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ON THE STATIONARY DISTRIBUTION OF THE NEUTRAL
DIFFUSION MODEL IN POPULATION GENETICS!

By S. N. ETHIER AND THOMAS G. KURTZ

University of Utah and University of Wisconsin-Madison

Let S be a compact metric space, let 6§ > 0, and let P(x,dy) be a
one-step Feller transition function on S X #(S) corresponding to a weakly
ergodic Markov chain in S with unique stationary distribution v,. The
neutral diffusion model, or Fleming-Viot process, with type space S,
mutation intensity 36 and mutation transition function P(x, dy), assumes
values in H(S), the set of Borel probability measures on S with the
topology of weak convergence, and is known to be weakly ergodic and have
a unique stationary distribution I € F(H(8S)).

Define the Markov chain {X(r), r€ Z,}in S2U S3U --- as follows.
Let X(0) = (¢,£) € S?, where ¢ is an S-valued random variable with
distribution v,. From state (x,,...,x,) € S™, where n > 2, one of two
types of transitions occurs. With probability 6 /(n(n — 1 + 6)) a transition
to state (xy,...,%;_1,&;,%;,1,-..,%,) € S™ occurs (1 < i < n), where ¢; is
distributed according to P(x;, dy). With probability (n — 1)/((n + Dn(n —
1+ 6)) a transition to state (xq,...,%;_1,%;,%j,...,%,) € S™*1 occurs
(1<ix<n,1<j<n+1). Letting 7, denote the hitting time of S”, we
show that the empirical measure determined by the n coordinates of
X(7,,1, — 1) converges almost surely as n — © to a $(S)-valued random
variable with distribution II.

1. Introduction. The neutral K-type diffusion model in population ge-
netics is the diffusion process in the (K — 1)-dimensional simplex

(1.1) Ag={p=(P1,--»Px):P120,...,px>0,p; + -+ +pg =1}

with generator

1 K 92 K (K d
(1.2) L=~ % pi(b;-p, + Z(Zq'ip-)——,
2 i,j=1 ( J J)a iapj i1 <1 JrLog api

where q,; (i #j) is the intensity of a mutation from type i to type j and
q;i = — L. j+:9;;- [Here the domain of L is C*(Ag); for f € C*(Ag), Lf is the
restriction to A of Lf, where f is an arbitrary C%(R¥) extension of f.]

If the infinitesimal matrix (q;;) is irreducible, it is known [Shiga (1981)] that
this diffusion has a unique stationary distribution 7 € #£(Ag), which is
absolutely continuous with respect to (K — 1)-dimensional Lebesgue measure
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on Ag. In the special case of parent-independent mutation, that is,
1

(1.3) qu=§01>0, l,jE{].,...,K},i¢J,
Wright (1949) discovered that
r6, + - +0g)
I'(6,) -~ I'(6x)
see Ethier and Kurtz (1981) for a proof. In general, however, the Lebesgue
density of 7 does not seem to be known.

Our principal aim here is to provide a relatively simple construction of a
Ag-valued random variable with distribution 7. Moreover, we can obtain a
more general result by working within the framework of the Fleming-Viot
(1979) process, which allows the number of types to be finite or infinite.

Let S be a compact metric space, let 8 > 0 and let P(x, dy) be a one-step
Feller transition function on S X #(S). Here S is the set of types, 6 is twice
the mutation intensity and P(x, dy) is the distribution of the type of a mutant
offspring of a type x parent. The neutral diffusion model, or Fleming-Viot
process, with parameters S, 6 and P, is the diffusion process in #(S), the set

of Borel probability measures on S with the topology of weak convergence,
with generator £ defined by

(Lo)(w) =3 & (CFifom) =CFoo B ) Eu Fro oo frnr )

i,j=1

@5 0L () ()R Fo b )

2(2L) ={e € C(P(S)): o(n) =F(fi,m)s- - fr> )
FeC*R™), f1,---, fn€C(S),m€E N},
where (f,u) = [gfdu and P: C(8) = C(S) is given by

(1.6) (P)(x) = [ () P(x,dy).

The Cgs)0,®) martingale problem for 2 is well posed [Kurtz (1981)]. We
assume only that there exists v, € $(8S) such that

(L7)  lm(e"PDE)(x) = (five),  fEC(S),x€S,

6,-1

(1.4) m(dp) = 141 T P;}K_l dp, -+ dpg_1;

an assumption slightly weaker than the one stated in the abstract.

Note that if S ={1,..., K} and 36(P(,{j}) —;;) =gq,; for all i,j €S,
then we can identify 9(S) with Ax and £ reduces to L. However, the extra
generality includes, for example, the infinitely-many-neutral-alleles diffusion
model, which corresponds to the special case of the preceding paragraph in
which

(1.8) P(x,{y}) =0, x,y €S,
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that is, with probability 1 every mutant allele is new. [Of course, (1.8) requires
that S be uncountable.]

Under the weak ergodicity assumption (1.7) on the mutation semigroup, it
is well known that the diffusion process in &?(S) with generator .# is weakly
ergodic and has a unique stationary distribution II € P(L(S)). (Unfor-
tunately, a published proof does not yet exist; in any case, the proof is
straightforward, using a dual process.) In the special case of parent-indepen-
dent mutation, that is,

(1.9) P(x,dy) = vy(dy), x €S,
Ethier and Kurtz (1992) showed that II is the distribution of the &(S )-valued
random variable

(1.10) Z Piavi,
i=1
where p; > p, > -+ have the Poisson-Dirichlet distribution with parameter

6 [Kingman (1975)] and V,,V,,, ... are i.i.d. v, and independent of (p;, p,, .. .).
That this result, with S = {1,..., K}, implies (1.4) is a consequence of Section
3 of Donnelly and Tavaré (1987).

To construct a &(S)-valued random variable with distribution II without
assuming (1.9), we define the Markov chain {X(7), r € Z,}in S2U S3uU ---
as follows. Let X(0) = (¢, ¢) € S2, where ¢ is an S-valued random variable
with distribution »,. From state (x,,...,x,) € S"”, where n > 2, one of
two types of transitions occurs. With probability 6/(n(n — 1 + 6)) the ith
coordinate mutates (1 <i < n), in which case a transition to state
Xyyee ey X 1, €% 01y - -+, X,) € 8™ occurs, where ¢&; is distributed according
to P(x;,dy). With probability (n — 1)/((n + Dn(n — 1 + 8)) the ith coordi-
nate is duplicated and placed in the jth position (1 <i <n,1<j<n + 1),in

which case a transition to state (xy,...,%;_;, %, %;,...,%,) € S™*! occurs.
We further define, for each n > 2, the hitting time 7, by

(1.11) 7, =min{r € Z,: X(7) € 8"}

and n,: S™ —» P(S) by

(1.12) No(%1y.eo,%,) =n7H 0, + - 48, );

note that n,(x,,...,x,) is the empirical measure on S determined by the n

(not necessarily distinct) points x,,...,x, € S. Our main result is the follow-

ing.

THEOREM 1.1. Assume (1.7). Then the limit
(1'13) ’}i_lgonn(X(Tn+l - 1))
exists almost surely in the topology of P(S) and has distribution II.

¥

It should be emphasized that neither (1.8) nor (1.9) is needed here. In
particular, the theorem includes the K-type case discussed earlier, assuming
only the irreducibility of the infinitesimal matrix (g, ;).
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The key step in the proof is to establish the following lemma, which relates
the stationary distribution IT of the Fleming—Viot process to the Markov chain
{X(7), 7 € Z.)} and generalizes Theorem 5.4 of Ethier and Griffiths (1987).

LEMMA 1.2. Assume (1.7). Then
(1.14) X(Tye1— 1) hasdistribution [ pr(+)T(dp)
P(S)
for each n > 2, where u"* is the n-fold product measure u X + -+ X p.

Incidentally, the lemma provides an efficient algorithm for simulating a
random sample of size n from u, where p is distributed according to II:
simply run the Markov chain {X(7), r € Z,} until it hits S™*, and disregard
the last step. The expected number of steps required is

n—1

(1.15) E[r,,J=n-1+6Y% —.
r=1k

The proof of Lemma 1.2 is somewhat nonintuitive, so it might be worth-
while examining separately the special case n = 2, which can be easily under-
stood.

Since II is stationary,

(1.16) [y (£ (TI(dR) = 0

for all ¢ € 2(.£). Taking ¢(u) = (f,n), where fe C(S), this gives
f9(3)< fruIl(dup) = f.@(S)(Pf: w>)TI(dw), hence

(9t/2)

_ —6t/2 k
[ (Frwoman) = [ (e ): S PHf >H(du)

(1.17) g(s)<e9<P De2f i TI(dp)

for all ¢ > 0. Letting ¢ — « and recalling (1.7), we have
1.18 ,wII(du) = {f,vy), e C(S).
(1.18) Lo S rmom(dr) = (fived, fEC(S)

Next, apply (1.16) with o(u) = (f, u){g,n), where f, g € C(S), and use
(1.18) to obtain

[ fuXg,w(dw)
P(S)

0 1
(1.19) (fe.v0) + 157 (5 foog, (P& ()

T 1+6

1
+§fg(s)<f,u><Pg,u>H(dn) .
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Iterating this identity readily yields

[ {f u)g,mTi(dp)
P(S)

) 0 k 1 k B B i B
=kz=:o( ) 1+0iz=:o(i)2 k<Pf'Pk g,v0>,
f.g €C(S).

On the other hand, the Markov chain {X(7), 7 € Z_ }, where for the moment
we allow X(0) to be an arbitrary S2-valued random variable, clearly satisfies

E[(fx g)(X(1)IX(1) € S* X(0)]
= 3(Pf X g + f x Pg)(X(0))
for all f, g € C(S), where (f X gXx,, x,) = f(x,)g(x,). Iterating, we have
E[(fxg)(X(r3 = 1))lrs — 1 =k, X(0)]
= E[(fx g)(X(k))IX(k) € S* X(0)]

(1.20)

(1.21)

(1.22)
— i k -k i k—i
_ z:;o(i)z (Pif x P*~ig)( X(0)),

where the first equality uses the conditional independence of {X(k + 1) € S3}
and X(k), given X(k) € S2. Now, since X(0) = (¢, £) by definition, where ¢
has distribution »,, and since 75 — 1 has a geometric distribution on Z_, with
parameter 1/(1 + 6), we conclude that

E[(fxg)(X(r3—1))]
(1.23) ==§( ° y - f(@k%éwﬁP“@JJ,

ol1+0) 1+0 7\

f.g €C(S).

Comparing (1.20) and (1.23), we find that X(r3 — 1) has distribution
sy ()II(d ), which is the special case of Lemma 1.2 in which n = 2.

In Section 2 we generalize the preceding argument to prove Lemma 1.2. In
Section 3 we apply the martingale convergence theorem to show that the limit
(1.13) exists almost surely; then, invoking a lemma of Dawson and Hochberg
(1982), we use Lemma 1.2 to show that (1.13) has distribution II, as required.
Finally, in an Appendix, we state a result that expresses the moment measures
of II in terms of the genealogical-tree probabilities in the stationary
infinitely-many-sites model of Ethier and Griffiths (1987), thereby generalizing
.(1.20). But because this result is not needed here, its proof is left to the
interested reader.

Without further mention, we assume (1.7) throughout.
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2. The moment measures of Il and the stopped Markov chain.
Applying (1.16) to the monomial ¢(u) = {fy, u) -+ {f,, n), where
fir---» f, € C(S) and n € N, we have

n(n—1+ B)fg,(sf foom) - fo WTI(dR)

(2.1) -2 ¥ S)(ﬂ'fjal">l:ll;.!,j< fi, WI(du)

l1<i<j<n P(

i 0,-2;'1 f@(S)< Py z:lz:[ei< fir ) T(dR).

We begin by showing that this system uniquely determines the moments
Jos) fl,p,> (fn,p,)l'[(dp,) for all f,..., f, € C(S) and n € N. For each
n>2 i€fl,. — 1}, and j €{1,...,n}, define ®: C(8)" - C(S)*~*
by

DP(frs--+5 fn)
(22) _ (fp--', i—1» f‘if;’ﬁ+1""’f;,---, fn)’ ifl<.];
(Fireeos Fioevos Fir £ Fivns Frvzoeos o)y i i 2,

where the ¥ notation signifies deletion of the component in question.

LemMMA 2.1. For each n € N, let A,: C(S)"* — R satisfy |A,(f1,..., [ <

Wl Wf Nl forall fe,..., f, € C(S). Suppose that
n—1 n
n(n =14 0)A(Firos fr) = £ L Ao @ Frreor )
(2.3) sl

+0Y A(frr-eos ficts Pis fivts-vs )
i=1

forallfi,..., f, € C(S) and n € N. Then

n-1 n

Z r X @a-p)p.

( tljlk()

x X (tli)n_kAn—l((D,(;')(P"lfl,...,P%fn))

ac€(Z. ) : lal=Fk

An(fly"" fn)
(2.4)

forallf,,..., f, € C(S) and n > 2, wherep, = (n—1)/(n — 1 + 6).
Suppose further that A, is linear and A1) = 1. Then

(25) Mnl(Froer Fu) = [ CFuom) =C o iTI(AR)

forall f,..., f, € C(S) and n € N.
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Proor. The proof relies on a discrete-time function-valued dual process.
Fix n > 2and f,,..., f, € C(S), and define the Markov chain {Y(7), r € Z,}
in C(S) U C(S)2 U --- UC(S)" as follows. Let Y(0) = (fi---, ) € C(S).
From state (gq,...,8,) € C(S)™, where 2 <m < n, one of two types of
transitions occurs. With probability 1/(m(m — 1 + 0)) a transition to state
Qg ..., 8,) € C(S)" L oceurs (1 <i<m — 1, 1 <j <m). With proba-
bility 6/(m(m — 1 + 0)) a transition to state (g, ..., &i_1, Pgi, 811
yoos&m) € C(S)™ occurs (1 <i < m). From state g € C(S) a transition to
state Pg € C(S) occurs with probability 1. Letting M(7) =m if Y(r) €
C(8)™, it follows from (2.3) that {A,(Y(7)), r € Z,} is a martingale. Hence

(2.6) A(fr-- o) = E[AM(O)(Y(O))] = E[AM(a)(Y(U))]’

where o = min{r € Z_: Y(r) € C(S)"~}. This implies (2.4). Under the addi-
tional assumptions, A(f) = (f,v,> for all f € C(S) by the same argument as
the one used to prove (1.18). This, together with (2.4), implies that (2.3) has a
unique solution, which by (2.1) yields (2.5). O

ProoF oF LEMMA 1.2. For each n € Nand f,,..., f, € C(S), define

(2.7) A Frsees ) = [ (Fiom) - ( fro m)TI(dR)
and .

X _ <f1!V0>7 lfn=1,
(28) An(f1’~-.7 fn)_ E[(flx Xfﬂ)(x(7n+1_1))]’ ifn22,
where f1 * X f,€C(S™) is defined by (f; X -+ Xf, )(xl, cey X)) =

filx) - f, (x ) Note that A; = A, by (1.18). By (2.1) and the first conclusion
of Lemma 2.1, {A,} satisfies (2 4). To show that A, = A, for all » € N and
thereby complete the proof, it will suffice to show that (A, } satisfies (2.4) (with
tildes inserted on both sides). The case n = 2 follows by (1.23), so suppose
n > 3. Using the strong Markov property, we have

E[( fl X X f )(X(Tn+1 - 1))|X(Tn - 1) = (xl""!xn—l)]

n—1 n
= ( Z Z E[( fix - xfn)(X(7n+1 - 1))'
i=1j =1
29) 1 o OQX(T") = (X1 s X, %y Xy s ) |
s _ k k) -
n(n—-1) /=) ng k{:o(l P) pnae(Z§:|a|=k(a)n

X(Pf1) (%) -~ (Pa’ lf 1)( 1)(Po‘jfj)(xi)(ij+1 j+1)(xj)
o (Panfn)(xn—l)
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for all f,,..., f, € C(S)and (x,,...,%,_,) € S™ 1. Taking expectations now
gives the desired conclusion. O

3. Almost-sure convergence of the empirical measures. First, we
show that the limit (1.13) exists almost surely, and then we identify its
distribution. Define {N(7), r € Z,} by N(7) = n if X(v) € S™.

LEmMMa 3.1. lim,_,, ny(X(7)) exists almost surely in the topology of
P(8).

Proor. Define u, = ny,(X(7)) for 7 =0,1,... . Then {(n,, N(7)), 7 € Z,}
is a Markov chain in US,_, 1,(S™) X {n} € $(S) X N with transitions

(m,n) = (n'l((‘sx1 + - +8x”),n)
(u +n7Y(8, — 8,),n),
(3.1) with prob. 6/(n(n — 1+ 6)),i=1,...,n,
~ (M +(n+1)7Y (8, —p),n+ 1),
with prob. (n - 1)/(n(n - 1+80)),i=1,...,n,
where ¢; is distributed according to P(x;, dy). Let f & C(S). Then
E[(f,mpe1) = Frma) (s, N(R)) = (8,0) = (718, + -+ 48, ),n)]

0 n
e O (RO ]
-1 n 1

i teay B0 00 )
(3.2) (/] 1 r
“amo1re" & FNGE)

n—-—1

4+
n(n—1+80)

(n+ )Y (f(x) - o)
i=1

0
= m(ﬂ‘ﬂ#)

fork=0,1,...,s0

M. =(fun,) - :é:E[( frtiesr) = Fome) (g, N(E))]

(3,3) -1 1
= _ { PF —
_<f!l""r> ekgoN(k)(N(k)—l‘i‘O)\Pf f!/"'k>

is a martingale.
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Now the time spent by {X(7),7 € Z,}in S” is geometrically distributed on
N with parameter (n — 1)/(n — 1 + 6), so
Bl Y -
r=o N(k)(N(k) —1+96)
(3.4)

-7,

[ 22 n(r:+— 1+6)

1 n—1+6
gn(n—14+6) n-1 -

-I

Consequently, the martingale convergence theorem implies that M,, and
hence < f, u,), converges almost surely as 7 — ». But f € C(S) was a.rbltrary,
so since C(S) with the supremum norm is separable, we conclude that u,
converges almost surely in the topology of #(S)as 7 > ». O

The next lemma is a slight modification of part of Lemma 6.1 of Dawson
and Hochberg (1982).

LemMMa 3.2. Let I, in P(H(S)) be arbitrary, and let Z,,Z,,... be a
sequence of S-valued random variables such that

(3.5) (Zy,...,2,) has distribution /97 pr()Ho(dp)
(S)

for each n € N. (Such a sequence exists by Kolmogorov’s extension theorem
and is exchangeable.) Then lim, _,,n,(Z,,...,Z,) exists almost surely in the
topology of P(S) and has distribution I1,.

ReEmMARK. Dawson and Hochberg (1982) refer to this construction as the
canonical representation of a random probability measure.

Proor. It suffices to replace the countable collection of indicator functions
of Dawson and Hochberg (1982) by a countable dense subset of C(S). O

We now have all the ingredients necessary to prove our main result.

PROOF OF THEOREM 1.1. Let Z,, Z,,... be as in Lemma 3.2 with II, = II.
By Lemma 1.2,

(36) nn(X(Tn+1 - 1)) =9 nn(zl! ° "Zn)! n = 2’

where =, denotes equality in distribution. Lemmas 3.1 and 3.2 imply that

. both sides of (3.6) converge almost surely. By Lemma 3.2, the limit of the right
side has distribution II. Therefore the same must be true of the limit of the
left side and the proof is complete. O
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REMARKS. (a) In view of Lemma 3.1, the subsequential limit
lim,_,7n,(X(r,,; — 1) in Theorem 1.1 can be replaced by the limit
lim_ . 7y (X(7)) of the full sequence, slightly strengthening the conclusion
of the theorem.

(b) Recall that {X(7), 7 € Z_} has two types of transitions, mutations and
duplications. Define the slightly simpler Markov chain {X°(7), r € Z.,} in
82U 83U - similarly, except that when a duplication occurs, the duplicated
coordinate is placed in the (n + 1)th position. More precisely, from state
(x4,...,x,) € S™, where n > 2, a transition to state (x,...,x,,x;) € S**!
occurs (1 < i < n) with probability (n — 1)/(n(n — 1 + 0)).

Then the conclusion of Theorem 1.1 holds without change for the modified
Markov chain. The conclusion of Lemma 1.2, however, must be weakened to

(3.7 mu(X°(ns1 — 1)) has distribution /g w7 () I(dp)

for each n > 2. For purposes of simulation, however, this will suffice if the
statistics of interest are symmetric with respect to the sample, as they usually
are. The proofs of these assertions are almost immediate by noting that the
Markov chain (8.1) is insensitive to the ordering of the coordinates.

APPENDIX

The moment measures of Il and genealogical trees. Here we state a
result that generalizes (1.20) from n = 2 to arbitrary n. It requires a consider-
able amount of notation, much of it from Ethier and Griffiths (1987), referred
to hereafter as E-G (1987). For the convenience of the reader, we repeat here
the essential definitions.

Let E =[0,1)%+. For n € N define (x,,...,x,) € E™ to be an n-tree if:
() the coordinates x,;, j = 0,1,..., of x; are distinct for fixed i €(1,...,n};
(ii) whenever i,i' €{1,...,n}, j,j € Z,, and x; j =%y, we have x; ;.; =
Xy 2 for l=0,1,...; and (iii) there exist j;,...,J, € Z, such that Xy =
. . Let 7, Cc E™ be the set of all n-trees a.nd define the equivalence
relatlon ~ on .7' as follows. Say that (x,,.. ~(yy.-.,y,) if there
exists a bijection {: [0,1] = [0, 1] with y;; = {(x ) for i=1,...,n and j =
0,1,....Let J,/~ denote the quotient set of equivalence classes. Ford € N,
define (9;/~), to be the set of all T € 9/~ such that x,,...,x; are
distinct whenever (x;,...,x;) € T. Define the shift operator .1 E — E by
Fx = A%y, %1,...) = (2, %5,...). For k = 1,...,d, define .#},: E? » E? by
FXqy e Xg) = (Xq, .., Xy, X, X4 1,...,Xg), and note that ., in-
duces a map (also denoted by ;) from J;/~ into 9/~ .Fork =1,...,d,
we say that T € J,/ ~ has the property that x,, is distinct if x,, # x;; for
all (x,,...,x;) € T and (i, j) # (%, 0). Finally, z € [0, 1] is said to be a segre-
gating site of (x,,...,x,) € J, if z appears in at least one but not all of the
sequences Xj,...,X,. Note that one can refer to the number of segregating
sites of an equivalence class T € 7,/ ~ . See E-G (1987) for discussion and
motivation.
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In addition, for 1 < d < n, let m(n, d) be the set of partitions 8 of {1, ..., n}
into d unordered, nonempty subsets (e.g., |m(n, n)| = 1). However, we want to
be able to refer to the individual subsets that make up a partition g € 7(n, d),
so we denote them by B,,...,B,;, where min3; < -+ <min B,. For B €
m(n, d), define @: E?Y— E" by Dy(xy,...,X4) = (yy,...,¥,), where y;, = x,
whenever i € 8,, and define ¥,: B(S") — B(S%) by (W fXxy, ..y %9) =
fyy,-..,¥,), where y, = x, whenever i € B,. Note that ®, induces a map
(also denoted by @) from J,;/~ into J,/~. For k=1,...,d, define
P,: B(S%) —~ B(S8%) by

(Pef) (21505 20) = [sF(%15 s Xpo15 Y5 Xps1s - -5 X)) P2, dy).

For Te 9,/~, we define P;: B(S")~ B(S) recursively as follows.
Choose d €(1,...,n}, B € w(n,d) and T, € (J,/ ~), such that T = ®,4(T,).
Then

(A1) Pp = Pp ¥, where P =P . P, if x,, is distinct;

also, Py =1 for T € (9,/~),. If we define the degree of an equivalence class

T e 9,/~ with s segregating sites to be s + n, then AT, in (A.1) has

degree s — 1 + d, which is less than s + n, thus explaining the recursion.

(Note that, if d > 2, every T € (9,/ ~), has at least one distinct segregating

site.) It is left to the reader to check that the order in which distinct
. segregating sites are removed does not matter.

ExaMpPLE A.1. Let T, € (93/ ~), be as in Figure 1 of E-G (1987), that is,

TO = {((yI! xOv xl, .. ), (y4,y37y2, xOv x17 LR ), (y5,y2’ xO’ xl, oo ))
(A.2) -
Y1, Y25 Y35 Yas ¥ss X, %1, . .. € [0, 1] distinct}.

Let B € m(6, 3) be the partition B; = (1,5}, B, = {2, 3, 6}, B3 = {4}. Then, for
fi,--., fe € C(S),

PTO\I'B(fI X+ X fg) =PT0(f1f5 X fofsfe X f4)

(A-3) = P(fufs) - P(P*(fufsfs) - Pf.) € C(S).

There is one more definition needed at this point. Let i € FP(FL(E)) be the
unique stationary distribution of the infinitely-many-sites model of E-G (1987)
and for n € N, d €{1,...,n}, B € m(n,d)and T €(F;/ ~),, define

(A4) P(T.B) = [, w(@5(T))i(dn).

Letting n = (IB8,),...,|B,)), we note that p(T, ) = p(T, n), where the latter is
as in (3.5) of E-G (1987).
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PRroPOSITION A.2. For each n € N and f € B(S™),

&%) [ (LT =X T T pTBNP ).

d=1gen(n,d) Te(Ty/~)

ReEMARKS. (a) Note that (A.5) is the integral of f with respect to the nth
moment measure of II.

(b) By (1.15) of E-G (1987), the special case of (A.5) in which n = 2 implies
(1.20).

(c) If (1.9) holds, then (A.5) implies [see E-G (1987), page 537] that

n d
48) [ (fum - (fopldn)= £ T p(8) IT(IT fuvo)

d=1gen(n,d) k=1 \i€p,

where fi,..., f, € C(8) and p(B) = (1Bl — D! --- (1B, — D'e¢~1/
@Q+6):--(n—1+ 0)), aresult of Ethier (1990).

(d) A proof can be based on Lemma 2.1 above and Corollary 4.2 of E-G
(1987).

Acknowledgments. It is a pleasure to thank Peter Donnelly for helpful
discussions and R. C. Griffiths for the observation that (1.8) should not be
needed.
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