + sth coordinate is

x,;- 1f we now transform z;, = (P ® Q)'x;, i = 1, , N, and let z_,, denote the
(t — 1)S + sth coordinate of z;, then by Theorem 2, the log likelihood function
of &, 0,y given z,, - -+, zy is found to be

L, 0,7) = Xl log p*(z;|€, 0, 7)
(18) = —}NST log(2x) + 4N Y., Xf. log H,(0)

+ $NT 1 log K (7)
S=1 Ks(T) ZtT 1 st(a) Z =1 (Zst'b cst 5)2 *

Let us reindex the parameters {0,,} as 6, = 0, -+, 01,0 = Oog 040 0, =
O, =5 Or10 = Oy Where

a(q) = X v(g, k) + [4] -

Then the likelihood equations become

L. gg = TS K1) Dy H(0)u(Z — €4 8) = 0
Lo _ - 2l
ERR R DUy
— 3 LK) DL laHs‘(")V,@) j=1, - ag)
%'aa—fF%TZ (K )y 2 (T) Ny Ho(g)Vul®)
:0, ]_0’1""’[q]
where

Zst — 1 12 /N and Vst(E) = flv=1 (Zsti — Cy E)2/]\[ .

sm

These equations cannot be solved exactly. We therefore use an iterative
method commonly known as the “method of scoring” (see, e.g., Rao (1965)).
In order to apply this method, let us examine the first partial derivatives with
respect to &, 0; and 7, of the log likelihood function given a single realization
z,. Since the z; consists of independent normally distributed random variables
{zgi»s=1,.--,8,t=1, ..., T} with

E(z,;) = ¢,§  and  Var(z) = UK()H.(9)
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let us first compute

0108 P2l € 00 1) — K (1) H (B)c(zus — 0 €)

0

a log P“(Zs” | 5’ 0, 7’) fd —1— t(a){ t(a)}— - lK (r) t(a) (zsu - cst 5)2
a0, 2

dlog pi(z,: 1€, 0,7) _ 1 9K (r) L LG e
arj - 2 ara {K( )} 2 a st(ﬂ)(zsm Cot S)

Hence

a log pst(zstw)

Jst(s’ S) = Ef,ﬂ T CZ Hst(a)K (T)

Jst(E )— &.0,r

a log pst(zsm) ) — 0
or;

a log pst(zstt) a log pst(zsm) >

Ju(€, 7i) = E;,, r

)]

d log pst(zm)> < d log Psc(zm)> -0
)(
)(

IS
I
< Jlog Pst(zsm)
I

Jst(aj’ 0lc) = Ee,o 7

RN _aHﬂ(e) 1 .aHst(ﬂ)
__{Hst((?) a6 {Ht((?) a0, }

Jo(0i5 1) = Ego,r |:< 9 log p“(z“” > (3 loga’;s,:(zm >:]
=7 {Hs,l(ﬁ) aéw)} { K1) a?ff)}
Jo(ris 74) = Eeoo.y [( 0 loga};,};(zm > <a loga[;:(zm) ﬂ

- L{ L aKs(r)} { L aKs(r)}
K()  9r; ) UK(G)  on
Now let J,,(0, 0) be the a(q) X a(g) matrix with J,,(6;, ,) in the jth row and kth

column, J, (9, 7) the a(q) X {[¢] + 1} matrix with J,,(¢;, r,) in the jth row and

kth column and J,,(7, 7) the {[¢q] 4+ 1} X {[¢] + 1} matrix with J (r;, 7,) in the
jth row and kth column. Finally, let J,,(§, 6, ) denote the partitioned matrix

«(66) 0 0
Ju(§,0,7) = 0 Ju(0,0) (0, 7)
0 Jst(o’ 7,), Jst(r’ 7')
and let
J({:, 0, 7) = N I Jst(é’ 0,7).
Then J(¢, 6, y) is the information matrix from one realization z;. In other
words, letting ¢,,,(§, 0, )’ denote the 1 4 a(g) + {[¢] + 1)}-dimensional row
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vector
’ 0 log pX(z ) d log pi(z ) 0 log pk(zy.)
sti 59 0 < gpSt ati st\“sti ey &3"&“_"
Puil5 05 7) = 5 3 Sp
a log pst(zsti) , e, a log P::(Zm')>
aro a7/[¢11

and ¢,(§,0,7) = 5., 2 0.8, 0, 7), we can easily see that
Ju(§s g, 7) = Ee,o,r[%ti(s, g, T)ﬁom(f’ g, 7)1

JE, 0,7) = E¢ o, [0i(&, 0, 1)pi(55 0, 7)] -

Now if &, 0, 7 are first approximations to the maximum likelihood estimates,
then the method of scoring gives the next approximations by the formula
(19) E0,7)=C¢ 0,7 +¢J
whereJ = J(&, 6, 7)and ¢, = 32, ¢,(&, 6, 7)/N. From the structure of J it is clear
that the adjustment of & to & can be carried out separately from the adjustment
of the estimates of the other parameters. Furthermore, if the first approxima-
tions £, 4, 7 are such that N¥¢& — &), N¥(§ — 6) and Ni(7 — 7) are O,(1), i.e., if
for any given ¢ > 0 there exist » > 0and N, so that P[[N}& — §)| < 7] > 1 — ¢,
P[IN¥G — 0)] < 9] > 1 — e and P[INi(7 — 7)| < 7] > 1 — ¢, for N> N,, then
the estimates £. 4. 7 obtained by only one iteration of the formula (19) has the
same asymptotic distribution of the maximum likelihood estimates. In other
words, in such a case N¥& — &, 0 — 6, # — 1) is asymptotically normally distrib-
uted with mean vector 0 and covariance matrix J~1.

The first approximations &, 4, 7 can be obtained in the following way.

In the special case when 4,, ---, 4;,, and B,, --., B, are derived from the
circulants, we take

and

":E = ZST/(ST)i

which is exactly the maximum likelihood estimate of & and & =¢, i.e., no ad-
justment is needed. Otherwise, we take

= Zs 1 Zt =1 f:v=1 xsti/NST-

To obtain 4 and 7, let %,,, = — & and let %, be the N-dimensional column
vector whose ith coordinate is xm. In view of the remark immediately follow-
ing Lemma 3, if the joint pdf of x; were the function g(x) of Theorem 1, 16,
would be the common coefficient of x,_, ,_, — § and x,,,,_, — & in the regres-
sion of x,, on {x,.,., (s' — 5)* + (¢’ — 1)* £ ¢*}. However, we are now considering
p(x) to be the joint pdf of x;, but for large S, T, p(x) differs from g(x) only slightly
and the actual role of 4, in the regression of x,, on {x,,,,, (s" — s)* + (¢' — 1) < ¢*}
would still tend to be nearly the same as above. For this reason, we construct
for each s = v(¢q, 1) + 1, ..., 8 — (g, 1), and t = [¢q] + 1, - - -, T, an estimate

st - (X;t st) st st
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of 0, where X,, isan N X a(q) matrix whose {»(¢, k — 1) + k — 1 + [}th column
is 4(X,_;.,_1 + %,41..-4)» and finally take the average of all these estimates to
obtain _ B

0 = X52Bn Dl 0./(S — 2v(g, DNT — [4]) -
To obtain 7 we now recall that V(€)= X, (Zu — €. §)'/N has mean
1/K(y)H,,(6) which indicates that for each s, #, 1/ V,(&)H,(0) is a good estimate
of K,(y) = Y14 s, 7, Averaging these estimates over ¢, we obtain

W, =T| L1 Val©)Hu()
as an estimate of 3712} »,.7,. For this reason we take
7= (M'M)" MW,
where M is a S X {[¢] + 1} matrix with s, in its sth row and /th column.

6. Likelihood ratio test for the order of dependence. Let g, < ¢, denote two
numbers of the form (k* + k%, h, k integers. In this section we consider the
problem of testing the null hypothesis H,: “order of dependence in {x,} is ¢,”
against the alternative hypothesis H,: “order of dependence in {x,,} is ¢, on the
basis of N independent realizations of {x,;}. Again we note that if the joint pdf
of {x,,} were g(x) with ¢ = g,, then the hypothesis of the smaller order of depend-
ence g, would be equivalent to the hypothesis, 8,, = 0 for all k, I so that ¢ <
k*+P<g?and y, =0 for | = [¢] + 1, -+, [¢,]. Hence when § and T are
large and the joint pdf p(x) of x with ¢ = ¢, differs slightly from g(x), the null
hypothesis

H*: 6,=0 for all k,! sothat g2 <k®+ =g’ and

n=20 for I=[g]+ 1, -, [ql
and the alternative hypothesis, H,*: at least one of the parameters listed in H*
is nonzero, have practically the same meaning of H, and H, respectively. We
now obtain the likelihood ratio A for H,* against H,*. From (18) we immedi-

ately obtain
U 8 (é) 3(?)
—2log2A=NY5, 2,1 H,, + 1 K.(7)
°8 e [og H ,(6%) X (1)

+ K(P)VH(0%)V(6%) — K (D) H OV (8)]

where (&, 8, 7) and (§*, 6%, r*) are maximum likelihood estimates of the parame-
ters for ¢ = ¢, and ¢ = g, respectivly. The null hypothesis H,* is rejected when
the test statistic —2log 2 is too large. Asymptotically, —2 log 2 follows a y*-
distribution with a(g;) + [q.] — @(4s) — [¢o] degrees of freedom under H,* as

N — oo.

7. Miscellaneous remarks.

REMARK I. Effect of large S and T on the convergence of the maximum likelihood
estimates. In Sections 5 and 6 we have discussed the asymptotic properties of
the maximum likelihood estimates of the parameters &, 6, r for a given order of



1806 P. K. BHATTACHARYA

dependence and of the likelihood ratio test for the order of dependence as N —
co. In this paragraph we shall give some heuristic arguments which seem to
indicate that if S and T are moderately large in comparison with g, these
asymptotic results will become applicable with only moderately large N. Our
argument is based on the fact that the NST observations {x,,;} are transformed
into NST independent though not identically distributed random variables {z,,}
from which the estimates and the tests are obtained. For example, if the order
of dependence ¢ = 2 and if § =T = 30, then with N = 20, we have 18,000
independent {z,,;} to estimate only 7 parameters from. What we need are (i)
the convergence of Jg, = Y15, 17, J,./ST to a nonsingular matrix J* as S — oo,
T — oo, and (ii) the convergence of the joint distribution of (NST)~* times the
first partial derivatives of Y} X, log p*(z;|£, 6, y) with respect to &, 6, - - -, 0,4,
Tos 71> =+ > T1q tO @ multivariate normal distribution with mean 0 and covari-
ance matrix J*. Routine computations are needed to check convergence (i) and
we have done so for ¢ = 2 when 4,, - - -, A,;and B,, - - -, B;,; are obtained from
the circulants, but not attempted to do this in any generality. In order to check
convergence (ii) one would have to verify conditions that will ensure that a
multivariate central limit theorem for sums of independent but nonidentically
distributed random vectors holds here (see Bergstrom (1949)).

REMARK II. Discrepancy between the density functions g and p when S and T are
large. In Section 3 the density function p(x) was adopted because (a) it differs
from g(x) of Theorem 1 only by the absence of a quadratic form ¢(x) in the
exponent which involves relatively few of the random variables {x,,} when S and
T are large, and (b) it is much easier than g(x) to work with. The same argu-
ments led Anderson (1962) in his study of order of dependence in one-way series.
A question that we have not attempted to look into is the following. If we write
gsp for the function g in Theorem 1 and pg, for the function p in (12), then does
the discrepancy between g, and p,, tend to disappear in some sense as S, T —
o0? The remark (a) above is only a heuristic argument for expecting some such
convergence. To pose the question formally one may consider g,,, sy and p,,, sr
to be the marginal distributions of {x,,, s = 3[¢] + 2, - -+, m, t = 3[¢q] + 2, - -,
n} obtained from g, and p, respectively for S =m 4+ 1, m + 2, ...,and T =
n+ 1,n+42, ..., and ask whether for every fixed m, n these two sequences
converge to a common function as S, T — oo.

REMARK IIl. Order of dependence in normlly distributed r-way series for r = 3.
Let {xtl"'tr’ tt=1,..-,T, -+, t, =1, ..., T} be a normally distributed r-way
series. We can extend Definition 1 to define the order of dependence for such
a r-way series inductively as follows. Let u, .., = x,. .. — E(x, ... [X .0
=1, Ty ooyt =1,...,T,_,t,,=1,.--,t, — I)fort, =2,..., T,.
We then define

DeriniTION 1’. The order of dependence in a normally distributed r-way
series {x, ..., } is defined to be the smallest g = 0 so that
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(@) Fort, =2, ..., T, the conditional distribution of x, ..., given {x,...
t'=1,..-,T, -, tjy=1,-.-,T,_,,t,/ =1, ..., 1, — 1} depends only on
the random variables x, ..., , for which 37, (¢;/ — ¢;,)* < ¢, and

(b) Foreachr, =2, ..., T,, the order of dependence in the normally distrib-

uted (r — 1)-way series {u, .., ., =1, -, Ty, -+, t,,=1,..-, T, )} isgq.

Now Definition 1’ along with Anderson’s (1962) definition for one-way series
defines the order of dependence of r-way series for all r. Definition 1 of Section
2 can now be seen as a special case of Definition 1’ with r = 2.
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