The Annals of Applied Probability
1992, Vol. 2, No. 4, 1009-1018

THE HEIGHT OF A RANDOM PARTIAL ORDER:
CONCENTRATION OF MEASURE

By BfiLa BoLLOBAS! AND GRAHAM BRIGHTWELL

University of Cambridge and London School of Economics

The problem of determining the length L, of the longest increasing
subsequence in a random permutation of {1, ..., n} is equivalent to that of
finding the height of a random two-dimensional partial order (obtained by
intersecting two random linear orders). The expectation of L, is known to
be about 2yn . Frieze investigated the concentration of L, about this
mean, showing that, for ¢ > 0, there is some constant 8 > 0 such that

Pr(ILn - EL,I> n1/3+5) < exp(—n?).

In this paper we obtain similar concentration results for the heights of
random k-dimensional orders, for all 2 > 2. In the case & = 2, our method
replaces the n!/3*¢ above with n'/4*¢, which we believe to be essentially
best possible.

The study of random d-dimensional orders was begun by Winkler [15, 16].
His model was to construct an order < on the set [n] = {1,..., n} as follows.
From the n! possible linear orders on [n], d orders <;,..., <, are chosen
independently and uniformly at random, with replacement. Then the order <
is set equal to the intersection of <;,..., <;, so that x <y iff x <; ¥ for
each i.

One advantage of this model of random orders is that there is a natural
equivalent formulation. Consider the d-dimensional unit cube [0, 1]¢ with the
standard product measure, and take n points at random in this cube. The
usual coordinatewise order on the cube induces a partial order on the set of n
points, and it is easy to see that the probability of any particular partial order
arising here is the same as in the model described above. The two natural
alternative formulations make the model relatively easy to work with.

One of the problems considered by Winkler in [15] was that of determining
the height L, ; of a random d-dimensional order (the length of the longest
chain). Some results were obtained in [15], and then Bollobas and Winkler [5]
proved the following result.

THEOREM 1. For every d > 2, there is a constant ¢, such that L, zn~'/¢

tends to ¢, in probability.

. Received November 1991; revised January 1992.

!Research supported in part by NSF Grant DMS-88-06097.

AMS 1980 subject classifications. 06A10, 60C05, 05A99.

Key words and phrases. Partial order, height, random orders, Ulam’s problem, increasing
subsequences.

1009

%E%J

\

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ )22
The Annals of Applied Probability . STORS

o

WWWw.jstor.org



1010 B. BOLLOBAS AND G. BRIGHTWELL

Bollobas and Brightwell [4] extended Theorem 1 to a somewhat more
general class of models for random partial orders. (Everything we prove in this
paper can be extended with a little effort into that setting.)

For d = 2, the problem of finding the height of a random two-dimensional
order is equivalent to the well-known combinatorial problem of finding the
length of a longest increasing subsequence of a random permutation of the set
[n]. This is often referred to as Ulam’s problem, since it was apparently first
raised in [13]. The case d = 2 of Theorem 1 was in fact first proved in this
formulation by Hammersley [7]. The constant c, is known to be equal to 2:
Logan and Shepp [9] proved ¢, > 2 and Ver$ik and Kerov [14] showed ¢, < 2.
A combinatorial proof of this last result was supplied by Pilpel [11].

The constants c,; for d > 3 are unknown, although Bollob4ds and Winkler
give some reasonable bounds in [5].

Theorem 1 gives no indication of either the speed of convergence of
EL, 4n™¢ to ¢y, or of the concentration of L, ; about its expectation. The
main aim of this paper is to give some results in these directions.

Concerning the latter problem, Frieze [6] proved that L, ; is sharply
concentrated about its mean, for d = 2. We state his result in a slightly
stronger form than that given in [6], since this assertion follows immediately
from the proof.

THEOREM 2. Suppose that a > 1/3 and B < min{a, 3a — 1}. Then, for n
sufficiently large,

Pr(IL, , — EL, ,l > n*) < exp(—n*).

As we shall show later, it is possible to combine a result of this kind with
the methods of Bollobas and Winkler to get information about the rate of
convergence of EL, , to 2Vn.

The basic tool used by Frieze in [6] is a martingale inequality (similar to
Lemma 4 below). He dealt with the Ulam’s problem formulation, looking
directly for a long increasing subsequence of a random permutation. Our
approach in this paper will again be to use a martingale inequality, but we
consider the formulation of the problem as that of finding a long chain in a
random d-dimensional partial order. This enables us not only to extend
Theorem 2 to the case d > 2, but also to improve the exponents in the case
d=2.

Thus we show that we have sharp concentration about the mean not only
for L, 5, but also for each L, ;, with d > 2. Also, we prove that, in the case
d = 2, the conclusion of Theorem 2 holds with n* replaced by nl/4 log n: We
suspect that the exponent 1/4 here is best possible. One consequence of our
results is that the variance of L, , is at most n'/?log® n; another is that
leqn'/? — EL, 4l is bounded above by n/2d 1og®2 n.

" It turns out to be convenient to follow Bollobas and Winkler, and to
consider a slightly different model of d-dimensional random orders. We set
= [0, 1], and consider a Poisson process with density n in X. This process
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will thus give us a set S of about n points in X, which comes equipped with
the coordinatewise order < . We shall prove our strong concentration results
for this model, and then indicate how to recover the results for the model
where exactly n points are chosen at random in X.

For S a set of points in [0, 1], we let H(S) be the height of the partial
order induced on S. If S is generated by a Poisson process of density n in the
cube [0, 1%, we denote by H = H,, ; the random variable H(S). We shall prove
the following result.

THEOREM 3. For each integer d > 2, there is a constant K ; such that, for
n sufficiently large, '

AK n'/?d log n

< 4)? —\2
loglog n exp( )

PI‘ lHn,d - EHn,dl >

for every A with 2 < A < n'/?? /loglog n.

Note that the case d = 2 extends Theorem 2 for every A in the stated range.
Our methods can also be used to obtain somewhat weaker results for values of
A larger than those given above.

We shall use the “method of bounded differences,” involving the application
of martingale inequalities. The basic principle of this method is to perform
some process of subdivision so that the random variable H, ; does not depend
too crucially on how the random process behaves on each individual part. In
this case, what we shall do is divide the cube X = [0, 1]¢ into a moderate
number of “slices,” so that a long chain in (S, <) is very unlikely to contain
many points from any one slice.

We set m = [dn!/?], and partition the cube into m slices: For j = 1,...,m,
we set

m d
X =({(x,.-.,%3) €X:j— 1< sz‘ <Jj-
1

Let S; = S N X for each j. Thus the X; form a partition of X (except for the
top point), and the random sets S; are mutually independent.

Our intention is to apply the following lemma. This can essentially be found
in the articles by Bollobas [2, 3] or McDiarmid [10], and follows simply from
Azuma’s inequality [1] for martingale convergence, or from a slight variant due
to Hoeffding [8].

LemMA 4. Suppose that Z = Z(U) is a random variable, where U =
(U,,...,U,), and the U; are chosen independently from probability spaces €);.
Suppose also that, whenever U and V differ in only one coordinate (i.e.,
U; = V. for all but one index i), we have |Z(U) — Z(V)| < k. Then, for any
real a, we have

Pr(|Z — EZ| > a) < 2exp(—a®/2mk?).
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Ideally, we would like to apply Lemma 4 with U = (S,,..., S,,)and Z = H.
This will not quite work since H could increase substantially if, for instance,
one of the S; contained a huge number of points. However, we do know that
this is a very unlikely occurrence.

Our approach is to define a variant H' of H which does satisfy the
hypotheses of Lemma 4, and then to estimate separately the (very small)
probability that H' is much different from H. To this end, we set % =
2(d + Dlog n/loglog n, U = (S,,..., S,,) as above, and let H' = H', ,(U) be
a length of the longest chain in (S, <) including at most % points from each
S;.

LeEMMA 5. For each integer d > 2, there is a constant K/, such that
AKn'%dlog n

H ,-EH >
Pr\|H, ;- E ndl loglog n

< 2exp(—A?)

for every positive real n and A.

Proor. We apply Lemma 4 with m = [dn!/?], U = (S,,...,S,,), ZU) =
H'(U) and % = 2(d + Dlog n/loglog n. Evidently the hypotheses of Lemma 4
are satisfied. For every A, we set
n'/?dlog n

A
a=AkV2m < 3(d + 1)V2d ———
loglog n

Then Lemma 4 gives the required result, with K, = 3(d + 1)vV2d. O

Lemma 5 contains the heart of the proof of Theorem 3. It remains to
estimate the error term H — H'. One can easily check that this is in fact
almost always 0, but we need to prove more, namely that the probability that
H — H'is large is extremely small. The proof of this is fairly simple, although
a little technical.

It is convenient to consider a different subdivision of the cube, into subcubes
rather than slices. Set [ to be the greatest integer so that /¢ < n. Now, for
J =, Ja) €11, we define

Y, ={(xq,...,%4): j; — 1 < Ix; <j; for each i}
and S; =8 NY,. Again, the Y; form a partition of X, except for the top
point, and the S; are mutually independent. Note that each cube Y, has
volume [~¢, which is at most 2/n if n is sufficiently large.

FOI‘ J S [l]d, Set TJ = maX{O, |SJ| - k/(d + 1)}, al'ld T = ZJE[[]dTJ‘ SO T
counts the total ‘“surplus” of points in the various subcubes.

LemMA 6. For any set S of points in [0, 1%, we have H— H' < T.

Proor. Given any set S of points in [0, 1]%, we delete T' points from S to
form a set S’ such that each subcube Y, contains at most %2/(d + 1) points
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from S’. The set S’ inherits the order < from S. We fix some longest chain
C in (S’, <), and suppose that C contains more than % points from some slice
X;. Let x =(xy,...,x4) and y = (y,,...,¥,) be the lowest and highest points
of C in X;. Then X{(y; — x;,) <d/m < n~'/¢ < 1/, since x and y are in the
same slice. Therefore there is at most one integer between lx; and [, for each
i, and so C passes through at most d + 1 of our subcubes Y, between x and
y. Thus C contains at most % points in X, a contradiction. Therefore the
height of (S’, <) is at most H' and so, a little crudely, the height H of (S, <)
is at most H' + T, as required. O

Of course, Lemma 6 implies that E(H — H') < ET. The remaining ingredi-
ents of our proof of Theorem 3 are the bounds for T given in the next lemma.

LEMMA 7.
(1) For every d > 2 and sufficiently large n,

An'’2¢ log n
T > _____f_{_) < 2)2%~

P
T loglog n

for every A with 2 < A < n'/??loglog n.
(ii) For n sufficiently large, ET < 1.

Proor. We assume throughout that n is large enough for various inequali-
ties to hold: In particular, we assume that the volume of each cube Y, is at

most 2/n. ‘
We set M, = l{J € [1]%: |S,| > r}|, for each integer r, and note that

T= Y M,.
r=k/(d+1)
Each subcube has volume at most 2/n, so the probability that a subcube
contains more than r points from a Poisson process of density n is at most
—20=: -2
* e ‘2T e “2r
L o <
i=r+1 b r:
provided r > 3. Therefore the probability that there are m subcubes each
containing more than r points of S is at most

(r’r'fl)(exp(—r logr + 2r))" < [nexp(—r(logr — 2))]™.

If r > k/(d + 1) = 2log n/loglog n, and n is suitably large, then log r > 3 +
log n/r, and so the expression inside the square brackets is at most e™", and
the probability that M, > m is at most e™"™.

To prove (i), we fix any A with 2 < A < n'/?¢ loglog n. Setting m = 1 and
r = A? gives that the probability of any cube containing more than A? points is
at most e ~*. Also, the probability that M, > A%/r for any r with k/(d + 1) <
r < A2 is at most A%e .

<exp(-rlogr +2r),
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Thus, with probability at least 1 — 2A%¢~", we have
o AZ

T= Y M. < Y 2/r<d4i’logi <4A <

Pk /(d+1) 1 2d loglog n loglog n

n?dlogn  An'/??logn

as required.
To prove (ii), we note that

ET- Y EM,
r=k/(d+1)

I el

r=k/(d+1) i!

<nexp(-rlogr+2r)<e <1,
using the estimates above. O

Theorem 3 now follows easily from the preceding lemmas.

ProoF oF THEOREM 3. Set K; = K, +.2. Now we have
AK n'/%dlog n )

Pr||H - EH| >
loglog n

MK, - 1Dn'??logn
sPr(lH—EH’|> (Kq— 1) g )

loglog n

AKn'?dlog n Anl/%4log n
<Pr||H -EH'|> ——— | + Pr|T > ——

loglog n loglog n
< 2™V 4+ 2)% ¥ < 4%
Let us next adapt Theorem 2 to the model where exactly n points are

chosen from [0, 1]%. Recall that the height of a random partial order in this
model is denoted L, ,.

THEOREM 8. For every integer d > 2, there is a constant C,; such that, for
n sufficiently large,
AC,n'?? log n

— EL >
Pr(lL"’d n.dl loglog n

) < 80A% exp( —A?)
for every A with 2 < A < n'/?? /loglog n.

Proor. We shall prove that, for sufficiently large =,
MK, + 4)n*??logn
loglog n

(1) Pr(an,d - EHn,d' > ) S 80A2 exp(_Az)
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for every A in the range, where K, is as in Theorem 3. One can check that
(1) implies that the expectation of L, , is bounded within EH, , +
C,n'/?? log n /loglog n, which implies the full result with C,=K,+4+C,
The details of this routine calculation are omitted, and we confine ourselves to
the proof of (1).

Suppose then that (1) fails for some A. Consider two independent Poisson
processes on [0, 119, one, S, with density n — Vn, and the second, S’, with
density 2vn . With probability at least 1/10, S has at most n points, and
S U S’ has at least n. If this is the case, we select a set S, by taking all points
of S and choosing at random n — |S| points of S’. This procedure, if success-
ful, generates n points uniformly, independently from [0, 1]¢. Therefore, since
(1) fails, we have

MK, + 4)nt/2d logn)

Pr(lSlsnslSUSland |H(S,) — EH, 4> Toglog 1

> 8\ exp( —2?),
and thus, since H(S) < H(S,) < H(S U §’),
MK, + 4)n'??logn
loglog n

Pr(H(S) <EH, ,

or HISUS')>EH, ,+

) MKy + 4)n'?? logn )
loglog
> 82 exp(—A%).
Now observe that
E(H, ;- H(S)) < E(Hz ;) < ¢n'/? < 3n1/24,

where the last two inequalities are known from [5].
But, from Theorem 3, if n is sufficiently large then, with probability at least
1- 4)t2 _’\
AK4(n — \/E)l/zd log(n — vVn)
loglog(n — Vn)
MK, + 4)n'??logn
loglog n

H(S) ZEHn—\/YT,d_

> EH, ,

and similarly, with probability at least 1 — 4A% =¥,
MK, + 4)nY?@ logn
loglog n )

v

H(SuS')<EH, ;,+

These two inequalities contradict (2), so (1) indeed holds. O
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For any natural numbers n and d, define ¢, ,; by
EH, ,=c, 4n*/%

Theorem 1 tells us that ¢, ; tends to some constant c,, but gives us no
information as to the speed of convergence. Using Theorem 3, we shall
produce what could turn out to be a reasonably good estimate for this rate of
convergence. We work with H, , for convenience: A similar statement can be
proved for L, ;.

THEOREM 9. For every integer d > 2, and all sufficiently large n,

12K, log®/? n

>e¢, 4> Cp— ——og———
€a = Cnd =6~ 12d10g10g 0’

where K ; is as in Theorem 3.

Proor. We shall proceed by comparing c, ; with cga, 4.

The upper bound was shown in [5], but we repeat the argument here for
ease of reference. Consider the cube Z = [0,2]¢, and a Poisson process S of
density n in Z. The expectation of H(S) is just cyq, 4+ 20/ But H(S)is at
least the length of the longest chain passing through the point (1,1,...,1) of
Z, which is the sum of H(S N [0,1]%) and H(S N [1,2]%). These heights are
independent random variables distributed as H,, ,, and therefore the expected
length of the longest chain passing through the midpoint of Z is exactly
2¢,, 4n'/?. This proves that cya, 4 = ¢, 4 for every n and d, and therefore
that cd > Cn’d.

For the lower bound, we shall prove that, for sufficiently large n,

2AK n*?? log n

< 94+3, )25V
loglog n N

(3) Pr H2dn,d - 2EHn,d >

for every A with 2 < An'/2¢ /loglog n. (In fact, we shall only use this for the

particular value A = 2ylog n .)
Again, we generate a set S by taking a Poisson process of density n on
Z = [0, 2]". The probability that S has more than 2 - 2¢n points is negligible,
so we randomly choose a labeling (x,,...,x,) of S with m < 291, We
consider the probability that the point labeled x; is the midpoint of a chain of
length at least 2EH,, , + 2A K n'/** log n/loglog n in S. Wherever x; lies in
Z, either the volume between (0, ...,0) and x; or the volume between x; and
(2,...,2) is at most 1. Therefore the probability that there are chains both
above and below x of length EH, ;, + AK;n'/?**log n/loglog n is at most
4)2¢~", by Theorem 3. So the probability that some x; is the midpoint of such
.a long chain is at most 29+1n times this, establishing (3).
. Inequality (3) enables us to estimate the expected value of Ha, ; as
follows. Set A = 2y/logn, and r = 2AK n'/?¢log n/loglog n, so that
Pr(H,a, 4 > 2EH, , + o) < 27%n"" for sufficiently large n. Now, just using
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the crude bond H,a, ; <|S| for the large deviations, we have
EH,a, ;< 2EH, ;+ 1o+ 2+ 2%n Pr(Hya, 4 > 2EH, 4+ 1)
+ Y. mPr(ISI=m)
m>24+1n
4K n'/?d 1og3/2 n

<2EH, , + +2+ 1.
md loglog n

This shows that
3K, log3%n
Codp,g < Cpg t W72 oglog 1’
and so
3K, log®/2(2/%n)
(279n) 1/2d loglog(27?n)

nazea &

o 3K, log®?n i log3/2(21dn)

=74 pl/2d oglog n /2o log3/2 n
12K, log®/?

>,

"~ n'2dloglogn’
as required. O

In this paper we have been concerned with proving that H,, d is reasonably
close to ¢,n'/¢. Theorems 3 and 9 combine to show that H, , is very unlikely
to differ by more than n'/2¢ log n from this amount, and in partlcular that the
variance of H, , is at most O(n'/ @]og? n). (Steele [12] has shown that the
variance of Ln , is at most n'/2) It seems to us that the exponent of 1/2d is
likely to be correct, and we venture the following conjecture.

CoNJECTURE 10. There is a constant ¢ such that, for every fixed d and
sufficiently large n, the variance of L, ; is at least n*//log°® n.

Probably Conjecture 10 is true with ¢ = 0. Note that we make this conjec-
ture even for L, ,, where one might initially expect the variance to be lower
than for H, ,. However, the two variances are not actually likely to be too
different, since the height of the random partial order will almost never be
affected by points a long way off the diagonal, and in either model the number
. of points in a region around the-diagonal is asymptotically a Poisson random
variable with mean n times the volume of the region.

On the other hand, we think it quite possible that Theorem 9 is not tight,
and that c, , in fact converges to c, faster than is given by that result.
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