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Okhio State University

Consider a measure p on [0, 1%, and 2n points X;,..., X,,Ys,...,Y,
that are independent and distributed according to w. Consider 2n points
U,...,U,,V,...,V, that are independent and uniformly distributed on
[0,1]. Then there exists a constant K (independent of u) such that if
s < yn /K, with probability close to 1 we can find a one-to-one map m from
{1,..., n} to itself such that

) K
Vi<n, IUi—V,,(,-)IS;,

1 s 1/2
;ZIX,.-Y,,(,.)IsK(;) .

i<n

1. Introduction. A matching of two sets of n points in a metric space is
a one-to-one correspondence between these two sets. The existence of a
matching for which the points that are matched are ‘“close” (in various senses)
is a way to measure the distance of the two sets. The topic of how well random
sets of points can be matched is of considerable interest and ’dépth [1, 9], and
has many applications to the probabilistic analysis of certain algorithms, as is
exemplified by the beautiful work of Shor [9]. There are many possible
variations on these problems; only a few of them have been investigated. The
theorem presented in the abstract was motivated by the work of the first-named
author on a transportation problem [7]. The most natural case of this theorem
is where 1/s [and thus also (s /n)'/?]is of order n~'/3, and when y is uniform
on [0, 1]2. However, in view of the application to [7], it is necessary to consider
other values of s and general probability measures u on [0,1]°. When one
considers general probability measures on [0, 112, it becomes clear that the
special structure of [0, 1]? plays a very little role. In order to clarify the proofs
and to unify a whole family of results in one single theorem, we have decided
to use a more abstract setting.
"~ Consider a metric space (Z,d). The diameter D(A) of a subset A C Z is
defined by

D(A) = sup{d(x,y); x,y € A}.

Given £ > 0, we will denote by N(Z, ¢) the minimum number of closed balls
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696 W. T. RHEE AND M. TALAGRAND

(for the distance d) in Z that can cover Z. Thus, N(Z,¢) = 1 for ¢ > D(Z).
The one single property of [0, 1]? that is relevant for the theorem presented in
the abstract is that N([0, 1]%, ) < K&~ 2 for some constant K. This theorem is
thus a special case of the following theorem.

THEOREM 1. For each a > 1, there exist constants K,, K, depending on a
only with the following property. Consider a metric space Z such that for some
constant D we have N(Z,e) < (D/e)* for all ¢ > 0. Consider a probability u
on Z, and n random points X,,..., X, of Z that are independent and dis-
tributed according to w. Consider points Uy, ..., U, that are independent and
uniformly distributed on [0,1]. Consider an integer s such that K.s®> <n,
s>n'"%/2 Setr=|n/sl, r =n —rs (so that r' < s < r). Then we can find
fixed points x,, ..., x, of Z such that with probability greater than or equal to
1 - K, exp(—nmin(s~%, r~2/%)/K,) one can find a one-to-one map i—
(R(), 1) from {1,...,n} to

J={(k,0);1<k<r,0<l<sifk<r,0<l<s-1ifr<k=<r},

such that

. . K,

(1) Vl‘sna |l]l_l(l)/8|ﬁ?,
1 DK,
(2) n Z d(Xiv xk(i)) = Pl

i<n

COMMENTS.

1. The n points (x,,1/s) for (k,1) € J are the substitute for a “grid” of
points evenly spread on Z X [0, 1].

2. The proof will show that the constant K, can be made arbitrarily small if
one accepts large values of K.

3. This statement is easily seen to be equivalent to the statement where the
random points U, are replaced by the fixed points u; = i/n.

4. An immediate consequence of this statement is a result about matching the
points (X;, U;) with an independent copy (X}, U/), in the spirit of the result
mentioned in the abstract.

5 A case of special interest is when s is of order n'/®*®), so that r is of order
ne/A+e)

6. By homogeneity, we can assume D = 1.

As of today, there exist two rather different approaches to matching prob-
lems of the type studied here. One is the “transportation method” of [1]. The
other could be called “the stochastic process method” and was used (im-
plicitly) in [9], and in [8]. The hardest matching problems are in dimension 2.
‘This the the case because all the terms of a certain series connected to the

" problem have the same order. This difficulty disappears in higher dimensions
(our result is in “dimension 1 + «”’). For that reason, it is possible to give
proofs that do not use any of the delicate tools that are required in dimension
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2. We have actually succeeded in writing the proofs in a rather elementary way
(on the other hand, we have not hesitated to use powerful abstract principles
to replace ad hoc uninspiring computations).

The paper is organized as follows. In Section 2 we perform several reduc-
tions of the problem. The heart of the proof lies in Section 3. There we show
that the problem reduces to estimating the supremum of a certain Gaussian
process, and we estimate this supremum. The proof is then completed in
Section 4.

As our methods are not adapted to give sharp constants, we will not attempt
to track the value of the constants involved. We will denote by K a number
depending on « only, which may vary at each occurrence.

2. Reducing the problem. We first recall the following simple lemma.

LEmMA 1 [6]. Consider a metric space (H,d), an integer q, such that
279 > D(H) and q > q,. Then there exists an increasing sequence of parti-

tions & , ..., %, of H with the following properties:
(3) card &, < N(H,27%),
(4) VAe®, D(A)<22

We assume that the metric space Z satisfies N(Z,¢) < &7 for all a > 0.
We denote by 8, the unit mass at x.

LeEmMmA 2. Consider r > 1. Then we can find x4,...,x, € Z such that the
measure v = (1/r)X; _,8,. has the following property. There exists a probabil-
ity measure m on Z*? such ‘that if ¥, ¢ denote the projections from Z? to Z, we
have p = y(n), v = ¢(n), and [, d(w,, wy) dn(w,, 0,)) < Kr~/*

COMMENT. A more intuitive way to express this is that » can be obtained
from p by transporting the mass of p by an average distance less than or
equal to Kr~'/% and that is what we will actually prove. The purpose of the
more abstract formulation of Lemma 2 will be apparent later.

Proor. Consider the largest integer ¢ such that 2797 > r, so that
(5) 279 < 2rv/e,

It follows from Lemma 1 that we can find an increasing sequence (&) of
partitions of Z such that for 0 <! < q, we have

(6) card &, < 2'¢,
(7 VAe®, D(A) <22

" The basic procedure is as follows. Assume that we have a probability measure
wu; on Z such that

(8) VAe P, ru(A)eN.
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Then we show that by transporting a mass less than or equal to card &,/r for
a distance less than or equal to 27/*2, we can obtain a probability measure
;41 on Z such that

(9) VAEP,,, ru(A)eEN.

Consider A € &), and B,,..., B, the elements of &, that it contains.
Clearly, we can find integers n,,...,n, such that
(10) T n; = rei(A),

J=p
while
Set
J ={j <p;n; <ru(B))}.

For each j € J, we remove (in an arbitrary way) an amount of mass u,(B;) —
n;/r from B;. For j & J, we add an amount of mass n;/r — u,(B;) to B;.
This is possible without changing the mass of A by (10). The total amount of
mass transported is less than or equal to j/r, and since A is of diameter less
tha}n or equal to 27/*2, it is transported over a distance less than or equal to
271+2,

We repeat this operation inside each A € &;; this concludes the basic step.
We observe that the mass has been transported over an average distance

l2‘”2card P, < :4—2(""1”.
r r

We now apply the basic procedure inductively, starting with [ = 0, p, = u.
We thus go from u to a measure u, that satisfies

VAe Z, rr.(A) €N

by transporting the mass over an average distance

4 K
Z __2(a—1)l < _2(a—l)q < Kr—l/a,
O0<l<qg-1 r r

by (5) and since a > 1.

As a last step, for each A € &, we replace the mass u(A) by pg(A)S,4)
for some arbitrary x, € A, thereby transporting the mass an average distance
less than or equal to 27972 < Kr~'/= This finishes the proof. O

PropoSITION 1. To prove Theorem 1 in full genefality, it suffices to prove
this theorem in the special case where u = v and n = rs (v being constructed
+ in Lemma 2). ’

Proor. We first show that we can replace u by v. It follows from Lemma 2
that one can define a couple X,Y of random variables valued in Z, such that
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X is distributed as u, while Y is distributed as », and that E(d(X,Y)) <
Kr~1/« Consider n such independent couples (X;,Y;). Then, by Hoeffding’s
inequality [3],

1
Pl—Y d(X,,Y,) = Kr~"*| < 2exp(—nr-%/%).
T i<n
On the other hand, for all x € Z, we have
d(x, Yl) = d(x’ Xz) + d(Xi: Y;)
We next show that we can replace n by rs. Consider two maps w7, m,
from {1,...,rs} to {1,...,r} and {1, ..., s}, respectively, and assume that the
map 7 = (7, m,) is one to one and that |U, — w,(i)/r| < K/r.For rs <i <n,
set m,(i) =i —rs, and consider w,(i) such that |U, — w,(i)/r| < 1/r. We
define 7,(i) as follows. If i > rs, wh(i) = m,(i). If i < rs,and if 7,(i) > n —rs,
then 7,(i) = my(0). If m (i) <n —rs, let i =rs+ m,(Q). If 7m,(0) <, (i),
then 75(i) = my(0). If 7o(i) > wo(i'), then wy(i) = m,(i) + 1. It is easy to see
that 7 = (7, m}) is one to one from {1, ..., n} to J, and that |U; — 7%(i)/r| <
(K + 1)/r. Also,
Y d(X,x,0) < X d(X;,x,4) + (n—18)
i<n i<rs
< Y d(X;,x,,) +s.
i<rs

Now s < nr- Y% gince sr/* <sr<n. O

We will work from now on with the measure v instead of . Only the points
Xq,...,%, of Z are relevant; thus, we can assume as well that Z = {1,...,r}
for simplicity of notation. This space will be provided with the distance d,
which satisfies
(11) N(Z,d,e) <& *

(and is unrelated to the distance induced on Z by the distance on R!).

If the variable U is uniform on [0, 1], the variable [sU] is uniform on
1,...,s. Thus, clearly, we have reduced the proof of Theorem 1 to that of the
following statement.

PrOPOSITION 2. Consider integers r, s. Set n = rs, and assume that s* < n,
r?/« < n. Consider points (X,), ., that are independent and uniformly dis-
tributed over the grid G = {1,...,r} X {1,..., s}. Then, with probability greater
than or equal to 1 — K exp(—(n/K)min(s ™2, r~2/%)), we can find a one-to-one
map m = (m,my) from {1,...,n} to G such that

(12) Vi<n, WG)-mi) <1,
(13) %.z d(k(i), m(i)) < KrV/*,

where we have set X; = (k(i), 1(Q)).
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Consider now fixed points x; = (k(i), (i) of G. We must understand when
there is a one-to-one map 7 for which (12) and (13) hold. For this, we will (in a
standard way) use a ‘“‘duality”’ argument, which, in the present case, can be
stated as follows.

LeEmMA 3. Given points (x;); ., in G, consider the quantity
W =min ), d(k(i),m(i)),
i<n
where the minimum is taken over all the possible choices of a one-to-one map
m = (m,, my) for which (12) holds. Then

Wesip( L w - T w(kD)

i<n (k,DeqG
where the sup is taken over all the families (w,),(w(k, 1)) of numbers that
satisfy

(14)  W—-1G)l <1, kK <r=w<w,l)+d(k(i),k).

To see this, let us observe that this is a special case of the ‘‘assignment
problem” of minimizing T, _ ,a i =) over all permutations of {1,...,n} for a
matrix (a; ;); ; of nonnegative numbers. From the classical fact that the
extreme points of the set of bistochastic matrices are permutation matrices,
this is the same as minimizing X, ;_,x; ;a; ; under the conditions x; ; > 1,
Yica¥p;=1=X;_,x;, for all k,l<n. The result then follows from the

duality f:heorem of linear programming.
Consider the class & of functions on G that satisfy

(15) Vi<s,VEE<r, If(k1)—Ff(E,1) <d(kE),
(16) Y f(k, 1) =0.

k<r,l<s

We now obtain an important corollary of Lemma 3.

PROPOSITION 3.

) Wsswp(T fx) - T Ikt - (B, 1)).
fe i<n k<r,l<s
Proor. Consider numbers w(k, 1) for (k,1) € G. Set
g(k,1) = min(w(k',l') +d(k,k'); Il -Vl <1,k <r).
We observe that if numbers w; satisfy (14) we have w; < g(x;). Thus,

rw— Y wkl)

i<n (k,DeG

<Yeg(x)- L gkl)- L (w(kl)-gkl).

i<n (k,DeqG (k,DeG
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It is easy to see from the definition of g that
Vi<s,VEk,Ek <r, lg(k,l) —g(k, D)l <d(k,FE).

To conclude the proof, it suffices to show that

(18) Y (w(k1)—g(k )25 X lg(k,l+1) —g(k1)l
(k,DeqG k<r,l<s

[One then obtains (17) by considering the function
f=g~-(1/n) X gk )]

(k,)eqG
If g(k,l + 1) > g(k, 1), we note that g(k,! + 1) < w(k, 1) so that
g(k,1+1) —g(k, 1) <w(k, 1) —g(k,1).
In the case g(k,! + 1) < g(k, 1), we obtain similarly
g(k,l) —g(k,l+1) <w(k,l+1)—g(k,l+1).
Since g(k, 1) < w(k, 1), this gives
lg(k, 1+ 1) — g(k, 1) < (w(k, 1) —g(k, 1)) + (w(k, [ +1) — g(k,1 + 1)),

from which (18) follows by summation. O
For s > 0, we consider the class

F(8)={fes T Ifki+1)-r(hDI<S).

k<r,l<s

To prove Proposition 2, it suffices to prove the following fact.

PROPOSITION 4. One can find a constant K such that if S = Knr~'/¢, then
with probability at least 1 — K exp(—(n/K)min(s 2, r~2/%)), we have

Y f(X)

i<n

(19) sup
fe #(S)

<S/2.

The proof of this will be the object of Sections 3 and 4.

Proor oF PRoOPOSITION 2. First, we show that the right-hand side of (17) is
bounded by S. Indeed, consider f € %, and set

ACf)= X If(E,1+1)—f(k, D).

k<r,l<s

If A(f) < S, then fe F(8), so that |, _, f(X))| <S/2 by (19). Thus
Y f(X) -A(f)/2<S.

i<n

If ACf) = S, consider g = Sf/A(f). Thus, A(g) = S, and, clearly, g € %#(S).
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By (19), we have
Y g(X;)|<8/2,

i<n

so that

L f(X)|<A(f)/2

and thus )
Y f(X)-A(f)/2<0<S.

i<n

It then follows form Proposition 3 that the required matching exists. O

3. Gaussian processes. We first establish the linkage between the proof
of Proposition 4 and Gaussian processes. Consider an i.i.d. sequence (g,), _, of
N(0,1) random variables. We denote by E, the conditional expectation at
Xi,..., X, fixed. The core of the proof of Proposition 4 is the following
proposition.

PropOSITION 5. There exists a constant K| such that if r*/* ' <s < r/K,,
then for S = K,nr~'/°, with probability at least 1 — K, exp(—r/K,), we have

> & f(X;)

i<n

E, sup < S/16.

fe #(8)

This will be established through several steps; but we first show how to
deduce Proposition 4 from Proposition 5. Consider a sequence (e;);_, of
independent Bernoulli random variables (P(e; = 1) = P(g; = —1) = 1/2)
which is independent of the sequences g;, X;. Set

Z g f(X;)|.

i<n

Tg= sup
fe F(S)

Then, by the “contraction principle” ([4], page 96, Lemma 4.5), if we denote by
E, the conditional expectation given (X;), _,,(g;); < ,, we get

/2
(20) E(Ts) <y —E, sup
™ fe F(S)

LEMMA 4. We have

S
T & f(X)| < 15

i<n

t2
P(Ts> ETs +1¢) < 2eXP(‘2n(2—+s/_r))'

r

Proor. This follows from the fact that for f € %(S), we have max|f| <
2 + S/r and by a straightforward use of martingale difference sequences and
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Azuma’s inequality, for example, as in [8]. Combining with (20), we have

P(T > ) 2 s
= — 1 < Il e—
\"5= 8 P 2'n(2 + S/r)?

n
< 2exp( X min{s~2, r‘z/"}).
We observe now that

1-1/a -1

r =ns 'r Y% > n min{s "%, r-?/°}.

Thus, we have proved that

P( sup

Y e f(X)l > —) <Ksexp(—%m1n{s 2,r‘2/“})
fe #(8)

i<n
< K ex ( . { -2 -—2/11}).
= P K mim s 57

We now appeal to [2], Lemma 2.7b, to get

L f(X)

i<n

n
P( sup 23/2) sKexp(—Emin{s‘z,r_z/“}).

fe #(S)

This concludes the proof. O

Consider again Z = {1, ..., r}, provided with a distance d that satisfies (11).
We will say that a functlon h on Z is Lipschitz if it satisfies
VEER <r, |h(k) — h(R') <d(k, k).

Consider B = (B,); < ,, such that B, >0, £,_,B, = 1. Consider C > 0, and
the class

£(B,C) = {h: Z - R; h Lipschitz, Y B,lh(k)l < c}.
k<r

Consider a sequence (g,), ., of i.i.d. N(0, 1) random variables, and the random
variable

(21) 08,C) = sup |T B guh(k)|.
hed(B,C) k<r

An essential step in the proof of Proposition 4 is to obtain sharp estimates of
Eo(B, C). This is the purpose of the next few pages. We consider ¢, > 0 which
will be determined later. We appeal to Lemma 1 to get an increasing sequence
of partitions (&) of Z, 0 < q < g, that satisfy

(22) card &, < 2%,
(23) VAe %, diam A <279"2

We denote by E_(h) the conditional expectation of h with respect to the
algebra o/, generated by &; that is, for A € &, E (h) is constant over A
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with the value (L, o 4B8,) 'L ;< 4Brh(k). (Throughout the paper, we use the
convention that 0/0 = 0.)

We set h, = Eo(h) We set E, ,(h)=h, and for 0 <q < q, + 1, we set
h,=E/(h) — E,_(h). Thus,

h = Yy h,
0<g=<gqg,+1
and
(24) E(6(B,C)) < X E(6,(B,0)),
0<g=<gq,+1
where
(25) 0,(8.0) = sup | T B guhy(k)|
hefB,0) k<r

We first take care of the term for ¢ = 0. We observe that h,(k) is constant,
equal to X B, h(k), and thus |k (k)| < C, so that

X:BLﬂ

k<r

Since the variable ©, _, 8}/%g, is N(0, 1), we have

(26) E6,(B,C) < \/gc.

We now observe an important property of A, for ¢ > 0. For A € Z 1
k,l € A, we have

|h(k) —h(l) <d(k,l) <D(A) <2793,
It follows easily (averaging over [ € A) that
lh(k) — E,_j(h)(I) <279*3,

This implies that |h, (k)] <279*? and (by averaging over k € B &,
B c A) that for ¢ < q,, we have

(27) lh, (k) <279%3,

We now estimate E6, (B, C). Since |k, , (k)| < 279*2 we have

Y B 28yhg (k)| <2702 Y BL2g,],

k<r k<r

64(B,C) <C

so that
(28) Ef, .(B,C) < K2 9} Bi/?2 < K2 0irl/?

k<r
by Cauchy-Schwarz.
We now estimate E6,(B,C) for a fixed q, 0 <g<gq,. For Ae Z,, set
Ba= ZkeABk, and consider the random variable g, = (X , < 4B+/%g,), s0 that
&4 is N(0, BY/?), and the variables (gA)Ae@ are independent. For h € £(8,C),
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consider the constant value h, of h, on A. Thus (with the convention
0,/0 = 0), by Cauchy—Schwarz,

(£ sitahh)) = [ £ k]

k<r Ae%
(29)
g4 .
= Z . Z BAhA .
Ae@;’l BA Ae‘%

We know by (27) that |h 4| < 277%3, On the other hand, since ¥, _, 8,k (k)| <

C, we have L, _,.B,IE, (h)(k)l < C for all p, and thus X, _,B,lh (k)| < 2C,
which implies L 4 < 5 BAIhAI < 2C. Since |h,| <2793, we have ZAG‘@ Bah3
< C279%% Since ):Aeg, Ba =1, wealso have X , . 5 Byh% < 2727%°. Finally,

Y. Bah% < K2 7min(C,279).
AeZ,

Since Eg3/B4 < 1, we see from (29) and (22) that

(30) Za(B:C) = (E0,(8,C)))"" < K min(277, 27 )(card )"/

< K min(279, /C277)2°7/2,

To obtain our estimate of E(8(B, C)), it suffices now to combine (24) with the
estimates we obtained for each term, and in particular (30). Which of these
“dominates depends on the value of a.

Case o« < 2. Then /2 ~-1<0, a/2 —1/2 > 0; thus, if ¢, is the largest
integer for which 2792 > C, we see that

Z min(2_‘7, JC2-9 )2&4/2_<_ E \/62(a/2—1/2)q + Z 9(a/2-1)q

7<Z a<q; a>qs

< K(‘/Ez(a/z—l/z)qz + 2(a/2—1)q2) < KCl-e/2,
Thus, from (24), (26) and (28), letting ¢, — =, we get
(31) E6(B,C) < K(C + C'~/?),

Case a > 2. Then a/2 — 1/2 > 0 so that

Z 2a/2-1q o go(a/2-1)a;

9=q;
We take g, such that 279 is of order r~ !/« to get, using (28) and (26),
(32) EO0(B,C) < K(C + ri/2-1/«),

Case a = 2. We take g, as in the preceding case to get
(33) E0(B,C) < K(C + max(1,log CVr)).
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For simplicity of notation, we set

K(C + C'7e/2), for a < 2,
F(C) = { K(C + max(1,log CVr)), fora =2,
K(C + rv2-1/=), for a > 2.

Thus, with this notation, we have E6(8, C) < F(C).

ProrosITION 6. For t > 0, we have
t2
K(C%+C)

P(6(B,C) = F(C) +1t) < exp(—

Proor. We know that E6(B,C) < F(C). We now appeal to the Maurey—
Pisier deviation inequality [5], which in the present case implies

t2
P(6(B,C) = E6(B,C) +1) < 2exp(—}{—;§)’

where

o = sup{ T B,h%(k); h € £(8,C).

k<r
Thus, o2 < C max{|h(k)|; k < r}. Since |h(k) — h(k")| < d(k, k') < 1, we have
max{la(k); k <r} < min{lk(k); k<r} +1<C+1,

sothat 2 <C?2+ C. O

Consider now the grid G = Z X {1,..., s}. Consider points (x;);_,,, x; =
(k(2),1(2)) of G and consider independent N(0, 1) r.v. (g;); . ,,. We want to
estimate

E L

fe #(8)

¥ & f(x)|

i<n

For I <s, set I, ={i <n; I(i) =1}. We assume that for certain numbers
M,, M,, the following occur, for all / < s:

(H) For all Lipschitz functions # on Z, we have
Y (kD)) <M Y |h(k)| + M,.

i€l k<r
H)VI<s, r/2<card, < 2r.

These assumptions will be justified in Lemma 7, where the appropriate values
of M, and M, will be determined.

. Consider the smallest integer p such that s < 2?. Consider the sequence
@y, Qy, .. ., @, of partitions of {1, ..., s} defined as follows: For 0 <m <p, @,
consists of the intervals J1Is27™], |(I + 1)s27™]] for 0 < < 2™. We observe
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that this sequence of partitions increases. Also, a set A € @,, satisfies
2P m-1 < card A < 2P ™,

For a function f on G and 0 <m < p, we write E,(f) for the function
defined as follows; the value of E, (f) at (%,1) is the average of the values of
fn.(k,1) for ] € A, where A is the element of @,, that contains /. Note that
E(f)=f Weset f,=E\f), f,=E,f)—E,_(f)for 1 <m < p. Thus,
f=2Xo0<mx<plm- This implies

Lef(x)|s T E sup

i<n O<m<p feF(S)

(34) E sup
fe #(S)

> 8i Fn(x)|-

i<n

We will evaluate each term on the right (the one that dominates is the last
one) and eventually bound the left-hand side of (34) in Proposition 7. But we
first investigate the properties of f,, when the functions f and m are fixed,
treating first the case m > 0 and then thecase m = 0. For A€ @Q,,, k <r, we
denote by h ,(k) the common value that f,, takes on all the points (%, ) for
! € A. Observe the important fact that the function %, is Lipschitz.

LEMMA 5. For m > 0, we have

Y Y (k) <S.

Aeq,, k<r

Proor. We denote by B the element of @,,_; that contains A. If B = A,
the definition of f,, shows that & ,(k) = 0. If B + A, then B contains another
- unique element A’ of @,,. The definition of f,, then shows that card
Ah ,(k) + card A'h (k) = 0 so that k(%) and & ,(k) are of opposite signs and
thus

(35) lhaA(R) + 1R o (R) < |hp(R) — ha(R)l

We note that we have

(36) lha(k) — hy(R) < X If(k, L+ 1) = £ (R, D),
leB

since one of the terms of this sum is |k (k) — h 4(k)| (e.g., if A is to the left of
A, the term corresponding to the largest [ € A.). Using (35) and (36), we get
by summation over all B € @, _; that

Y lha(k) < X (R, 1+ 1) = fu(k, DI

Ae€q, O<li<s

It is a simple matter, left to the reader, to show that this latter sum is at most
Yo<i<slf(k,1 + 1) — f(k,D)]. The result then follows from summation over k.
O

We fix m > 0. For A€ @, k <r, we get
I(AR) ={i<n; k(i) =k, 1(i) € A}.
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So we have
Lafum)|=| T T T ahd)
i<n Ae€Q,, k<ricl(A,k)
< T[T T ahah)
A€Q,, ' k<ricl(Ak)
We set
b(A, k)
b(A, k) =card I(A, k), b(A)= Y b(Ak), Bar= " -
k= b(A)
Thus, £, _,Ba = 1. By (H') we have
r
(37) r2p—m-2% < 3 card A < b(A) < 2rcard A < r2r m*2,

We set g4, =[1/Vb(A, k)X ca 18 Thus,
LT gha(B)| = V(A | T VEaigashalh)

k<ricl(A,k) k<r

(38)

and the variables (g4 ), ., are independent standard normal. We set now
S, = X, /hs(B)l. Thus, by Lemma 5, we have £ , .o S, < S. We appeal to
(H) to get

Y Y lh,(k(i))l < card A(M1 Y 1h (k) + M2),
) leA i€l k<r
so that, since card A < 277 ™,

Y b(A, k)l (k) < 2°7" (M, Sy + My)

k<r

and thus, by (37),

4
(39) Y Balha(k)l < ‘r‘(MlsA +M,).

k<r

We set C,(f) = (4/rXM,S, + M,). We set
S(A,C) = {h; Z > R, h Lipschitz, ¥ B slh (k)| < C}

k<r

and we consider the variable

n(4,C) = sup
hef(A,C)

> VBA,kgA,kh(k)l'

k<r

Thus,
DY gihA(k)is\/b(A)n(A,CAf))

k<ricl(A,k)
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by (38) and (39), and thus
l Z 8 i f m( xi)

i<n

< X Vb(A)n(A,Cu(f))

AE€Q,,

< 2Vr2¢=m/2 3 (A, Cu(f)).
AcQ,

(40)

We observe that the numbers C,(f) satisfy

T Cuf) < §(Mls + sMy) =M.

A€q,
Consider the collection &# of families of integers (/,), <o that satisfy
M2 < 2la, Y 24<4M.

A€Q,

Clearly, we can find (I ,) € &# such that C,(f) < 2'4. We observe that n(A, 2°)
is distributed like 6((B, ,); - ,»2%), so that by Proposition 6, we have
P(n(A,2") > F(2') + Kt(2' + 21/?)) < exp(—t?).
Consider the random variable
n(A,2') - F(2))
¢ = max 9l + 9l/2 ’
where the maximum is over all A € @,,, and all / for which M2™™ < 2! < 4M.
There are at most m + 2 possible choices for I, so that

P(£x>t) < (m + 2)2™ exp(—t%) < exp Km exp(—t?).
Thus, by a simple computation E¢ < KYm . On the other hand,
n(A,2") < F(2") + K¢(2! + 217%).
Thus, for all families (I,) € &#, we have

(41) Y m(A,24) < ¥ F(24) + Kg( L 24 + 2472).
AeQ, Aeq,,

We now make the extra assumption that
(42) S > nr-t/e,
Thus, since M, > 1, we have
2la> — > /e,
rs .
Setting 2,, = card @,, and using the concavity of F(x) for x > r~
X x F@W <2,F(2; T 2h)
A<Q, A€Q,
< 2mF(27™*3M).

1/« we have
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Thus, we get from (41) that (using the concavity of V- ),

Y m(A,2') <2mF(27™"3M) + K&(M + VM),
A€Q,

Thus, by (40), we have
L & '"(x")l < KVn 2" /?F(2-"3M) + KVr 2°~™/2(M + VI).

i<n

The right-hand side is now independent of f& F(S) so the inequality still
holds if we replace the left-hand side by its supremum over f € F#(8S). Taking
expectation, we obtain, since E¢ < KVm , that

L & fux)| < Kim2n /22 +u)

i<n

E sup
(43) fe F(S)

+ Kyr 2?2 o (M + VIT).

We now turn to the case m = 0.
LemMA 6. Consider f € F(8S). Then max|f(k,1)| < S/r + 2.

Proor. We find % such that

Y IF(k, L+ 1) — f(R, D) <

I<s
Thus, |f(%,1') — f(k,1)| <S/r forall [,I' <s. Now, for k', k" <r,and I',l" <
s, we have
IF(R, 1) — F(R", 1) < If(R', 1) = f(k, 1)
+ If(k, lr) _ f(k, l”)l + If(k, l”) _ f(k”, l”)l
S

<24+ —.
r

S
-

The result follows since £, _, ;,_, f(k,1)=0. O

Since the value of (%, ?) does not depend on [, it should be clear that

T & fo(x)| < JrTE(o(B,z + ;))

i<n

E sup
fe F(S)

where B, = r~'/? card{i < n; k(i) = &}, B = (B,); <~ Thus,

) gifo(x,.)’ < x/rTF(z + g)

i<n

(44) E sup
i fe#(S)

The bound for (34) is achieved by summing (43) and (44) and going back to the
definition of F. We obtain the following proposition.
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PROPOSITION 7. Assume S > nr~ /¢ and conditions (H) and (H') and let
M = 4/r(M,S + sM,). Then

E sup
fe F(S)

¥ gif(xi)l ssz/;F(%w—) + Kvn (M + VB)

i<n

+K\/77F(2 + if—)

4. End of proof. The purpose of the next lemma is to verify that condi-
tions (H) and (H’) are satisfied.

LemMa 7. Consider the random variables (X;), _,, X; = (k(i), 1(i)), which
are uniformly distributed over the grid G. Then, for some constant K, the
following occurs with probability at least 1 — s exp(—r'~1/*/K). For each
Lipschitz function h on Z, and for each | < s, we have

(45) Y b (k(i))l sK(Z R (k)] +r1_1/°‘),

iel, k<r

where I, = {i < n; 1) = 1}.

CoMmMENT. When (45) occurs, we can take M, = K, M, = Kr'~1/® so that
M = 4(M,S + sM,)/r < KS/r whenever S > nr~'/<.

PrOOF. Step 1. Consider the smallest integer g, such that 2791 < r=1/¢,
and the sequence (%), ., of partitions of Z given by Lemma 1.

We observe that if V is a random variable such that 0 < V < 1, we have
(sincel +x <e*<1+2x forx<1)

(46) EexpV<E(1+2V) =1+ 2EV < exp2EV.

Consider a subset A of G, and the random variable A; given by A, = 1 if
X, € A and A, = 0 otherwise. Thus, EA;, = n~! card A. By (46) and indepen-
dence,

Eexp) A, <exp2card A

i<n

and by the Chebyshev inequality, we have P(L;_,A;>1t) <exp(—?) +
2card A. In other words, we have

(47) P(card{i <n; X; € A} >t + 2card A) < exp(—1t).
Step 2. Consider now a sequence (b,), ., - ,,» to be specified later. Consider
the following event:

g Q,: Given any 0 < q < q,,and any subset Yof Z = (1,...,r}
that is & -measurable, and any / < s, then

(48) card{i <n; X, € Y X {I{}} < 2card Y + b,.
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Thus, by (47), we have

(49) P(Q) =1~ Y s2°4%exp(-b,).
0<g=<q

Assume now that (48) occurs, and consider a Lipschitz function 2 on Z. We
define a “stopping time” as follows. For k € Z, q(k) is the smallest integer
0 < g < g, such that for some point %', which belongs to the same element of
&, as k, we have |h(k')| = 279*3 [If no such g exists, we set q(k) = q,.]
Cons1der Y, =1{k € Z; q(k) = q}. Then clearly, Y, is & -measurable. Since
each set of 9’ has diameter < 279*2 when q < ql, we have h(k) > 2792 on
Y,. Thus,

(50) Y 279*2card¥, < ¥ |h(k)l +r2 .

0<g=<q, k<r
The definition of g(%) shows that, if ¢ > 0, we have |h(I)| < 279** for each
l €Y,. Suppose that ||kl =t max, _,|lh(k)| < 2% Then we have |h(k)| < 2*
for each % € Y,,. Thus,
h< Y 279+,
O<g=<q !
so that by (48),

Y h(k(i)) < X 2 %%card{i <n; X, €Y, x {l}}
i€l 0<g=<q,
(51) < Y 279"%(cardY, +b,)
0<g=<gq,
<8Y Ih(R)+ X 2‘q+5bq.
k<r 0<g=<gq,

Suppose now that ||kll. > 2% Then, for all %’ € Z, we have |h(E)| > ||kl —
1> ||kllo/2. Thus,
Y Ih(k(i))l < Ikl card{i < n; I(i) = 1} < (2 + b)lAll

i€l
<2(2 +r 7o) ¥ Ih (k).
k<r

Step 3. Thus, to conclude the proof, it suffices to show that one can find the
sequence (b,) such that the following occur:

(52) by < Kr,
(53) Yy 27%, < Kri-Ve,
0<g=q,
(54) S Z 22"“1 exp(—bq) < Ks exp(_rl—l/a).
0<g=<q, -

For that purpose, we take
b, = 29/2pl-1a 4 9aq,
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Thus, b, <1+ r'~/* and (52) holds. To prove (53), one simply observes
that, since 279 is of order r~ /%, we have

Z 299279 < K29(e~D < Krl-l/e
0<g=q,

To prove (54), one simply notes that
22" exp(—b,) < exp(—29/%r'"1/%). O
We leave to the reader to check (using Hoeffding’s inequality [3]) that (H') is

satisfied with probability at least 1 — K exp(—r/K). If we combine Lemma 7
with Proposition 7, we have proved the following lemma.

LemMA 8. Consider S > nr~'/®. Denote by E, the conditional expectation
atX,,..., X, fixed. Then, with probability at least 1 — k exp(—r'~'/*/K), we

have
y g,.f(Xi)l sKsﬁF(?) +K1/r7(§ + \/g)

i<n

E

¢ sup

fe F(S)

) + KVZF(z + ?)

Proposition 4 now follows by a tedious but straightforward computation.
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