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BUYING WITH EXACT CONFIDENCE

By S. R. DaraL AnD C. L. MALLOWS
Bellcore and AT & T Bell Laboratories

We derive some results which may be helpful to buyers of software
testing for faults, or to buyers of large lots screening for defectives.
Suppose that a fixed but unknown number n of faults or defectives remain
before testing. In the testing phase they are observed at random times,
X, X,,..., X, which are order statistics corresponding to n i.i.d. random
variables. Since testing is usually an ongoing activity, this distribution is
typically known. Under this assumption we derive a stopping criterion that
guarantees, for any specified level @ and integer m, that for all n > m,
with probability exactly 1 — @, when stopping occurs, the software has no
more than m faults remaining. We study various properties of this stop-
ping rule, both finite and asymptotic, and show that it is optimal in a
certain sense. We modify a conservative stopping rule proposed by Marcus
and Blumenthal to make it exact, and we give some numerical comparisons.

1. Introduction. Suppose a fixed but unknown number r of events
occur successively at times X, X,,... . We assume that unordered X’s are
independent positive random variables, with a known common distribution F,
which we assume is continuous. We can observe these events as they occur,
but cannot afford to keep on observing indefinitely. Let K(#) be the number of
events that have been observed by time ¢, that is, the number of indices j such
that X; < ¢. A stopping rule for this problem will be defined by an increasing

sequence by, b,, ...; we stop at time r = b, where
(1) oJ = the smallest j such that K(b;) <.
We will show that for any m > 0 and « in (0, 1), we can choose b;, b,,... so

that, when we stop, we have confidence (at level exactly 1 — a) that at most m
events have yet to occur. More precisely, we shall achieve:

(2) foralln >m, P(n—K(1)>mln)=a.

It will follow that if the number of events is a random variable N with
arbitrary distribution supported on (m + 1, «), then

P(N -K(7)>m) =a.

Of course, for a general stopping rule b; may depend on X, X,,..., X;_,, but
we shall show that constant b’s suffice to achieve a certain optimality result.

The above formulation is suggested as a model for the situation facing
someone responsible for testing software before release and as an approxima-
tion for the problems of (i) deciding when enough proofreading has been done
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BUYING WITH EXACT CONFIDENCE 753

and (ii) sequential sampling inspection of finite lots. It is related to some
standard models. If we let N be a Poisson random variable with mean A, then
the times X, X,,... form a Poisson process with time-dependent rate A f().
This model is very commonly used in the software field [see Musa, Iannino and
Okumoto (1987)], although there it need not be assumed that the integral of f
is finite.

Dalal and Mallows (1988) consider the stopping problem from the point of
view of the developing organization and derive an optimum rule. The present
formulation is more appropriate from the point of view of the purchaser of the
software, who may desire to specify m and « and who requires that the
software be certified to contain no more than m faults, with confidence a. In
Section 8 we examine the economic tradeoff that arises here.

Concerning the proofreading application, several authors [e.g., Chow and
Schechner (1985)] have assumed that for each misprint in the text there is a
constant probability that it will be found on any one reading, with all mis-
prints acting independently. Thus the number of readings to find a given
misprint has a geometric distribution. Our model approximates this by a
continuous distribution. Wallenius (1967) discussed sequential sampling of
finite lots, each element of which may be defective. If we imagine the items
spread out in order along the real axis, the problem is exactly like ours except
that time is discrete.

There are several other applications in which a model similar to the one
discussed here is appropriate. Marcus and Blumenthal (1974) discuss many of
them in our framework and propose a conservative stopping rule. In Section 6
we show that our rule is optimal under broad assumptions. We also show in
Section 8 that the Marcus-Blumenthal procedure can be modified to yield an
exact confidence statement. We present a numerical comparison of our proce-
dure with this modified procedure.

Our problem is related to that of giving a distribution-free confidence band
for an unknown distribution function; see Wald and Wolfowitz (1939). We
shall use one of their formulas in our derivation.

2. Preliminaries. Since F is known, without loss of generality we can
perform a probability-integral transformation, so we take F to be the standard
uniform distribution on (0, 1).

The ordered values of a random sample of size n will be written
(Xy n5- .-, X, ). Inequalities between vectors are to be interpreted coordinate-
wise. We write X <, Y to denote that the random vector X = (X,,..., X,) is
stochastically smaller than (Y,,...,Y}), that is,

forall x = (x,,...,%,), P(X<zx)=P(Y<x).

The binomial coefficient “n choose k" will be written C(n, k). We write B,
for the space of sequences, b’s which satisfy

0<b, <b,< - <b,<1.
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3. The case m = 0. Suppose b isin B,. If X, ,,..., X, , is an ordered
random sample of size n from the uniform distribution on (0, 1), we are
interested in the probability

(3) q,=9(by,...,b,) =P(X, ,<by,..., X, ,<b,).

In the case m =0 we want g, =1 —a for all » > 1. For n =1 we have
g; =b; 80 b, =1-a. For n = 2 we find

qs = 2b,b, — b%’

so we can take b, =1 — a/2. Appendix A, which constitutes a proof of
Theorem 1, shows that this construction can be repeated indefinitely, thus
defining an increasing sequence b,, b,, . .. that satisfies (2) (with m = 0) for all
n>1. '

THEOREM 1. Form =0and 0 <a <landforallk>2,b,_,<b, <1

For computing these b’s it is convenient to work in terms of ¢, =1 — b,. It
follows from a result of Wald and Wolfowitz (1939) [their equation (27)] that

1 ¢ ¢} cpt et

0 1 2c (n — 1)cp! ney~!

0 1 C(n—-1,2)e2% C(n,2)cr 2
(4) qn — . ( ‘ ) 3 ( .) 3 .

0 0 1 ne,

1 1 1 1 1

The (i, j) element in this determinant (for 1 <i <n,1<j<n + 1)is

C(j—1,i—1)ci 7"
Expanding the determinant in (4) by its last column, we have
(5) g, +nc,q,_,+C(n,2)c2_1q,_o+ "+ +nci 'q; + ¢ = 1.

Now setting ¢, = g, = -+ = 1 — @ we can determine the ¢’s in order.
For 2 =0,1,...,n — 1, the 2 + 1-th term on the lLh.s. of (5) is exactly
P(r=b,,,_4/n)P(K(1) = n — kln). To see this, let us write

D(x,n) = largest j such that X, , <x.
Now observe that for j > 0,
E P(r=b;.,n)=P(X,,<by,..., X; , <bj, X;\1 ,>b;,1)

= P(X,,<by,...,X;, <b;,D(b;,1,n) =j).
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However,
P(X,,<by,...,X;, <b;jID(b;,1,n) =j)
= P(Xl,j <by,.. s X; ; <b;|D(b;y1,0) =)
=P(X,;<by,...,X; ; <b;) bl
so that
P(r=b,,ln) = P(X,,; <by,..., X; ; <b)P(D(bj,1,n) = j) [bfss
(6) = q,C(n, j)bfi(1 = b;41)" 7 /6]y

=1 -a)C(n,j)ej.

| 4. The general case. When m > 1 and n = m + k, k > 1, the quantity
(3) is replaced by

(7 P5nm+)k =p(’")(b1,...,bk) = P(Xl,m+k <by..., Xk,m+k < by)

and we want p(™), =1—-a for k=1,2,.... Notice that p™Xb,,...,b,)
concerns a sample of size m + k. We can get (7) from (3) by setting b,,, =
- =b,,,,=1,s0 we must put ¢,,, = -** =c,,,; =0 in (4). Expanding

the resulting determinant by its last column, we find
) P =1-C(m+k,k—1)g,_ e —C(m +k, k—2)
qu_zcznjlz —_— e _(m + k)qlcé’”k_l _ c{n+k’

where the g’s are still defined by (4). Using (8) and (5) alternately, we can
determine in order

C1,41,C2,99,C3, ...

so that p{™), =1 —a for k= 1,2,... . We have not seen how to extend the
argument in Appendix A to cover this case, but we have strong numerical
evidence that for all m and «, ¢; > ¢, > - . Specifically, we have computed
Cpy...5C for m =1,2,4,8,16 and a = 0.05(0.05)0.95, finding results that
are completely consistent with the asymptotic formulas that we give below.

The same argument that led to (6) now shows that
P(‘T = bj+l In) = qjc(n’.])c‘]n:‘ll.

5. Asymptotics. We can derive the asymptotic forms of these stopping
rules, and the asymptotic behavior of n — K(7). First consider the case m = 0.
In (5), multiply both sides by y"/n! and sum on n from 1 to . This gives

e’ —ae™ . y?
—— =e¥1 + ye?¥2 + gey"a + e

)

The ¢’s can be determined in order by equating coefficients on both sides of (9).
Notice that as @ — 0, ¢, — 1 for all &; but the limit as « — 1 is nontrivial. In

l-«
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this case we find the values

1 5 35 22601

(01’02’03’04’05) = (17 25125 967 69120 )

but we have no general formula.

Now multiply (9) by e™ and suppose y is a large integer, n. The r.h.s. of (9)
is a Poisson-weighted average of e"°, and is dominated by the terms near
k = n. The Lh.s. is very nearly 1/(1 — a). Let us write

1—a=e2

Then we have the following theorem.
THEOREM 2. Form =0and 0 <a <1,c,=A/n +o(n"1).

For a rigorous proof of this theorem see Appendix B. The rest of the results
in this section are in analogy with the argument preceding Theorem 2 and are
based on formal expansions. We shall not attempt rigorous proofs.

Now consider the terms on the Lh.s. of (5). We have q, =1 —a =e~* for
all k, so for & < n the (¢ + 1)-th term in (5) is approximately

Ak

E .

Thus, by the comment immediately following (5), when n is large the stopping
time b, is such that n + 1 — ¢ (i.e., the number of faults not found) has very

nearly a Poisson distribution with mean A.
We can get more detailed results from (5) by assuming

e-A

c, = i(1 + ﬁ) + 0(n™%).

" n n
Expanding and collecting terms, we find @ = —A /2 so that
A .
10 =—— +0(n7?).
(10) = s H O

The approximation in (10) is excellent even for small n; for a = 0.1 it gives
¢, to within 10™* for n > 5.
Similarly, using (5) and (8) we obtain for the case m > 1:

A
- -2
c"_n+(m+/\)/2+0(n )

=e M1+ mA) +0(n™?
qn =e 2n (n )7
where now A = A, is defined by

(11) l—a=e* Y —.
k=0 k!
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Again, for n large, the stopping time &; is such that n + 1 — J has very
nearly a Poisson distribution with mean A.

6. An optimality property. We can show that the stopping rule (1) is
optimal in the class of all rules that have the exact confidence property. For
ease of exposition we consider the case m = 0; similar results hold in the
general case.

A general stopping rule is defined by an a.e.-monotone sequence of functions
by, (%), t3(xy, x5), ... . It stops at time 7 = ¢ ,(X,,..., X,;_,), where J is the
smallest index such that

K(t(Xy..., X; 1)) <J.

Consider the class () of all such rules that satisfy the exact probability
requirement, that is,
(12) foralln >1, P(X,,<t,....X,, <t (X, ., -, X, 1,))

=1-a.

THEOREM 3. Assume that F is the standard uniform distribution and that
the loss incurred by stopping at time t is L(t, K(¢),n) = f(¢) + h(n — K(¢)),
where f is a monotone increasing convex function and h is an arbitrary
function. Then, in the class () the stopping rule (1) [i.e., with ¢; a constant,
independent of (X, ..., X;_;) minimizes E(L(r, K(7), n))].

We remark that this result is not as powerful as it might seem, since the
exactness requirement severely restricts the class of stopping rules. However,
from the practical point of view such requirements are quite meaningful and
in Section 8, we define and exhibit another class of rules different from (1)
belonging to (.

Proor oF THEOREM 3. First consider the case h = 0. ¢; is a constant
(=1 — a), determined by the exactness condition at n = 1. For n > 1 we
determine ¢, , to satisfy (13) and to minimize the expected loss at n:

E(L(7,K(7),n)) = E(f(7)ln) = Y P(K(7) =kln)E(f(7)IK(7) =k,n).
0
Stopping can occur at any one of ¢,,...,¢,,; the only term involving ¢, , is

_ [t to(xy) tn(xl,...,::c,,_l)r
(13) Fn—[o dxlel dx, [x ntf(t, ) dx,.

n—1
’ The exactness condition (12) for n + 1 requires

t (%, n— te(xy, ..o, 2,)
(n+ 1)!'[01dx1 o [l g [l B gy =1 -
xﬂ

Xn-1
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Subtracting the n — 1 version of this equation, we have

t t(xy, .00, %,_1)
n!f dxy - [TV (e + 1) (8 e X,) — X,
g "] [( + D(tuas(r, o 20) —0,)

—1] dx, = 0.

We need to minimize (13) subject to the condition (14). Using a Lagrange
multiplier, we need to minimize

t Wxy, e, X,_1) .
n!];) dx, ft [f(tn+1(x1""’xn))

+A((n + 1) (tyie(2y, ..o, x,) —x,) — 1)] dx,,.

This is accomplished by minimizing the term inside the square brackets for
each fixed x,,...,x,. This gives the condition f'(¢,,,) + A(n + 1) = 0, and
consequently, by the monotonicity of f, ¢,,; does not depend on x,,...,x,.
Because of the convexity of f this stationary point is a minimum.

Now consider the case where A is an arbitrary function. The term involving
t, ., will involve only A(0), which is a constant. Thus, the same optimality
result holds.

It is interesting to notice that the stopping rule (1) is asymptotically optimal
in a quite different sense also; see Section 8.

7. A Bayesian approach. Suppose that m = 0 and that the total num-
ber of faults is a random variable, N. Given (only) that observation stops at
T = b;, a Bayesian with a prior distribution m(n) on N will make inferences
from the posterior distribution

m(n)C(n,j ~ (1 ~b;)"""”
£ __m(m)C(m,j - 1)1 -b)""" 7’
Thus his posterior probability that N =j — 1 will be

m(j - 1)
Lmejm(m)C(m, j — e 1"

If j is large and 7(n) is locally uniform, this will be approximately

(1 +je; + C(j+1,2)c?+C(j+2,8)ci+ - )_l,
which [using (10)] is nearly e™* = 1 — a. Thus there is no great discrepancy
between the Bayesian and confidence approaches. However, there is no proper
prior distribution 7(n) that makes them agree exactly. To see this, set (15)
equal to 1 — a and multiply both sides by the denominator. Summing the
resulting series of equations and using (5), we find that ¥ 7(j)a’ = 0, which is
impossible. It is conceivable that some improper prior will work, or that for
some proper prior the approaches can be made to agree exactly for all j > 2.

p(nlj) = n>j-1.

(15)
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8. Related work. Marcus and Blumenthal (1974) propose a stopping rule
of a different kind; assuming the failure times X, X,,..., Xy are ii.d.
exponential, they consider the waiting times between successive failures,
G=G y=X,-X;_,j=12,...,N+ 1 (where Xy y=0and Xy, , y=
), and stop as soon as some G; exceeds a chosen constant g. They show that,
for this stopping rule, the probability that no more than m items remain is

(16) I (1 - e7).
m+1

When this probability is small, the distribution of the number of remaining
items is approximately geometric, with mean 1/(e® — 1). Since (16) depends
on the unknown n they derive a lower bound on the probability (16).

It is easy to modify this procedure to yield a procedure with the exact
confidence property. Consider a sequence g; and stop as soon as G, > g; for
some j. Now determine the sequence g; to make

pr(stgJ-,j= 1,...,n—mln)= 1l1-a.

Using the fact that the G’s are independent exponential random variables with
scales 1/n,1/(n — 1),...,1/(m + 1), this reduces to solving (iteratively) the
system of equations

(17) IT (1 -e78nvr1)=1-a.
Jj=m+1

Of course as n — », g, — g, where I_Ij?=,,,+1(1 — e78) =1 — a. We can now
compute the expected stopping time E(7) and the expected number of unob-
served events E(n — K(7)) and compare them with those corresponding to the
procedure (1). For this comparison we take @ = 0.05, m = 0 and F to be the
exponential distribution with scale 1. Table 1 gives the comparisons. As is
qualitatively suggested by our optimality result, both E(n — K(7)) and E(7)
are larger for the stopping rule (17) than for (1). The first of these differences

TaABLE 1
Comparison of stopping rules (1) and (17) form = 0, « = 0.05

Stopping rule (1) Stopping rule (17)
n E(x) E(n - K(¢)) E(7) E(n - K(1))
1 3.654 0.05 3.842 0.05
2 4.060 0.0525 4.339 0.0525
4 4574 0.0518 4.922 0.0525
8 5.165 ©. 0.0515 5.559 0.0525
N 16 5.802 0.0514 6.22 0.0525
' 32 6.466 0.0513 6.897 0.0525
64 7.144 0.0513 7.583 0.0525

o 0.0513 0.0525
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is stable at around 0.0012, while the difference in E(7) increases slowly and
for n = 64 it is about 0.44.

Starr (1974) considered independent exponentially distributed capture times
for each of n prey, with a payoff equal to the number of prey caught less a
linear time cost, ct. He derived a stopping rule that asymptotically agrees with
ours, with

c
k=—(e* -1)
n

corresponding to (after transforming to the uniform distribution)
A c

YN u
Starr showed that this rule is almost asymptotically optimal, in the sense that
as n — « its loss differs from that of the best (known, fixed n) rule by less
than 1/2 + n=7, for all y > 0.

Vardi (1980) considered the same setup with a loss of the form

(A —n)® + ct + bK(2),

where 7 is the estimate K(7)/(1 — e **) of n. The same stopping rule, with
A =c/(1 — b), is obtained and is almost asymptotically optimal in a similar
sense. Vardi also proved the limiting Poisson distribution property of n — K(7)
in this case.

In Dalal and Mallows (1988, 1992) we generalized the Starr—Vardi approach
to allow for a known arbitrary distribution of lifetimes and general testing
costs. We assumed that the total cost (to the supplier) when testing terminates
at time 7 is

Cp

Cost = f(7) + aK(7) + b(n — K(7)),

where f(¢) is the cost of testing through time ¢, a is the cost per fault found
during testing and b is the cost per fault not found before release. Typically b
is much larger than a. We assumed that n, the total number of faults, is not
known. In the special case f(¢) =tf, with exponentially distributed fault
lifetimes with known intensity u, the optimal stopping rule is asymptotically

(18) stop when K(t) < E%(e"t - 1),

where ¢ = b — a. The number of faults not found is asymptotically Poisson
with mean f/cu. Remarkably, this rule has asymptotically the same form as
the one we have derived here when the objective is exact confidence; we have
only to replace the multiplier f/cu by A,,., determined from (11). Under the
same economic assumptions as led to (18), the total cost to the supplier of
'providing the (m, a) certification is approximately

f n
an +cA + —log —.
N A
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If some prior estimate of n could be made, this would provide a basis for
negotiating a price for the (m, a) guarantee.

In Dalal and Mallows (1990) we considered the case of an unknown lifetime
distribution, and provided some convenient graphical devices for this case.
Recently we have extended our present work to the case of exponentially
distributed variables with unknown scale and are studying various stopping
rules and their properties.

APPENDIX A

We prove that for m = 0 and 0 < @ < 1 the recursive construction of the
sequence “b;” is feasible, that is, that for all £ > 2 we find b,_; <b, < 1.
This property is rather delicate, since if we start with an arbitrary monotone
sequence b,,...,b, such that for some n, q(b;,...,b,) =1 — a, then in
general we cannot find b, in (b,, 1) such that q(b,,...,b6,,,) =1 — a. For
example, if m =0 and (b, by) = (0.1,0.9), then q(b,, by,) = 0.17, but
q(by, by, bs) = 0.51b5 — 0.242, which goes from 0.217 at b; = 0.9 to 0.268 at
b; = 1. Thus no feasible b gives the value 0.17.

The following argument is due to Henry J. Landau, to whom we are
extremely grateful. We write 8 for 1 — @. The condition (3) can be written

1= %/;bldxlj;l:zdxz j::l_ldx” = '/(;bndxn wn(xn)’

where the functions w;,w,,... and the limits b, b,,... are determined
sequentially (as functions of 8) as follows:

wl(x) = E’
[Pwi(u)du =1,
0

wy(x) = /Omi"(x’b‘)ZwI(u) du,

/bzwz(u) du=1
0

and so on;
(A1) wa(x) = [" 0 () du,
0
. (A2) [Prwo(u) du = 1.
0

The function w,(x) is monotone, piecewise polynomial, of degree n — k& in
(b,_1, b,,) and equals n for b,_; < x. We define w,(x) = 0 for x < 0. Defining
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w, by (A.1), we need to show that
b, 1
/ w,.(u)du <1 <f w, () du
0 0

so that b, ., can be defined to satisfy (A.2).
The right-hand inequality is easy; this integral is

(l/B)P(Xl,n+l < bl"“’ Xn,n+1 < bn)
>(1/B)P(X; ,<by,..., X, ,<b,) =1
since (X, ,415+++5 Xy ns1) <p (Xy ..., X, ). Now by definition of w, ,,

foann+1(u) du = fob"n(bn —uw)w,(u)du

=f(B), say.
We shall show that if 0 < B8 <y < 1, then f,(B) < f,(y), and that f,(1) = 1.1t
will follow that f,(B) < 1 for all B8 < 1. We need to make the dependence of
w,(x) and b, on B explicit, so from here on we write these as w{¥)(x) and b,
respectively.

First, at B = 1 we have, for all &, b{¥ = 1, wP(x) = kx*~1, s0 f,(1) = 1 as
claimed. Now over the interval (0, ), w® is a density function (.e., positive
and integrating to 1); in fact it is the density of X, (X, , <b{®,..., X, , <
b®). In stochastic language, we propose to show the following theorem.

THEOREM A.1.
n(bf{*’ — X,,,,,)I(Xl,,, <bP,..., X, < bﬁ,‘”)

(A.3)
is stochastically increasing in B.

Since f® is the expectation of this random variable, this will prove what
we want. We have not seen how to translate the following argument into
stochastic language.

LEmMa A.l. Suppose 0 <B <y <1 and 0 <A <bY —bP. Then
w(x + A) and w(x) intersect only once in their increasing sections.

Proor. This is easily verified when n = 1. Suppose we know it for m — 1.
First, compare w{(x + b ; — b#) ) with w!¥(x), in the range — (b, —
P ) <x <b¥ .. That is, we shift w?’ to the left until the right-hand
endpoints of their increasing sections coincide. Then

> 0, —b(‘Y)_l - (b(B)_l) <x < 0,
w(x + 67, — b¥) — wP(x " "
S wP(E R S ER) m W) e,

However, the derivative of this function is

wg{)_]_(x + bs{)—l - bsf)_]_) - wffll(x),
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which by the inductive hypothesis has one change of sign. So the function is
everywhere nonnegative. Therefore the integral of the increasing portion of
w® exceeds the integral of the increasing portion of w{, and so [by the
definition (A.2) of b’ and 5],

bW — b | <P — b |,
that is,
(A.4) bg;z)l) - bff) < bsr‘{)—l - bg,‘;)_l.
Now with 0 < A < b’ — b{®, consider
wP(x +A) — wP(x)

over the range —A < x < b®,, which covers the increasing part of w{®. As
before, the difference is positive in —A < x < 0 and negative at %) ;, while
the derivative is

w? (x+2) —wP (x).

By (A.4) and the inductive hypothesis, this derivative changes sign only once,
hence the difference itself has a single zero. This proves the lemma. O

Taking A = b$”’ — b%® Lemma A.1 shows that indeed (A.3) holds.

APPENDIX B

For proving Theorem 2 we shall need several results which we state as
lemmas. First let us introduce some notation. Let Z;’s be a sequence of i.i.d.
Poisson r.v.’s with mean 1. Let .

Din= P{Zn = i/n} =e™"n'/i! and P, ,= P{Zn < i/n}.
LemMa B.1. Foranyk >n —2,P, ,>1-p,.; (k+2)/(k+2—n).

PRrOOF.
e ]
P,,=1- Y e "n'/i!
kB+1

n n’
=1'_pk+1,n{1+ (k+2) + (k+2)(k+3) +}

1 1 " n” +
>1- + +
" pk+1,n (k+ 2) (k + 2)2

= 1= Prs1,nl/(1 = n/(k + 2)). D
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LEmma B.2. Foranyk <n, P, , <p, ,n/(n — k).

Proor. By using the well-known relationship between the Poisson c.d.f.
and incomplete gamma functions, we have

P, , = [ e tttdi/kl=p, , [ f(t)dt,

n

where f(t) =e @~"(t/n)*. Now we will replace f(¢) by g(¢) =e P¢™m)
where D is selected so that f(n) = g(n) and f'(n) = g'(n). This gives us
D=1—-%k/n. Now using the fact that e* > 1 + x, it is easily seen that
f(&) < g(¢). Thus the lemma. O

Finally, using Stirling’s formula, and e ™ > 1 — x, we get the following
lemma.

LemMmA B.3. For any large k and n, k <n,
P, ,<exp(—n{k/nlnk/n —1-k/n})/V2wk (1 - k/n){1 +o0(1)}.

The term in curly brackets in the numerator is positive for k < n.

CoMMENT. Chernoff’s large deviations theorem says that, for any & < n,
Prn<exp(—n{k/nlnk/n+1-k/n}).
Clearly, for any £ — », and k/n < 1 — ¢, ¢ > 0, Lemma B.3 indicates that the
bound in Lemma B.2 is better than Chernoff’s bounds.
The following lemma gives an upper bound on lim e"“»,
LEmMa B4. lim, . e"» <1/(1 — a).
Proor. Let j = n + n®* Then upon rearranging (9) we get

(1-ae~-9m) /(1 —a) = ¥ (e —em)P,_, ,
i=1

> encj'Rj—I,n
> e"”J{l —(1+n"*+n"¥"p; )
by Lemma B.1.

Now the Lh.s.—» 1/(1 — a). Also p; , = e ""*/2 so for any ¢ > 0 we can
choose n so large that

e"i<1/(1-a) +e.
Now since n/j — 1, we get Lemma B.4. O

Finally, to conclude the proof of Theorem 2 we shall need the following
lower bound on lim e™°~.
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LEmMa B5. lim, e > 1/(1 — ).

Proor. Let 1 <j <k <n, where j=n!'"* and k =n(l1 — §) for fixed
positive £ and 8. Then we have by equation (9):

{1-ae -9} /(1 —a) =Y e"cie~"ni/il
i=1

< e"P; + e" P, + e"*, (by monotonicity of c’s).

By Lemma B.2 and using the fact that lim e¢"°» < 1/(1 — a), it follows that the
first two terms on the right-hand side tend to 0. Finally, since the left-hand
side tends 1/(1 — a), we have for any &', for n sufficiently large,

e"t>1/(1-a) —¢'.

Finally, since n/k = 1/(1 — 8), we have lim e"°» > 1 /(1 — a), thus concluding
the proof of Theorem 2. O
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