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ON MOMENTS OF THE FIRST LADDER HEIGHT
OF RANDOM WALKS WITH SMALL DRIFT

By Josepu T. CHANG

Yale University

This paper presents some results that are useful in the study of
asymptotic approximations of boundary crossing probabilities for random
walks. The main result is a refinement of an asymptotic expansion of
Siegmund concerning moments of the first ladder height of random walks
having small positive drift. An analysis of the covariance between the first
passage time and the overshoot of a random walk over a horizontal
boundary contributes to the development of the main result and is of
independent interest as well. An application of these results to a ‘“‘moderate
deviations” approximation for the probability distribution of the time to
false alarm in the cusum procedure is briefly described.

1. Introduction. The study of boundary crossing probabilities for ran-
dom walks is a field in which asymptotic approximations have been particu-
larly successful and often remarkably accurate. The ““corrected diffusion ap-
proximations” of Siegmund (1979) are a prime example, having applications in
such fields as sequential analysis, queueing theory and insurance risk theory;
see Siegmund (1985a, b) and Asmussen (1987), for example. One of the
fundamental tools in the development of those approximations consists of two
results, reproduced for convenience as Theorems 1.1 and 1.2, which describe
the asymptotic behavior of the moments of the first ladder height of a random
walk as the drift of the random walk tends to 0. The main purpose of this
paper is to develop refinements of those results. This is done in Theorems 4.1
and 4.2. Along the way, we will develop some results, which are also of some
independent interest, concerning the covariance between the first passage time
of a random walk over a horizontal boundary and the amount by which the
random walk overshoots that boundary.

In this introductory section we first introduce some notation and assump-
tions related to exponential families and random walks. Then we give some
background and motivation for the problems treated in the paper, including a
discussion of some ideas involved in their solution. This is followed by a brief
description of an application of the results of this paper to a problem about the
cusum procedure [Page (1954) and Lorden (1971)], which is a sequential
method used in quality control for detecting a change in a probability distribu-
tion. There we state a theorem containing a new asymptotic approximation for
the time until the cusum procedure gives a false alarm. In lieu of the full
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development that will appear elsewhere, we give an indication of the role
played by the results of this paper in that development.

1.1. Assumptions and notation. The following terminology and notation
will be used throughout the paper. We shall be concerned with one-parameter
exponential families of distributions of the form {F,: § € 0}, where

(1.1) Fy(dx) = e**~VOF(dx).

Whenever we consider such an exponential family, we shall assume that ©
contains an interval about 0, and also that the family has been standardized so
that the distribution F| corresponding to the parameter value 6 = 0 has mean
0 and variance 1—that is, [xF(dx) = 0 and [x2F,(dx) = 1. For convenience,
let us call a one-parameter exponential family satisfying the conditions of the
previous sentence a standard exponential family. Usually, we will also assume
that the distribution F, is strongly nonlattice, that is,

limsup |E, exp(ir X;)| < 1.

JA| >

We will generally assume that X, X,,... are independent and identically
distributed, having a distribution F, that is a member of a standard exponen-
tial family. In this situation, the notation P, and E, will denote probability
and expectation.

The function ¢ appearing in (1.1), the cumulant generating function of the
6 = 0 distribution, has several familiar properties. For any 6 € O, the deriva-
tive ¥'(8) =: u is the mean of the distribution F,. The second derivative ¢"(8)
is the variance of Fj. Thus, our assumptions for ‘‘standardizing’ the family
amount to assuming ¢'(0) = 0 and ¢"(0) = 1. The Taylor expansion for
about 6 = 0 is

(1.2) ¢(0)—102+103+L04+---
' -2 6 24
where y = E; X} and « = E, X} — 3 are the third and fourth cumulants of F,.
A convenient convention that will be used consistently below is to let 6, and
0, denote elements of ® satisfying

0, <0<6;, and ¥(6,) =y¢(6,).

Other notation in this setting includes A =6, — 0,, o == ¢'(6,) and u, =
¥'(0,).

A particularly simple example of a standard exponential family that is also
particularly important is the normal family, in which F, is the N(0,1)
distribution. In this case, ¢(8) = 6%2/2 and u = 9.

With X, X,,... as above, define the random walk {S,: n > 0} by S, =0
and S, =X, + --- +X, for n > 0. The first ladder epoch 7, and the first
descending ladder epoch 7_ are defined by 7,=inf{n: S, > 0} and 7_=
inf{n > 0: S, <0}, and the first ladder height is S.,. More general first
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passage times are defined by

7, = 7(b) = inf{n: S, > b}
for b > 0, and the residual at b is defined to be
(1.3) R,=R(b) =8,4 —b.

Suppose F, is strongly nonlattice. Under any distribution P, for 6 > 0, R,
approaches a limiting distribution as b — «. Let R_ denote a random variable
whose distribution is this limiting distribution. The moments of R, are given

by
E,(S:H)

(1.4) p‘(8) = Ey(R3) = @+ DES._

for a > 0. For convenience let p(6) = p™(0), p® = p®(0) and p , = p™(0). For
positive integers a, the quantities p(® and p_ are defined analogously, using
7_ in place of 7_; for example, p_= E(S?)/(2E,S, ).

A fundamental tool is Wald’s likelihood ratio identity, which we will use in
the following form. Let X,, X,,... be as above, let %, be the sigma field
generated by X,,..., X, let 7 be a stopping time with respect to {%,}, and
suppose Y is measurable with respect to .%,.. Then for 6,6’ € 0,

Ey(Y; 7 < @) = Ey{Ye@=0S:—m0O—4®); 1 < oo}

We will also use the term Wald’s equation to refer to the familiar fact that in
the above setting gives E,S, = E, X, E,r, for example.
Two relations that will be used below are

(1.5) (Eosf_)(EosT+) = _%
and
(1.6) PP+ 302 + pp_= H(x + 3),

which hold in any standard exponential family. These may be derived by
differentiating the Wiener-Hopf factorization

(1 _ Eo{ei)‘s’—})(l _ Eo{ei)‘S’+}) =1- Eo{eiAXl}
two and four times, then setting A = 0.
1.2. Covariance between first passage time and overshoot. We retain the
assumptions that X, X,,... are iid with distribution F, belonging to a
standard exponential family {F,: § € ©} and F, is strongly nonlattice. Let

6 > 0 be fixed for now. Stam (1968) showed that as b — «, 7, and R, are
asymptotically independent in the sense that

" T, — b/u
Py 2, 3)1/2
(ba®/1’)
From this it is plausible that Cov,(7;, RB;) = 0(b'/2). In fact, it turns out that

<x, R, sy} — ®(x)P{R,, < y}.
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actually Cov,(7,, R,) approaches a constant as b — «: Lai and Siegmund
(1979) showed that

1
lim Covy(7,, R,) = — (EqR, — E,R.))P){M > —x} dx
(1.7)  bow K [0, )

C(9)

where M := min,_, S,.

Now we want to drop the assumption that 6 is fixed; applications in
diffusion normalizations and ‘“moderate deviations” normalizations such as
Theorem 1.3 below involve the behavior of Cov,(r,, R,) as 6 0 and b —
simultaneously. To begin to get a feeling for the behavior of the function
C(b, ) == Covy(r,, R}), it is instructive to consider its limiting behavior along
various lines in the plane {(,60): 0 < b < », 6 > 0}. Limiting behavior of
C(b,0) as b — » along lines of constant 6 was considered in (1.7). What
happens if & is constant and 6 | 0? First suppose b = »; from (1.7) it makes
sense to define C(wx, 0) := C(0). It is interesting that as 6 | 0, C(8) approaches a
constant C,; this may be shown using results from Section 4 about the
asymptotic expansion of moments of S_ for small 6. Next suppose b is a fixed
finite number. It can be shown that in general C(b, 0) will either approach + «
or approach — as 6 | 0. For example, using Theorem 1.1, one can show that
for b6 = 0 in the normal case we have

lirré nCovy(7y, Ry) = 2-1/2(p _ 2—1/2) <0
0l

(p = 0.583), so that here Cov,(7,, R,) > —x as 0 0.

Thus, it appears that while Cov,(7,, R,) behaves “nicely” if we first let
b — « and then 60 | 0, it behaves ‘“badly”’ if we first let # | 0 and then 6 — «.
What sort of behavior is exhibited if we let 8 |0 and b — « together, say in
accordance with a diffusion or moderate deviations normalization? Section 3.1
will show that the behavior is ‘“nice.”

Section 3.2 begins by establishing a representation of Cov,(r,, Rf) in terms
of the derivative E,(RY) of E,(R¢) with respect to 6. (The superscrlpts a are
powers here.) Th1s representation is combined with a result from Section
3.1 to obtain a result about E,R{ that is used in the analysis of E,R{ in
Section 4.

1.3. Moments of the first ladder height. We begin by stating Siegmund’s
results.

THEOREM 1.1 [Siegmund (1979)]. Let {F,: 0 € O} be a standard exponential
family of distributions, with F, nonlattice. For any a > 0,

(1.8) lim pEy(7,87,) = EoSe/(a + 1).
N ! :

| Theorem 1.1 provides the main ingredient in the proof of the following
closely related result.
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THEOREM 1.2 [Siegmund (1979)]. Under the conditions of Theorem 1.1, for
any a > 0 we have

a
(1.9) E,S? = E,S? + - (EoS2+1)0 + o(6)

+1
as 6 0.

It is Theorem 1.2 that has been used so extensively in deriving approxima-
tions. For example, these results are an important part of the theory behind
the well-known “correction” of adding p, (= 0.583 in the normal case) to the
boundary in corrected diffusion approximations. Perhaps the simplest example
is the result P,{r, < @} = e *® + 0(A%), whose proof relies on Theorem 1.2.
However, as will be indicated below, the results are not strong enough to
obtain the approximation related to the cusum procedure described in Section
1.4. Refining Theorem 1.2 is the main problem treated in this paper.

What sorts of refinements would we like? It is natural to ask whether the
“0(9)”’ that appears in Theorem 1.2 may be strengthened to read “0(62).” At
the cost of strengthening the hypotheses on F, slightly from ‘nonlattice” to
“strongly nonlattice,”” we will show that the answer to this question is ““yes.”
The next natural question becomes that of determining the coefficient of 62
Having done this, one would ask whether the remainder 0(4?) is in fact 0(63),
and so on.

To sketch some of the ideas involved, for convenience let

h(0) == E,S? .

In analyzing the behavior of 2 near 6 = 0, the first property to check is
continuity, that is, whether

h(6) = k(0) +o(1) as6 0.
This is shown in Siegmund (1979). To find an asymptotic expansion, the next
item of interest is the derivative A'(0), if it exists. As Siegmund (1979) shows
using Wald’s likelihood ratio identity, for 6 > 0,
(1.10) K(9) = E,{S? (S,,— ur,)}

Note that A'(0) cannot be obtained simply by substituting 6 = 0 in the
right-hand side of (1.10), since the second term then becomes of the form
“0 X ».” It is necessary to take the less direct approach of finding the limit of
H () as 6 | 0, the nontrivial part of which is finding

1.11 li E Se).
( ) OIII(; I 0(T+ 'r+) ‘
It is intuitively plausible that (1.11) should be finite, which would imply that
lim,, , #'(6) is finite, at which point we could conclude that
! h(6) = h(0) + O(0) as6]0.

A harder problem is finding a nice expression for the limit, which was done by
Siegmund in Theorem 1.1. Having identified A'(0) = lim, , A'(6), we may
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write
(1.12) h(6) = h(0) + A (0)6 + o(0),
which is the content of Theorem 1.2. If we want to go further and find A”(0),

analogously to what we did above in the case of A'(0), we find using Wald’s
likelihood ratio identity that

h'(6) = Eo{—u’(0)7+S“ + 82 (S,, ,wr+)2},
and attempt to take the limit as 6 | 0. Given Theorem 1.1, the nontrivial part
is
(1.13) yﬁ}{_ﬂ/(a)ns;ﬁ +pu?r2se ).

In this case, it is not at all apparent that the limit is even finite; in fact, as
010, (1.13) is of the form “—o + .”
Showing that (1.13) is finite would enable us to strengthen (1.12) to
h(8) = h(0) + K (0)0 + O(6%) as 0.
Identifying the limit and denoting it by A”(0) would give
h(0) = h(0) + k' (0)6 + 3h"(0)6% + 0(6%) as 60.
In Theorem 4.2 below, we will go one step further and obtain an expansion of
the form

h(68) = h(0) + K'(0)0 + 2h"(0)6% + O(6%) as 6,0.

1.4. Application to a ‘“moderate deviations” result for the cusum proce-
dure. Suppose 6, < 0. Then under P, the random walk {S,: n > 0} drifts
downward with drift E, X; < 0. Deﬁne the reflected random walk {W,: n > 0}
with reflecting barrier at 0 by

W,=8S,— min S,.

O<k<n

Taking & > 0 and defining ¢, = inf{n: W, > b}, our focus of attention is the
probability P, {t, < m}. In terms of the cusum procedure, we are interested in
the probability distribution of the time until the procedure gives a ‘‘false
alarm.” The following result of Chang (1989) gives an approximation.

THEOREM 1.3. Suppose {F,: 0 € O} is a standard exponential family such
that the distribution F, is strongly nonlattice. Let

c=1-2(p? -p%) - (v*/9) + (x/3).

Assume 6,10, b = © and m — « in such a way that for some & > 0 and some
k we have :

(1.14) 161" "6 — o,

18,/¥m — 0
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and
b
(1.15) m > —(1+3).
131
Then
P,(t, <m} = e 2Cro+=0 [ Alugl{m + ¢ — (b +p,—p_)/ue)
(1.16)

+3 = (2/3)yA + O(A°m)].

A novel feature of Theorem 1.3 is the use of “moderate deviations’’ normal-
izations, which are in a sense intermediate between normalizations usually
called “large deviations,” in which the drift of the random walk is constant,
and diffusion normalizations, in which the drift of the random walk ap-
proaches 0 fast enough to make the probability in question approach a positive
constant. The starting point for Theorem 1.3 was in the work of Siegmund
(1988), who developed a large deviations approximation for P, {t, < m}. His
approximation unfortunately contained constants complicated enough to make
numerical evaluation impractical. However, Siegmund (1988) was able to use
his large deviations approximation to derive in a heuristic manner an approxi-
mation whose numerical evaluation is extremely simple. The heuristic nature
of Siegmund’s formula stems from the fact that it was derived by algebraically
combining results of different theorems that assumed different normalizations
that were not consistent with each other. This precluded the formulation and
proof of a bona fide asymptotic expansion in a single, consistent normalization
with an error term of specified order of magnitude, and so on. Theorem 1.3
provides this sort of mathematical foundation for Siegmund’s proposed ap-
proximation.

Theorem 1.3 also carries the required calculations out to a higher order of
accuracy than Siegmund did, resulting in the extra term ‘“‘c”’ that seems to
improve the accuracy of the approximation. To give an indication of the effect
of this extra term, Table 1 compares (1.16) with Siegmund’s approximation—
which is (1.16) with the “c”’ removed—on the same example Siegmund (1988)
used to illustrate his approximation: The exponential family is the {N(6, 1)}
family, 6, = —0.5, b = 3, and m takes the values displayed in the table. The
entries in the “true” column are the actual probabilities P_, {¢; < m}, com-
puted numerically by Waldmann (1986). The entries in the “with ¢” and

TABLE 1
m True Without ¢ With ¢
. 9 0.0542 0.0517 0.0556
12 0.0786 0.0750 0.0789
15 0.1024 0.0983 0.1021

18 0.1257 0.1215 0.1254
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“without c¢” columns are the results of evaluating (1.16) and Siegmund’s
approximation, respectively.

The main results of this paper, Theorems 4.1 and 4.2, are important in the
development of Theorem 1.3. To see why, suppose Theorems 4.1 and 4.2 were
not available, and we were working with Theorems 1.1 and 1.2 instead. Then it
turns out that the “O(A%m)” in (1.16) would have to be replaced by “o(A3m).”
However, from assumptions (1.14) and (1.15) it follows that A’m — . There-
fore, all terms of order A or less—including the “c,” “p . — p_"" and “(2/3)yA”
in square brackets in (1.16)—are of order o(A®m). Thus, being of smaller
order of magnitude than the error term, these terms would not be ““justified”
for inclusion in the approximation. It is interesting that the seemingly innocu-
ous advance of showing that the o(8) in (1.9) may be replaced by 0O(82) is
enough to justify the “(2/3)yA” and the “p,.— p_"" in square brackets in
(1.16). The full force of Theorems 4.1 and 4.2 is needed to justify the “c.”

The results of Section 3, apart from their contributing to the development
of the results in Section 4, are of some interest in their own right. In fact, they
are also needed in the proof of Theorem 1.3. Define T' = inf{n > 0: S, & (0, b]}.
The quantity E,{T; Sy > b} is an important ingredient in the desu‘ed probabil-
ity Py {t, < m}; see Lemma 8 of Siegmund (1988) for the connection. It turns
out that we need to obtain an expansion for E, {T Sy > b} up to order A’e~
which requires showing that

Covy (7, e 4F0) — f Covy (74, e 2F0=1) P ( Sy € ds} = O(4?).
(

—,0]

This is an easy consequence of Theorem 3.2.

2. A uniform renewal theorem and consequences. A fundamental
renewal theoretic development that provides an important tool for the present
paper is the work of Stone (1965). A uniform version due to Siegmund (1979)
of a theorem of Stone (1965) is stated in this section, and some simple
consequences of that result are developed here and used in later sections.

Let {F,: 8 € O} be a standard exponential family, suppose that the distribu-
tion F, is strongly nonlattice and let X, X,,... be iid with distribution F, for
some nonnegative 0 in the interior of ©. Define 7% := 0, and for b > 0 define
the nth ladder epoch recursively by

™ = inf{k: S, > 8,1}
Note that for convenience we are letting 7, = 7(". Letting
(2.1) Uy (x) = Y Py{S,m <x},
n=0
it can be shown, using a theorem of Stone (1965), that for some r > 0,

“y

(2.2) Uy (%) =

2
S + O0(e™™) asx — o,

+
E,S, = 2(E,S, )

X
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Thus, given an- exponential family, for any fixed 8 > 0 Stone’s theorem
guarantees an exponential rate of decrease of the ‘“error term” in (2.2) as
x — «. However, in many applications, such as corrected diffusion approxima-
tions and the approximation presented in Theorem 1.3, we are letting 6 | 0
simultaneously with x — «. Consequently, we must contemplate the unpleas-
ant possibility that as 6 | 0 the rate of convergence to 0 of the error term in
(2.2) might conceivably become slower and slower. The next result guarantees
that this cannot happen; that is, there is a certain exponential rate of conver-
gence that applies uniformly to all 6 in some neighborhood of 0.

THEOREM 2.1 [Siegmund (1979)]. Suppose that {F,: 6 € O} is a standard
exponential family and that the distribution F is strongly nonlattice. Then
there exist r > 0, 6* > 0, and C such that

x E,S? Co-
—_ S e rx
E,S,.  2(E,S,)"

Uy (x) —

for all nonnegative x and all 6 € [0, 6*].

The basic reason why Theorem 2.1 will be useful is as follows. By the
“renewal argument,” many functions of interest satisfy renewal equations of
the form

(2.3) Zo(x) = z5(x) + foxzo(x — t)P,{S, € dt).

For example, with R, defined as in (1.3),

(2.4) Z,(x) = E,R?
and
(2.5) Zy(x) = Ey(e™4F)

are two such functions. An elementary consequence of the relation (2.3) is that
the function Z, may be expressed as the convolution of z, with the renewal
measure Uy, that is,

X
Zy(%) = [ 20(x = )Uy (dt).
Accordingly, one would expect that the statement made by Theorem 2.1 about
, Uy could have implications for any function that satisfies a renewal equation

of the form (2.3).
Let us start with a result from which other examples such as (2.4) and (2.5)
may be treated easily.
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THEOREM 2.2. Under the assumptions of Theorem 2.1, there exist r > 0,

0* > 0 and C such that
(2.6) IPAR, <y} — P{R. <y}| < Ce r&*»
forallx >0,y >0 and 6 € [0, 6%].

Proor. Since
PAR,>y} = [ PyfS, >x+y~t)Uy(dr)
[0, x]

by a renewal argument, and since

® dt
Po{Roo >y} =[ P9{ST+> t}E S
Yy oMr .,
fx P{S, >x+y—t) a
=/ T xX+y-—- ’
e VT E,S, .

we have

PR, <y} — P{R, <y} = j;o ]PO{ST+>x +y - t}{Uo+(dt) -

(2.7) 0 dt
—f P”{S’+>x+y_t}ES
—® [ R 8
= Jl - J2.
Define
. E,,Sf+
o) = U (3) = g = S
0~7, [t O
so that

J, = f[o,x]P"{S’+> x +y — tey(dt).

Then integration by parts gives
2

6™~r

J; = P{S. 2 yleg(x) + ————=Py{S, >x+y
1 0{ . }0( ) Z(EOS, )2 0{ + }

(2.8) *

- eo(t) Py{S, €x +y — dt}.
[0, x]
To bound |J, |, note that Theorem 2.1 says that
(2.9) |eg(x)] < Cre™*

EGST+

|

for all x and all 6 € [0, 6%]. Also, using the requirement that ® contain an
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interval about 0, the well-known fact that for any A
Ey(e*®) <o implies E,(e*5+) <o

[for which a reference is Siegmund’s (1985) Problem 8.9], and Wald’s likeli-
hood ratio identity, one can show that there exist C,, r, > 0 and 63 > 0 such
that

Ey (e™5) <C, VY0e[0,63],
so that
(2.10) PyS, >z} <Cye™ V6€[0,65],V220.
Therefore, by (2.9) and (2.10), letting ry=r; Ar, and 65 = 67 A 65 for
example, clearly there is a Cy such that

2
o~rT

(2.11) WS,

Po{ST+2 y}so(x) + PB{ST+> x + y} < CBe—r3(x+y)

forall x > 0,y > 0 and 0 € [0, 6%]. For the integral in (2.8), since

x
= 01Po<ST+Z y+ —2—} < C,Coe™ 2 +x/2)

f eo(t) Pp{S, €x +y — dt}
[0, x/2]
and

< Cie™/?P,(S, >y} < C,Cye™ /2472,

/ eo(£) Pyl S, €x +y — dt)
(x/2, x]

there is an r, > 0 and a C, such that the integral over [0, x] is bounded by
C,e %) for all x >0, y >0 and 6 € [0,035]. Thus, by (2.8) there exist
r5 > 0 and C; such that

(2.12) || < Cge s+
for all x > 0, y > 0 and 6 < [0, 6%].

For J,, since E, S, is bounded below for 6 > 0, we have

0 —r (x+y—t)dt —ro(x+y)
(2.13) I, sf_ Cpe o = CreTrem,

6

This proof is completed by combining (2.7), (2.12) and (2.13). O

The following resuit gives bounds related to (2.4) and (2.5) that will be used
below.

COROLLARY 2.3. Assume the conditions of Theorem 2.1. Then for anya > 0
there exist r > 0, 6* > 0 and C such that
(2.14) |[E,R? — E,R%| < Ce™ "™

for all nonnegative x and all 0 € [0, 0*]. Also, there exist r > 0, 6* > 0 and C
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such that
(2.15) IEol(e‘ARx) — Ey(e™8F-)

for all nonnegative x and all 6, € [0, 6*].

<CAe™™

Proor. Since
E,R¢ = E,[“ay*'dy =a[ y*'Py(R, >y} dy
0 0
and similarly
EyR; = af y*'P{R, >y} dy,
0
using Theorem 2.2 we see that there exist r > 0, 6* > 0 and C; such that

|E,R% — E,R2| <af y*~!|P{R, >y} — PR, > y}|dy
0

< Cl](; ya—le—r(x+y) dy

— —rx
= Cye

for all x > 0 and all @ € [0, 6*]. This proves (2.14); (2.15) is proved in the same
way. O

3. Covariance between first passage time and overshoot.

3.1. Rate of convergence. For later use, we consider the more general
problem of analyzing the behavior of Cov,(r,, R?) for a > 0.

THEOREM 3.1. Let {F,: 0 € O} be a standard exponential family, with F,
strongly nonlattice. Let a > 0 and define

1
C@(8) = — [ (E,R%— E,RZ)P{M > —x} dx.
M 710, )

Then there exist A, r > 0 and 6* > 0 such that
|Cov,(74, RE) — C(0)| < p~Ae"®
for all b and for all 6 € (0, 6%].
ProoF. First observe that it suffices to show that there exist A;, Ay, r > 0
and 6* > 0 such that
(3.1) |Covy( 7y, RE) — C@(6)| < n~ (A + Ag)e"

for all b and for all 8 (0, 6*]. Next recall three results of Lai and Siegmund
(1979); they consider the case a = 1, but the same proofs also work for general
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positive a. Assume 6 > 0 is fixed. The first result is that

(3.2) Covi(ry, BE) = [ (EoR% ~ E,R5)Qy(dx;b),

where

(3.3) Qy(dx;b) = Y. Pfr,>n,S, €b—dx}.
n=0

Second, Lai and Siegmund show in the proof of their Theorem 4 that as

b — oo,
(34) Q(dx;b) = pu 'P{M > —x} dx = Q,(dx;»)

in the sense that
(85)  Q(x;b) = fmyx)Qo(dy;b) - f[o’x)Qo(dy;w) = Qy((x; %)

for all x > 0. Lastly, as mentioned above, they also show [see (60) on their
page 71 for the case a = 1] that

(3.6)  Covy(,, RY) — [[0

as b — . From (3.2) and (8.6), noting that [, .,Q,(dx;b) = E,7,, we obtain
Covy(7y, RE) — C(0)

)( EyR; — E,RZ)Qy(dx; o) A C(")(())

(3.7) = [, (BB = ER2)[Q(dx; b) — @y(dv; )]

+(EyR: — E,R}) E,y,.

For convenience, let us commit the linguistic abuse of saying that a function of
6 and b “satisfies (3.1)” if there exist A;, A,, r > 0 and 6* > 0 such that the
function is bounded in absolute value by the right-hand side of (3.1) for all b
and for all 6 € (0,6*]. Note that if two functions both satisfy (3.1), then so
does their sum. We shall prove the theorem by showing that both of the two
terms on the right-hand side of (3.7) satisfy (3.1).

Let B> 0, s>0 and 6* >0 be chosen such that for all x > 0 and
0 < 6 < 0* we have

(3.8) E,S, > B!,

(3.9) E,R? < B forp e {1,a},
(3.10) |[E,R; — E,R2| < Be™**

and '

(8'11) |Us (%) — (x + E,R.)/E,S, | < Be™*,

where U, (x) is defined in (2.1). Assurance that we may fulfill conditions
(3.8)~(3.11) is provided by the continuity of E,S, in 6 for (3.8), Theorem 3 of
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Lorden (1970) for (3.9), Corollary 2.3 for (3.10), and Theorem 2.1 for (3.11).
Then from Wald’s equation, (3.9) and (3.10), clearly

b+B)

7

for all b > 0 and 6 € (0, 6*). This takes care of the last term in (3.7).

It remains to show that the integral in (3.7) satisfies (3.1). Since we will be
reexpressing the integral in (3.7) by integration by parts, we will be concerned
with the size of differences of the form Q,(x, b) — Q,(x,®). In fact, we claim
that

(3.12) |Qp(%;0) — Qy(x,®)| < 4B%u"le 5

forall 5> 0,0 <x <b and 9 € (0, 6*].
To prove (3.12), start with the relation

|(EyRg — E,R%)Ey7,| < Be™*®

Qy(x;b) = (Eon)fm Pl M > =5)U; (b =+ dy)

of Lai and Siegmund [(1979), pages 65 and 66]. Also, by Wald’s equation and
the definitions in (3.4) and (3.5),

dy
Qi) = (Eyr) [ Pl M > =5} .

Therefore,

Qy(x;0) — Qy(x;)
E,7,

= [ PM> —3)d|Us(b-x+y) - Up(b—x) — =
[0, x) E,S.,

- P{M > —x}[U;(b—) Ui (b - %) - 5o ]

y
E,S,.

- [UJ(b —x+y) =~ U(b—x) - d(P{M > —y}),

[0, x)

so that, using (3.11), we obtain
1Qp(x;0) — Qy(x;)l

< 4Be5¢—),
E,7,

(3.13)

Thus, since (3.9) together with Wald’s equation implies that E,7, < B/u for
all 6 € (0, 6*], the claim (3.12) is proved by (3.13).

" We now return to the task of showing that the integral in (3.7) satisfies

(3.1). We want to show that the integral is small for large b. The idea is this:

For x large, E,R? is close to E,RZ, while for x small (compared to b, which is

large), “Q,(dx; b) is close to @,(dx;%).” This motivates splitting the range of
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integration [0,®) into two subintervals; [0,b/2) and [b/2,) will do. The
integral over [0, b/2) is

[, o (FaRE = EB2)[@u(dx;b) ~ Qu(dlx; )]

(3.14) = (E,R5 /s — EyRZ)[Qy(b/2;b) — @y(b/2;)]

- [Qo(x;b) _Qe(x§°°)] d(E,R3),

[0,6/2)

where we have used @,(0 — ;b) = 0 = @,(0 — ;). However, by (3.10) and
(3.12),

(3.15) I(EeRg/2 - EoR:)[Qo(b/z; b) - Qo(b/2;°0)” <4B% " le”*.

Furthermore, since the reasoning of Lorden (1970) that gave his equation (1)
also gives

(3.16) foxaE,,Rj“l dy = (E,S¢)U; (x) — E,R?,

we have

[ [@(x56) — Qy(x3%)] d(E,R2)
[0,b6/2)

< s 1Qu(x:b) - Q=)

0<x<b/2
(3.17) o
x{(E‘,S;’+)U,,+(b/2) +/ anRg—ldx}
0
< (4B%u e ~**/%)[2(E,S2 )US (b/2)]
<8u"'BYb/2 + Ble b/

The first two inequalities in (3.17) use (3.16), and the last inequality uses (3.8)
and (3.9) to say that

Uy (b/2) = (E,S,.) '(b/2 + EyR,, ;) < B(b/2 + B).

Combining (3.15) and (3.17) shows that (3.14) satisfies (3.1).
Finally, for the integral over [b /2, ), use (3.10) to write

[ (E,RZ - E,R3)[Qy(dx;b) — Qy(dx; )]
. (b/2,)
(3.18)

< Be™**Qy(dx; b) + Be™**Qy(dx; ).
[6/2,) [6/2,)
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It is easy to see that the last two integrals satisfy (3.1), using
f, Q(dx:6) = Eyr, <u™'(b + B)
and definition (3.4). This completes the proof. O
The next result was mentioned in Section 1.4. To state it, define
C(8,) = 1}1_120 Cov, (74, e 2%¢),
which can be shown to exist and identified to be
C0) = [ [Bo(e™") = By((e™2™)]@y (dx; =)
in the same manner in which Lai and Siegmund (1979) treated C(6).

THEOREM 3.2. Under the conditions of Theorem 3.1, there exist A, r > 0
and 6* > 0 such that

ICovol(Tb, e AF) — C~(01)| <Ae™r
for all b and for all 6, € (0, 6*].

Proor. By the same reasoning that gave (3.7), we may obtain

Covafrar =) — C(0,)
-/, w)[Eo(e‘ARx) — Ey(e5F)] [Qy(dx; b) — @y(dix; )]

+ [Eo(e_AR”) - Eo(e_ARb)]EoTb'

From here we proceed completely analogously to the proof of Theorem 3.1,
with the bound (3.10) replaced by the bound of (2.15). This provides an extra
factor of A all of the way through the proof. O

3.2. Another representation and a consequence. In this section, we will
present a representation of Cov,(7,, Rf) that could form the starting point for
an alternative approach to analyzing this quantity. From the representation
we will also derive a consequence that will be useful in the next section. For
notational convenience, throughout this section we will use a dot to denote
differentiation with respect to 6.

THEOREM 3.3. Assuming the conditions of Theorem 3.1, for all positive 6
© in the interior of ® we have ’

. ) ‘
(8.19)  Covy(r,, RY) = ;[1«:912;,”1 — (E,R,)(E,R}) — E,Rg].
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Proor. For 6 > 0, by Wald’s likelihood ratio identity,
E Ry = Eo{Rge?S- 0™},
Using the inequality
Py(R, > 2} <US() [ PofS..> v} dy,

for which a reference is Siegmund’s (1985) Problem 8.8, it is not difficult to
Jjustify the use of dominated convergence to interchange differentiation with
expectation to obtain

E,R§ = Eo[ Rge®Sn= (S, — 7,4 (6) )}

= Ee{Rg(ST,, — ,wrb)},

where we have set u = u(8) = (). From this, making the substitution
S,, = b + R, and rearranging give

E,(,RE) = %[bE,,R;} + E,R{*! — E,R].
However, clearly
(E,7)(E,RE) = %(b + EgR,)(E,Rp).
The desired result is obtained by subtracting the last two displays. O

In the case a = 1 the previous result takes the particularly neat form
1 .
Covy(y, Ry) = ;[Vare(Rb) — E,R,).
To state the next result, which will be used in the proof of Lemma 4.5, define
(a) = a
p'¥N0) = E,R2.

CoROLLARY 3.4. Under the conditions of Theorem 3.1, there exist A, r > 0
and 0* > 0 such that
|E, Ry — 5(6)| < A~
for all b and for all 8 € (0, 6*].

Proor. Rearranging (3.19) gives
EyR} = E,R;™" — (EyR,)(E4R§) — p Covy(7,, RY).

)

Define
g(0) =p“*D(8) — p(8)p'(8) — nC(0).
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Then using Corollary 2.3 and Theorem 3.1, it is easy to see that there exist A,
r > 0 and 6* > 0 such that

(3.20) |E,R¢ — g(0)| < Ae™®

for all b > 0 and all 8 € (0, 6*). Thus, letting f,(8) := E,R¢ and f(8) := p®X(6),
the situation we have here is that as b — «, fb(0) - f(0) for all & and
f3(6) = g(6) uniformly in 6 € (0, 6*). Under such circumstances, a theorem of
elementary analysis [see, e.g., Apostol (1974), Theorem 9.13] implies that f is
differentiable in (0, 6*) and f(0) = g(0) there. Substituting f(6) for g(8) in
(3.20) gives the desired result. O

4. Moments of the first ladder height.

4.1. Results. Let 79 := 0, and for n > 0 define the nth weakly descend-
ing ladder epoch recursively by

7™ = inf{k > 1" D: S, < 8 u-v).

Define

(4.1) @@= [ (E,R%— E,RE)Us (dx),
[0, )

where

Us(x) 2 ¥, Pof—S.w <)

n=0
1s the renewal function corresponding to the renewal process {—S_w: n =
.}. To see that the right-hand side of (4.1) does indeed define a finite
number observe that by (2.14) and integration by parts, for any a > 0 there
exist r > 0 and C such that

[ IBoRS - B,RIUs (dx) <C[  e™Us (dx) = rC[  Ug(x)e™™dx.
[0, ) [0, ) [0, ©)

However, since U;(-) increases at a linear rate, clearly the last integral is

finite.
With these definitions, now we can state our refinement of Theorem 1.1.

THEOREM 4.1. Suppose that {F,: 0 € O} is a standard exponential family,
with F, strongly nonlattice. Let a'® be as defined in (4.1). Then for any a > 0,
as 0 10 we have

(4.2) wEy(7.8:) =

o

A proof of Theorem 4.1 will be given below. Next, just as Theorem 1.1
provided the main ingredient in the proof of Theorem 1.2, here it will also be
easy to obtain from Theorem 4.1 the following refinement of Theorem 1.2.

1 N
EOS”1 + ( " 2EOS;7‘++2 + a(“))e + 0(6?).
a

a+1
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THEOREM 4.2. Under the conditions of Theorem 4.1, foranya > 0,as 0 |0
we have

a
E,Sf =E,S? + o (EoS2tt)e

(4.3)

+l( a E Sa+2 _ (a))02 +0 03
2la+2 %7 ¢ (6.

Theorem 4.2 certainly settles the “o(6) versus O(62)”” question discussed in
Sections 1.3 and 1.4; in fact, it provides an expression for the coefficient of 62
and also settles the analogous ‘“0(62) versus O(8%)” question raised by the
existence of that coefficient. To mention a question that remains open, note
that the coefficient of 6 in Theorem 1.2 is “‘explicit,” in the sense that it is a
simple function of moments of S, under the § = 0 distribution. In contrast,
as of yet no such explicit expression is available for the number o'® that
appears in (4.3).

There is a special case in which we can give such an explicit expression for
the coefficient of 2.

COROLLARY 4.3. In addition to the conditions of Theorem 4.1, suppose the
distribution F is continuous and symmetric about 0, so that Fy(—x) =1 —
Fy(x). Then

02

1
1+6p,+ —(pi + %) + 0(03)]

(4.4) E,S, = —

T4 ‘/§ 2

as 6 ]0.

For example, in the case of the normal family {N(8, 1)}, for which « = 0, the
result is particularly simple:

1
EOST+= ﬁe"”++ 0(03).

4.2. Proofs. We start with a proof of Theorem 4.2 assuming the truth of
Theorem 4.1, and then give a proof of Theorem 4.1.

ProoF THAT THEOREM 4.1 iMPLIES THEOREM 4.2. Let a > 0 and retain the
notation h(6) £ E,S? from above. As Siegmund (1979) shows, for some
€ > 0, h is continuously differentiable in (0,¢) and continuous on [0, ¢].
Therefore, for small 6, we may write

(4.5) h(8;) = h(0) + ["H(6) d.
0
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Combining (1.10), Theorem 1.2 with a replaced by a + 1, and Theorem 4.1
gives

K(0) = E,S7! — pEy(7.S?,)

a+1 a+l a+2
= EoS: + ——(EoS:72)0 + o(0)
(46) 1 a+1 E Sa+2 (a) 2

a a+1 a a+2 (a)
= T ESI | 5 EeSE — a0 + 0(0).

Therefore, by substituting (4.6) into (4.5) and some elementary analysis,

E, S = h(8;) = E,S¢ + (FOS”“)
1 a a+2 (a)|p2 2
(4.7) +§(a+2EOS - a0 + o(0?)

= E,S? + ¢ . (EoS7 )6, + 0(63).

Now change a to a + 1 and 6, to 8 in (4.7), and go back and substitute the
result into the first line of (4.6). Then repeating the calculation in (4.6) leads to

a+1
a+1E°S’+ * (a+2

from which (4.5) and more elementary analysis gives the desired result (4.3).
O

K(0) =

E,S:+? — a<“>)0 + 0(6?),

To begin the proof of Theorem 4.1, we have the following simple but useful
lemma.

s

LeEmMMA 4.4. Assume the conditions of Theorem 4.1. For 0 € © define the
measure Uy by

Uy (B) = X Po{"'(—n) <o, =Sm € B}
n=0

for Borel subsets B C [0, ®). Then for all such subsets B,
U;(B)1Uy(B) as60.

ProorF. Fix a Borel set B c[0,x). By Wald’s likelihood ratio identity, for
any n > 0 we have

PO{T(_n) < oo, _ST(_n) € B =FE [exp GS (n) — T(n)l/l(e)} ,r(n) S5 B]
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However, as 6 |0,
exp{0S,m — 7™y(0)} 1.
Therefore, by the monotone convergence theorem,
(4.8) P){r™ < w, —=S.m € B}t Po{—S,m € B} as 0.

From (4.8), the desired result is obtained by summing over n > 0 and applying
the monotone convergence theorem once again. O

LemMA 4.5. Under the conditions of Theorem 4.1,
j{o’m)(E(,R;; — E,R)U; (dx) = a® + O(6)
as 6 10, where a'® is defined by (4.1).
Proor. Define

fo(x) == E,R; — E,R:

and write the difference
[ (E,R¢ - E,R2)Uy (dx) - a®
[0, )
as

[ fu(x)Us (dx) = [ fo(x)U5 (dx)
[0, ) [0, )

™ Jo o P3) ~ DI () = [ o) [Us (&) = Uy ()

= Jl - J2.

To complete the proof, we will show that J; and J, are O(6) as 6 | 0.
For J,, write

fi(x) = fo(x) = fo"f,,<x)dn,

where the dot denotes differentiation (here with respect to 7) as in Section 3.
By Corollary 3.4, there exist A, r > 0 and * > 0 such that |f,(x)| < Ae™™ for
all x > 0 and all € (0, 6*]. Therefore, letting 6 [0, 6*], we have

[ fo(x) — fo(x)| < 0Ae™™
for all x > 0, so that

Wil < 0A [ e-rxq,-(dx)soA[ e "*U; (dx),
[0, ) [0, )

¥

where the second inequality follows from the monotonicity in Lemma 4.4.
Thus, since the last integral is clearly finite, J; = O(9).
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For J,, use Lemma 4.4 again to observe that Uj(dx) — U; (dx) is a
nonnegative measure for each § > 0. From this and the bound |fy(x)| < Ae™",
say, we obtain

54 <Af U5 (dx) — Uy (dx)}.

However,

f[o,w)e_'er‘(dx) - X f[o m)e_rxP"{T(‘n) <@, —S,m € dx}

n=0

Y E,,{exp(rS,(_n)); ™ < 00}
n=0

el

L [Eo(ersm< )]

n=0

[1 - Ey(em™Ss7— <=)] -

so that
oo Ey(e™) — Ey(e™S- 7_< )
f[o ¢ " Us (dx) = Uy (dx)} = (1= Eo(e™)][1 = By(e™ 5 7_< )]
Bolers(1 - et540)]
[1 - Eo(ersf‘)]2

2

where the last inequality follows from the relations
Eo(ers,_; r < 00) = E,(e"SreS:-—7-¥®) < Ey(e™S:).
Therefore, since '
Ey[eS (1 — €S- 77v®)| < Eo(1 — &%= 7"V = 1 — Pp{r_< o}
=Pl{r_=w} =1/(E,,) = ,U«/(Eesf,,)a
which is clearly O(8), we have J, = O(6). This completes the proof. O

Proor oF THEOREM 4.1. Recalling the definition (3.3) of @, and applying
duality, we obtain

Qo(dx;o) & Z P0{7+> n, _Sn € dx} = UG_(dx)‘
n=0

Therefore, by (3.2) with & = 0,

. Covy(7,,82) = jm )(E ,R: — E,S¢ Uy (dx)

= [, (ERDU; (dx) = (EyS7) Eyr,
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so that

wE)(7.87) =nf (ER:)U; (dx)

(4.9) = W(ER2) Byt + [ (E,R: — EyR2)U (dx)

1
a+1

where the last equality uses (1.4), Lemma 4.5 and the fact that u = 8 + 0(62).
Thus, the proof reduces to establishing an expansion for E,S2*' up to 0(6?).
For the derivative we have

E.OS;'Z:I = Easf:z - #Eo(7+Sf++1)

E,S2 + o9 + 0(6?),

- E,82+2 - [LE Sa+2 4 0(0)]
0~T, a+2 0~ T,

a+1
T a+2

where the first equality is familiar from the proof that Theorem 4.1 implies
Theorem 4.2, and the second and third equalities are simple consequences of
(4.9) and Theorem 1.2, respectively. Integrating the last display gives

+1
a+2

which, when combined with (4.9), gives the desired result (4.2). O

E,S*2 + 0(9),

T+

E,S2*' = E S + E,S:*?|6 + 0(6%),

Finally, Corollary 4.3 may be proved by showing that (4.3) reduces to (4.4)
when a =1 and the assumed conditions hold. The fact that E,S, = 1/ V2
follows from (1.5). Using this, the coefficient of 6 is immediate from the
definition of p,. The calculation that yields the coefficient of 82 proceeds as
follows. By definition (4.1) and the given assumptions,

oV = [ (EgR,—p.)U(dx),
[0,=)

where U(dx) = Uy (dx) = Uy (dx). Wald’s equation gives
(4.10) U(x) = V2(ER, + x)

for x > 0, and for this discussion let us define E,R, = —x for x < 0, so that
(4.10) holds for all real x. From this, .

[[0 (EoRy = p)U(dr) =12 fm (EoR.) d(ER,)

+V2 [ EyR,dx —p.U(c).
[0, c]
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However,
[, (BoR)A(EoR,) = [ (EoR.)d(EoR,) + [ (EoR.)d(E,R,)

= %[(EoRc)z - (E0R0)2] + (EORO)2
= 3(ER.)" + 4,
and (3.16) gives

1
E\R,dx = —|[E,S2U(c) — E,R? U(c ER2.
[O,C]Ox 2[07+() 0 ] ‘/—P+() oft,

Thus,

1 9 .
5 + (EORc) - EORc ’

1
[, (EoR.=p.)U(dx) = —=

[0,c]

so that

@ 11 )
* =75 l2 +p0% — 0%
Returning to (4.3), additional calculation and an invocation of (1.6), which here
takes the form p® — p2 = (k + 3)/12, show the coefficient of 62 to be (p% —

Kk/6)/(2V2).
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