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ON THE SPREAD-OUT LIMIT FOR BOND
AND CONTINUUM PERCOLATION

By MaTHEW D. PENROSE

University of California, Santa Barbara

We prove the following results on Bernoulli bond percolation on the
sites of the d-dimensional lattice, d > 2, with parameters M (the maxi-
mum distance over which an open bond is allowed to form) and A (the
expected number of open bonds with one end at the origin), when the range
M becomes large. If A (M) denotes the critical value of A (for given M),
then A, (M) — 1as M — . Also, if we make M — o with A held fixed, the
percolation probability approaches the survival probability for a
Galton-Watson process with Poisson(A) offspring distribution. There are
analogous results for other ‘‘spread-out” percolation models, including
Bernoulli bond percolation on a homogeneous Poisson process on d-dimen-
sional Euclidean space.

1. A spread-out bond percolation model. For M € (0,x), let Z¢/M
denote the set {z/M: z € 7%. In this article we consider a bond percolation
model on Z¢ /M where the range over which bonds may form is fixed and M is
large. This is equivalent to bond percolation on Z¢ with bonds being allowed to
form over increasing range. v

Let ¢ be a bounded probability density function (p.d.f.) on R¢, symmetric in
the sense that ¢(—x) = ¢(x), x € R%. Set v(M) = ¥, ¢ 7¢ a1\ (¢ (%). Assume
v(M) < ». Suppose 0 < A < v(M)/sup{e(x): x € Z¢/M, x + 0}.

Let G be a random, undirected graph on Z¢/M, obtained as follows: For
each pair x,y € Z¢/M, with x # y, include {x,y} as an edge of G with
probability A¢(x — y)/v(M), independently of all other pairs. The parameter A
is the expected value of the degree of 0 in G. Let C(0) denote the component of
G which includes 0. As usual in percolation models, there is a critical value A,
of A given by A, (M) = inf{A: P[C(0) is infinite] > 0}. For A > A, G has an
infinite component almost surely.

By a branching process argument, A, (M) > 1 for all M.If d = 1, and ¢ has
bounded support, A (M) = v(M)/sup{e(x): x € (Z¢/M)\ {0} for all M. We
consider the limiting behavior of A (M) as M — «, when ¢ is a fixed function
on R? with d > 2.

This percolation model is equivalent to the ‘“spread-out” model of Hara and
Slade (1990), who discuss critical exponents for large (fixed) M with d > 6; in
fact, the case d > 6 of Theorem 1 below is implicit in their work (G. Slade,
personal communication). Taking M large is a ‘“mean-field”’ limit, related to
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the “Kac limit”’ for a potential [see e.g., Penrose, Penrose, Stell and Pemantle
(1990) and references therein]. Our model is appropriate to describe the spread
of disease in an orchard, if the range of infection is long. On the other hand,
if we have a forest rather than an orchard, the arrangement of trees is ran-
dom. In the next section we shall discuss the case where an orderly arrange-
ment of sites on a lattice is replaced by a Poisson process in R?. For a
general discussion of percolation models and their motivation, see for example
Grimmett (1989).

We need a technical condition on ¢. Let &,, denote the smallest function on
R¢ which is constant on all open cubes of side 1/M centered on points of
Z%/M, and which is everywhere not smaller than ¢. Then ¢ is directly
Riemann integrable [see Feller (1971)] if (i) ¢ is Riemann integrable, and
(i) @,, is integrable for some M. This condition implies that [@,, dx — [¢ dx
and that M~ %v(M) - [pae(x)dx as M — «. Also, if ¢ is bounded and has
bounded support, direct Riemann integrability is immediate from Riemann
integrability. We shall say a p.d.f. ¢ on R? is well behaved if it is bounded,
symmetric and directly Riemann integrable.

THEOREM 1. Suppose ¢ is a well-behaved p.d.f. on R?, d > 2. Then
A(M) -1 asM — .

We can go further than the result in Theorem 1, obtaining a limit for the
percolation probability when M — « with A fixed. Let (A) denote the sur-
vival probability of a Galton-Watson branching process with a Poisson(A)
offspring distribution; that is, if A < 1, then (1) =0, and if A > 1, then
x =1 — () is the solution in 0 < x < 1 to e**~D = x [see e.g., Athreya and
Ney (1972)].

THEOREM 2. Suppose ¢ is a well-behaved p.d.f. on R? d > 2. If M - »
with A fixed, then P[C(0) is infinite] — ¢(A).

In Sections 3-6 we develop the machinery to prove Theorems 1 and 2.
Sections 7-9 provide the probability estimates to give the proofs, and Section
10 is a discussion of related site percolation models.

Consider the special case that ¢ is a constant on the unit ball and is 0
elsewhere. Then if M = 1, G is the familiar nearest-neighbor Bernoulli bond
percolation process on Z¢; if M is large, the range over which bonds of G may
form becomes large, compared to the distance between neighboring sites of
Z%/M. Theorems 1 and 2 are analogous to the results of Kesten (1990)
regarding percolation in Z¢ when d —  [see also Kesten (1991), Hara and
Slade (1990) and Gordon (1991)]. In fact, our methods provide another way to
derive Kesten’s results; see Section 10. One might expect that if there are
many potential bonds at each site, each with a small probability of being open,
C(0) should look roughly like the graph traced out by a branching random
walk with a Poisson(A) distribution of offspring. Bramson, Durrett and
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Swindle (1989) derived detailed results on the contact process under a similar
limiting regime to the one here; their methods are related to those used here.

2. A continuum percolation model. The following percolation model
was discussed (and described in more detail) in Penrose (1991). An integrable
function f: R% - [0,1] with f(—x) = f(x), all x € R?, is prescribed before-
hand. Particles are placed in R? by a homogeneous rate p Poisson process
P={X,, X,, X;,...}. A particle is added to the system at 0 to form a random
set &, = LU {0}. On a probability space (Q, &, P,), with expectation E, a
graph G on & (resp., a graph G on &) is obtained by joining any two
particles of & (resp., &), at x and y say, with probability f(x — y), indepen-
dently of all other pairs of particles. Continuum models are often more
realistic than discrete ones; for further discussion see Penrose (1991), Given
and Stell (1990), Burton and Meester (1991), Alexander (1991) and references
in these papers. .

Let C(0) denote the component of G which includes the vertex at 0. Let
#(C(0)) denote the number of vertices of C(0). There is a critical value of p,
here denoted p (), at which P [#(C(0)) = =] becomes positive; that is,

P [#(C(0)) = ] = P,[G has an infinite component] = 0,  p < p.( f),
P[#(C(0)) = =] >0, p>p.(f),
P [G has an infinite component] = 1, p>p(f).

Note that when d = 1, if f has bounded support then p (f) = .

Set A = p[f(x) dx (the expected value of the degree of 0 in G). In view of a
conditioned branching process argument [the “method of generations’’; see
Zuev and Sidorenko (1985) and Gilbert (1961)] one expects C(0) to be finite if
A < 1; indeed, we have the following theorem.

THEOREM 3. Suppose in the continuum percolation model that f is Rie-
mann integrable. Then:

(2.1) (i)  E[#(C(0)]<(1-2)""<w ifa<l.
(i)  P,[C(0) is infinite] <y(A).

Note that (2.1) implies that p(f) > (/f(x)dx)~!. In Penrose (1991), (2.1)
was asserted without much proof, and we shall give a more rigorous derivation
in Sections 11 and 12. While it is natural to think of C(0) as a conditioned
branching process, all proofs of continuum results here will be by discretiza-
tion methods similar to those of Zuev and Sidorenko [(1985), Section 3].

Let ¢ be a fixed p.d.f. on R% We consider the case when f is a small
constant multiple of ¢. For A > 0 set f,(x) = ho(x), x € R? (so if f=/f, on
R? then A = ph). For a given value of p, let A (p) (which also depends on the
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given function ¢) be defined by

A(p) = pinf{h e [0,llellz*]: o > pu( fh)}

(where the infimum of the empty set is taken to be ). That is, for f
proportional to ¢, A(p) is the infimum of those A, at a given Poisson density p,
for which C(0) is infinite with positive probability. In Sections 13-15 we shall
prove the following continuum analogs to Theorems 1 and 2.

THEOREM 4. Suppose d > 2 and ¢ is a bounded, symmetric Riemann
integrable p.d. f. on R%. Then A (p) > 1las p — .

THEOREM 5. Suppose d > 2 and ¢ is as in Theorem 4. As p — ® with A
fixed (i.e., with f = f, where h = A /p),

P,[C(0) is infinite] — y(A).

3. Preliminary definitions and estimates on branching random
walk. Let _# denote the set {(i, j) € Z% i >0, |jl <i, (@ +j)/2 € Z}, made
into a directed graph by including all directed edges e of the form e =e;;,
from (i, j)to (i + 1,j + 1), ore =¢;;_ from(Z, j)to G + 1,7 — 1), (7, j) € Z.
List the edges of - as ey, ey, 3, . .., choosing the ordering so that e,;, comes
before e;;, in the ordering, whenever i <i' or i = i’ and j <Jj’, and e;;_
comes before e, forall (i, j) €. So e =eqq _, €3 =€g0 +» €3=€1 1,
es=e; _1 4, €5 =e;; _ and so on. Also, for each p €{1,2,3,...} let i(p) and
7(p) be such that €, = €ip) jip, ~ (f pisodd) or e, = e;,) i), + (f pis even).
Here and below, p 1s always an integer-valued 1ndex, not a probability.

For (i, j) € .7, let b;; and B;; be the closed hypercubes in R? of side 1/2
and 1, respectively, centered at (z J,0,...,0). We shall show percolation can
occur by comparing the high-density percolation models described above with
oriented percolation on _#, where we shall say that the edge e;;, of -2 is
“open” if there exist sufficiently many reasonably short paths in C(0) from
B to B, i+1,j+1°

leen o(: ) and A, let (Z¥, n=0,1,2,...) be a discrete-time branching
random walk (BRW) on Z¢ /M in which: (i) at time n, each one of the particles
created at time n — 1 dies and is replaced by a Poisson(A) number of offspring;
and (ii) the offspring of a particle at x are independently placed in (Z¢/M) \ {x}
according to the probability mass function ¢(-—x)/v(M). Let (Z,, n
0,1,2,...) be a BRW on R?, defined by (i) and by (iii) the offspring of a particle
at x are independently placed in R? according to the p.d.f. (- — x).

Let .#™ (resp., .#) denote the space of counting measures (i.e., nonnega-
tive integer-valued measures) on Z? /M (resp., R%). The BRW ZY (resp Z,)is
a measure-valued process taking values in .#™ (resp., .#). If p € 4™ (resp .
,u, € .#), let P, be the probability measure, with correspondlng expectation

under whlch the BRW ZM (resp., Z,) has initial position ZY = u (resp.,
w). For x € 72¢/M (resp x € [Rd) write P, for P; where §, is a unit
mass concentrated at x.
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Suppose ¢ has bounded support. Let (S,, n > 0) denote the random walk
S,=X,+ - +X,, where X;,X,,... are independent R%valued random
variables each with p.d.f. ¢ (set S, = 0). Let X denote the covariance matrix of
X,. The following multivariate local central limit theorem is from Stone (1965,
1967).

LEmMMA 1. Suppose ¢ is a symmetric p.d. f. on R? with bounded support.
If (x,) is a sequence in R? with n=?x_ — x € R% as n — o, then
n n
nd/?P[S, —x, €by] = (1/2)% 2(x) asn — =,

where 7(-) is the density of a N(0, 3) random variable.

LEMMA 2. Suppose ¢ is a well-behaved p.d.f. on R? and has bounded
support. Suppose A > 1. Given ¢ > 0, there exist integers k, m and M, such
that for any M = M,, for any counting measure u on Z¢/M supported by B,
with total mass m, '

(8.1) P,[ZM(By) <2m] <e
and
(3.2) P[ZY(B, _,) <2m] <e.

Proor. Let (S,, n > 0) denote the random walk with density ¢, as above.
By Lemma 1, there is a constant ¢ > 0 and a number %, such that for all
x € By, and k > kg,

(3.3) Plx + 8, €b;;] = ck™/2

For x € R? and measurable A c R? we have by conditioning on the
number of descendants at time % of an initial particle at x [or by Grannan and
Swindle (1991), Lemma 1], that

E.[Z,(A)] = X*P[x + S, € A].
By (3.3), there exists % such that for all x € B,
E.[Z,(b1)] = 3.
There exists M, such that for M > M, and x € By, N Z¢/M,
E[Z}(B,y)] = 3.

Also, by considering the underlying Galton-Walton process, E,[(ZM(R9)?] <
(A2 + V)* by induction on % [see Athreya and Ney (1972), page 4]. So

Var [ ZM(B,,)] < (2 + )",

Let  be any counting measure on Z¢/M supported by B, with total mass
m. Then by additivity of the branching random walk, E”[Z,ﬁ” (B;)] = 3m, and
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Var, [ZY(By,)] < m(A* + A)*. By Chebyshev’s inequality,
k
P[ZM(By) <2m] < (A2 + 1) /m
and (3.1) follows by taking m large. The proof of (3.2) is similar. O

Lemma 3. Suppose A > 1. Suppose ¢ is a well-behaved p.d. f. on R? with
bounded support. Given m > 0 and 8 > 0, there exists k, such that

Py[Zy(boo) = 2m] > w(A) — 8, k> k,.

Proor. Take R € (0, ®) such that ¢(x) = 0 outside {x: [lx|| < R} (here and
below, |||l denotes the Euclidean norm). Recall that under the probability
measure P, (Z,) is a BRW with Z, = §,, so (Z,(R?)) is a Galton-Watson
branching process with Poisson() offspring distribution. By Athreya and Ney
[(1972), page 9], if we set W, = A" "Z,(R?), then W, > W a.s. (P,), where W
is a random variable with P[W > 0] = y(A). Take 1 > 0 so P [W = 5] >
¢(A) — 8/2. Then for some n,

(3.4) Po[W, =7n/2] = ¢(A) —8/2, n=n,.
Note that under P, the measure Z, is concentrated on {||x|| < nR}. Also, for
any n, and any x with ||x|| < nR,

P.[Z,2(bgy) = 1] = ¢(A)P[x + 8,2 € by, ],

where (S,,) is random walk in R? with density ¢ as before. By Lemma 1 and a
compactness argument, there are constants ¢ > 0 and n; > n, such that for
n=ny,

(3.5) inf P[Z,2(by) = 1] = cn 7.

llxll<nR

Now if S=1, + -+ +I,, where I, are independent Binomial(1, p;) random
variables, and p; > p,, 1 <i <r, then Var(S) < r, and by Chebyshev’s in-
equality,

(3.6) P[S < 1p,/2] < 4/(rp3).

Setting p, = cn ™%, we see from (3.5), (3.6) and the additive property of the
BRW, that for any counting measure u on R? supported by {||lx|| < nR}, with
total mass exceeding max(4mc~1n?, 8¢~26 " 1n2?),

(3.7) P.p[Z,2(byy) < 2m] < 5/2.

Take n > ny so that A"n/2 > max(4dmc~'n?, 8¢ 26" 'n%?). Then by (3.4) and
3.7, ‘

Py[Z, ,,2(bgy) < 2m] < Py[W, < n/2]
+ Py[Z,(R?) = \*n/2 and Z,,, ,2(byy) < 2m]
<1-¢(A) +5.

Setting k£, = n + n? we obtain the desired result. O
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4. A percolation algorithm. For each M, choose an ordering on the
elements of Z¢/M. We shall use this prechosen ordering throughout the proofs
below.

We assume for now that ¢ has bounded support. Take R so that ¢(x) = 0
for |lx|| > R (remember, | - || is Euclidean norm). For x,y € R¢, write x ~ y if
0 <l|lx —yll < R. So for x € Z?/M, x ~y for only finitely many y € Z¢/M,
which prevents the following algorithm from staying at any particular x
forever. Let m, £ and %k, be fixed positive integers, to be chosen later.

Let A, be an arbitrary subset of Z?/M N By, \ {0}, such that |A,| = 2m
(here and below | - | denotes cardinality), and ¢(x) > 0, x € A, (such a set
exists for all large enough M). Let the graph G, and Z¢/M consist of all edges
of the form {0, x}, x € A.

We shall argue that the following random algorithm produces a random
graph G, on Z?/M which may be viewed as a subgraph of G. In this
algorithm, the words ““first” and “next” always refer to the prechosen order-
ing on Z¢/M. The algorithm could lie on a probability space which generates
an infinite sequence of independent random variables which are uniformly
distributed on [0, 1].

The algorithm will involve the construction of a set of occupied sites of 2,
the other sites being said to be vacant. It will also construct a set of open
bonds (directed edges) of the directed graph ., the other bonds being said to
be closed. Initially set the site (0,0) of -# to be occupied, set all other sites
(i, j) of £ to be vacant, and set all bonds e;;, of . to be closed. The
algorithm also constructs sets D, ,, denoting the set of vertices which are
added to the cluster at the nth generation of a part of G, starting inside the
hypercube B, ) ;)

ALGORITHM 1.
Step 1. Let G, be the graph G. Set p = 1.
SteP 2. Set i = i(p), j =j(p).

Step 3. 1If the site (i, j) of . is occupied, go to Step 4. Otherwise go to
Step 16.

Step 4. If p is odd (resp., even), let the set A, consist of the first m (resp.,
the last m) elements of A;; (according to the prechosen ordering on Z¢/M).

Step 5. Set D, ,=A,. Let D, , be the empty set, for all » > 0. Set n = 0.

STEP 6. Con51der the ﬁrst site x (according to the prechosen ordering on
Z%/M)in D

STEP 7. Set h = 0. Consider the first site y with y ~x, y # 0, y € D, ,,
O<n<n,ye¢D,,,1<qg<p-1,0<r<k.

q,r?
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Step 8. With probability 1 — exp{—A¢(x — y)/v(M)}, add {x, y} to the set
of edges of G,; and in this case, increase & by 1, and if y & D, .1, add y to
the set D, ..

Step 9. If h =k, (ie., the k£ ;th new edge from x has just been added), go
to Step 11.

Step 10. Consider the next site y with y ~x, y # 0, and with y not in
D, ,0<n <n,orin D,,,1<q<p—1,0<r <k (f there is such a site
¥), and return to Step 8. If there is no such y, go on to Step 11.

STEP 11. Go on to the next site x in D, , (if there is one), and return to
Step 7. If D, , has been exhausted, go to Step 12.

Step 12. Increase n by 1.
Step 13. If n <k — 1, go to Step 6. If n =k, go to Step 14.

SteP 14. Suppose p is even. Suppose that ID, , N B,y j+1l = 2m. Then
change the status of the bond e, =¢; j+ of Z to “open,” and change the
status of the site (i + 1, j + 1) of .# to “occupied.” Also in this case, define
the set A;,, ;. to consist of the first 2m elements of D, , N B i1

StEP 15. Suppose p is odd. Suppose that ID, N B,y j—1l = 2m. Then
change the status of the bond e, =e;;_ of . to “open”; also in this case, if
(@ +1,j — 1) is vacant (which implies A,,, ; ; has not yet been defined),
change its status to “occupied” and define the set A,,; ;_; to consist of the
first 2m elements of D, , N B, ;_;.

SteP 16. Increase p by 1, and go to Step 2.

The main point about Algorithm 1 is that the randomness occurs only at
Step 8. The remaining steps are just rules for choosing which edge of 7¢/M to
look at next. Under these rules, each edge is examined either once or not at all.
Let G’ be a random graph on Z?/M in which (i) all edges of G, are included
in G'; (ii) all edges of the form {0, x} not in G, are not included in G’; and
(iii) all edges of the form {x,y}, x # 0, y # 0, are independently included as
edges of G’ with probability gq,(x,y), where we set gqp(x,y)=1-—
exp{ —Ap(x —y)/v(M)}. Then G, may be viewed as a subgraph of G’ (at
Step 8, add edge {x,y} to G, iff it is an edge of G’). Since g, (x,y) <
. Ae(x — y)/v(M), a coupling argument makes G, a subgraph of a graph, also
denoted G’, in which (i) and (ii) hold, and (iv) all edges of the form {x, y},
x# 0, y# 0, are independently included in G’ with probability A¢(x —
¥)/v(M).
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5. A modified branching random walk algorithm. At this point our
notation threatens to become overloaded with subscripts so we rewrite the
BRW ZM as ZM(n). On a probability space (Q, &, P), for each x € 7¢/M let
(ZM(n),n =0,1,2,..., k) be a realization of Z(-) with ZM(0) = §,, running’
independently of all ZM( *), y # x, for exactly %2 time units. The following
random algorithm for 1nduct1vely producing random graphs G,, p > 1, and G,
on Z%/M can lie over the probability space (0, %, P). We shall show that the
graph G. constructed by this algorithm has the same distribution as the graph
G,, constructed by Algorithm 1.

Again, as in Algorithm 1, all use of the words ‘““first”” and ‘“next’ refers to
the prescribed ordering on Z? /M. Again, initially set the site (0, 0) of .# to be
occupied, set all other sites (Z, j) of .# to be vacant, and set all bonds (edges)
of .2 to be closed. Let A, be as in the previous section.

ALGORITHM 2.
Step 1. Set p = 1.
Step 2. Set i = i(p) and j = j(p).

Step 3. If the site (i, ) of Z is vacant, go to Step 9. If site (i, j) is
occupied, go on to Step 4.

SteEP 4. If p is odd (resp., even), let the set A, consist of the first m (resp.,
the last m) elements of A;; (according to the prechosen ordering on Z%/M).

SteEP 5. Let (X (n), n = , k) be a BRW on Z?/M, starting with the
measure X, (0) =X, . 4,9x at tlme n = 0, with a Poisson(A) distribution of
offspring and the p0s1t10n of each offspring of a particle at x chosen from
(2% /M) \ {x} according to the probability mass function ¢(- — x)/v(M), inde-
pendently of other offspring, running for exactly %2 generations subject to the
following modifications:

(i) If at the generation n, 1 <n < k, a point x is visited simultaneously
from more than one place, make the particles visiting x at that time coalesce.
Similarly, if two or more particles are born at x from the same parent, let
them coalesce.

(ii) If an nth generation particle (1 < n < k) has offspring in more than &,
positions, remove all but those in the first %2, of these positions (using the
prechosen ordering on sites of Z%/M) (along with their subsequent offspring).

(iii) If an nth generation particle (0 < n < k) at x has an offspring at a site

"y which was already visited at an earlier generation r, 0 <r < n, or for an
earlier value of p, remove that offspring (i.e., the new particle at y), and all its
subsequent offspring.
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Step 6. Let G, be the graph traced out by the edges of the modified BRW
X,,. That is, include {x, y} as an edge of G, if and only if for some generation ,
0 < n <k, there is a particle of X (n) at an endpoint of {x, y}, which has an
offspring at the other endpoint at time n + 1, which is not removed in the
course of the modifications (ii) and (iii).

Step 7. Suppose p is even. Suppose X, (kX B, ;1) = 2m; that is, sup-
pose X, (k) places 2m or more particles in B,,; ;,;. Then change the status
of the bond e, =¢;;, of .2 to “open,” and change the status of the site
(@ + 1,7+ Dof £ to “occupied.” Also define A, ;, by setting A,,; ;,, to
consist of the sites of the first 2m of these particles (in the prechosen ordering
on Z%¢/M).

Step 8. Suppose p is odd. Suppose X, (k)X B,,; ;_;) = 2m. Then change
the status of the bond e, =e;;_ of .2 to “open”’; also, if (i +1,j— 1) is
vacant (which implies A;,; ;_; has not yet been defined), change its status
to “occupied” and define A,,; ; ; to consist of the first 2m sites of

X, (kX By, ;-1
STEP 9. Increase p by 1, and return to Step 2.

Now let G, be the union of the graphs G,, p > 0. By the construction, G is
connected and if infinitely many e, are open, then G is infinite.

By a theorem on the compound Poisson distribution [see e.g., Feller (1968),
pages 291-292 or Bowers, Gerber, Hickman, Jones and Nesbitt (1986), page
330], in the BRW Z(.), for any distinct x and y, a particle at x has a
Poisson(A¢(y — x)/v(M)) number of offspring at y, so it has at least one
offspring at y with probability q,(x,y) =1 — e 03/ Algo given a
particle at x, the number of offspring at different positions y are independent.
It follows that the construction of G, by Algorithm 2 is equivalent to that of
G, by Algorithm 1, in the sense that the distribution of G is the same as that
of G,.

6. Comparison of modified and unmodified BRW. Recall that on our
probability space (Q, &, P), (ZM(n), n =0,1,2,...,k) (x € Z?/M) are inde-
pendent BRW’s with Z¥(0) = §_, running for exactly %2 time units. Algorithm
2 can be performed on this probablhty space, with the coalescing BRW X ()
being constructed from the BRW’s ZM(-), x € A_, in a natural way. leen a
reahzatlon of the BRW’s ZM(-), x € Zd/M deﬁne the events E,,, 1 <1 <5,

=1,2,3,... by adding the following steps to Algorithm 2:

(a) Just after Step 2 in Algorithm 2, let us say the event E,; occurs if the
+ site (i, j) = (i(p), j(p)) of £ is vacant at this stage of the algorlthm

"~ +(b) Suppose E,; does not occur. Then A, is defined in Step 4, and |4 | =
Consider the BRW’s (ZM(n), 0 <n <k) for x € A,. If p is odd (resp even)
let E,, be the event that E,,; does not occur, and that the total mass assigned
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at time % by these BRW’s to B, 1 jipy—1 (t€SDP., B;pys1, jp)+1) I8 less than
2m; that is, E,, is the event
E,,=E;nN { Z}A ZY(k)(Bipys1, jpy-1) < Zm} (p odd),
xe P

E,=E; N { Z;l Ziu(k)(Bi(p)+1,j(p)+1) < Zm} (p even).
xE

(c) Let us say the event E,; occurs if E,; does not, and for any x € A, a
any stage n, with 0 <n <k — 1, of the evolution of Z¥(-), any of the
particles created at time n produces more than %, oﬁ'sprmg

(d) Define E,, to be the event that E,, and E,; do not occur, and that
there exists y € Zd /M such that y is V1s1ted by more than one of the BRW’s
(Z¥(n)k_o, x € A, or it is visited more than once by one of these BRW’s.

(e) Define E 5 to be the event that E,; and E,; do not occur, and that
there exists y which is assigned a mass of at least 2 at some time by one of the
BRW’s (ZY(n))%_,, x € A,. Thus,

k
E VE,;=E;NE;N U { Y X ZY¥(m)({y) >1}}-
yez?/M \x€A, n=0

(f) Define E ¢ to be the event that E,; and E,; do not occur, and that for
some q,0 < q < p, one of the BRWs ZM ( ) x € A , visits one of the end-points
of one of the edges of the graph G, at some tlme n,l<nc<k.

(g) Define E to be the (good) event that none of the (bad) events E,,
occurs; that is, E = (U7 E )" If E occurs, then at the kth step, the
coalescing BRW X (k) places 2m or more partlcles inB,,, ;. (resp., B; .1 ;_1)
if p is even (resp odd); in this case, Step 7 (resp., Step 8) of Algorithm 2
applies, and the edge e, of .#” becomes open and the site at its end becomes (or
remains) occupied.

7. Proof of Theorem 1 when ¢ has bounded support. Let A > 1 be
fixed. We must show that for M large, A (M) < A.

Take £ > 0 to be so small that for oriented percolation on .2, with each
bond e, of 2 independently open with probability 1 — 5¢, there is (with
nonzero probablhty) an infinite path from 0 of open bonds of .# [see Durrett
(1984)]. We shall show that by suitably large fixed m, & and %k, for large M
the graph G’ generated by Algorithm 2 is infinite with nonzero probability;
this implies that the probability G is infinite, conditional on all bonds (edges)
in G, being open, is nonzero. Finally the event that all bonds in G, are open
has nonzero probability.

Let 3, be the o-field generated by the outcome of the BRW’s ZM(.),
x € (/M) (U,.,,B,). Noté that E,; € 3. Given any outcome B € 3,
of these BRWs, such that E,; does not occur we shall show that P[E |B] >
1 — 5¢. This implies that the probablhty that bond e, is closed, given that the
site at the start of e, is occupied, is at most 5e.
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First, note that by Lemma 2, for suitable £ and m (which will be fixed for
the remainder of the proof),

(7.1) P[E,,B] <.

If N ~ Poisson(A), then there is a constant ¢ depending only on A, such
that for all integers &, > 21, P[N > k,] < c¢(1/2)*'. Hence by induction from
n = 1 to k, the probability that there exists a particle before the £th genera-
tion of a Galton—-Watson process [with a Poisson(A) offspring distribution,
starting from a single particle], having more than %, offspring, is at most
c(1+ky + -+ +k¥1)(1/2)*. Hence,

kY -1
(7.2) P[E,,IB] Smc(kl — 1)(5) <e

provided we take k; large enough (from now on %; will be fixed; assume
k= 2). ,

Before estimating P[Ep4|B], let us consider a single particle at x, with a
Poisson(A) number of offspring each distributed according to the probability
mass function ¢(-— x)/v(M). That is, we consider ZM(1). For y # x,
ZM(1)({y})) is a Poisson(Ae(y — x)/v(M)) random variable. Hence, setting
K = sup{e(x): x € RY},

(7.3) P[ZM(1)({y}) 2 1] =1 — e 2e0=/v0D < QK /y(M)

and for M sufficiently large so that e*X/*?) < 2 by Taylor’s theorem
P[ZX(1)((3)) > 2]

(7.4) = e—Mp(y—x)/v(M)[eAcp(y—x)/v(M) —1—Ap(y - x)/v(M)]

< (AK/v(M))>.

We can now estimate P(E 4B). Recall that occurrence of the event E
implies E 5 does not occur. Let F, . be the event that for x € A, and n < r
no partlcle in generation n of the BRW ZM(-) has more than %, offspring. For
1<r<k,if F,,_, occurs, then

r—1
(7.5) Y L ZM(n)(RY) <m(L+ky + k3 + - +E]TY) < mk]
x€A, n=0
(since k, > 2); that is, the total number of sites visited by the BRWs ZM(-),
x € A,, at generations before the rth, is at most mk{. Also, if F, ,_, occurs,
(7.6) Y ZM(r-1)(RY) < mkr L
x€A,
Hence by (7.3), given F, ,_; occurs, the probability that there exists x € 4,
and a particle of ZM(r — 1) which has an offspring at a site already visited at
some time before r by ZY(-) for some y € A, is at most m?k;"~ (A K /v(M)).

Let v,(M) denote the number of sites x & 74 /M with IleI <R (recall, R
exceeds the range of ¢). Given F, ,_; occurs, the probability that there exists
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a site y, and distinct sites x; and x,, such that one of the BRW’s ZY(-),
x € A,, visits y from x; at time r, and another (possibly the same) BRW
ZM(), x' € A, visits y from ix,, also at time r, is, by (7.6) and (7.3), at most

(mk;™ Y vy (M)(AK/v(M))?

[since the number of (x,, x,) is at most (mk]~1)? by (7.6), and for each (x, x,)

the number of y with ||y — x,/l < R and |y — x,/l < R is at most v,(M)].
Combining the estimates in the last two paragraphs and summing from

r =1 to r = k, we have for large enough M that '

(7.7) P[E, B] < m?k#~Y(AK/v(M) + XK?v,(M)/(v(M))’) <e

The estimate of P(E ;|B) is similar. Conditional on F, ,_,, the probability
that for some x € A, some particle in the (» — 1)th generatlon of ZM(-) has
two or more oﬁ'sprlng in the same place, is by (7.4) at most
mkI= WK 20 (M)/(v(M))?, for M large. Summing from r =1 to r =k, we
obtain for large M that

(7.8) P[EB] < mEk*2K 20, (M) /(v(M))? <e.

Finally, we wish to estimate P[E,qB]. Suppose ¢ < p. By the construction
of the graph G, in Algorithm 2, the number of endpoints of edges of G, is at
most mk¥*1, Also all these points lie within a Euclidean distance at most kR
from A, and hence from Bl( o, (g (since the points of G, are traced by a BRW
starting from A, and running for only £ steps, with each offspring distant at
most R from 1ts parent) Similarly, all points visited by (X (n)%_,, x € A,
are distant at most kR from A,. It follows that the BRW’s (X (n))}_,

x € A, cannot visit any end pomts of G, unless

I(i(q),(q),0,...,0) = (i(p),j(p),0,...,0)ll < 2kR + 2,

in which case we shall say edge ¢ is feasible. The number of feasible q is at
most 2m(2kR + 3)2.
For feasible g, for 1 <n <k, given that F, ,_, occurs there are at most
mk? ™! descendants in the (n — 1)th generation of the parent particles at the
sites of A, and the probability that one of these has offspring at an end point
of an edge of G, is at most (mk}~(mk}*HAK /v(M) by (7.3). Summing over
n and over feas1ble q, we have (for large enough M) that

(7.9) P[E,¢B| < 2m(2kR + 3)*m?k3**']AK /u(M) <.
By (7.1), (7.2), (7.7), (7.8) and (7.9) we obtain P[E |B] < 1 — 5z. So
P[E ES | =1 - 5e.

’ That is, for M large, given that there is a path of open bonds of .~ to the
starting point of edge e,, the probability E occurs exceeds 1 — 5¢. By the
choice of ¢, the probability that G, is 1nﬁn1te is then nonzero. O
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8. Proof of Theorem 2 when ¢ has bounded support. Assume A > 1
(otherwise the result is trivial). Let 6 > 0. Take ¢ > 0 so small that (i) 5¢ < §,
and (ii) for oriented percolation on .# with parameter 1 — 5¢, with probability
exceeding 1 — § there is an infinite path from 0 of open bonds. This is possible;
see Durrett [(1984), page 1026].

Using Lemma 2, choose m and % so that for large M, (3.1) and (3.2) hold.
Using Lemma 3, choose % so that for large enough M,

(8.1) Po[Z}(bgo) = 2m]| > ¥(A) — 5.

Set k, = max(k, k). Let &, be as in the proof of Theorem 1, but now make
sure k, is so big that mck¥2(1,/2)*1 < ¢, where c is as in (7.2). Using the same
prechosen ordering on Z?/M as before, let G, be the graph traced out by a
BRW XX(-), with X2 (0) = §,, running for time k,, subject to the same
modification as in Algorithm 2.

If at time k,, X/(B,,) = 2m, define A, to consist of the first 2m atoms of
XM (B,,), set the site (0, 0) of £ to be occupied, and proceed with Algorithm 2.
Otherwise, stop.

By (8.1), together with estimates from the proof of Theorem 1, for M large,

P[(0,0) is occupied] = (1) — & — 5e = ¢(A) — 28
and
P[ G, is finite|(0, 0) is occupied| < &

by the choice of £ at the start of this proof. As before, a coupling argument
then yields that for large M,

P[C(0) is infinite] > P[G, is infinite] > y(A) — 38,
so by making 6 — 0, we have
(8.2) ligln inf P[C(0) is infinite] > ¢(A).

Conversely, by a branching process argument, P[C(0) is infinite] < i,,(1),
where ¢,,(1) denotes the Galton—-Watson survival probability when the off-
spring distribution is that of the random variable L, c 7¢ 3\ (0).» Where I, are
independently Binomial(1, A¢(x)/v(M)). Since ¢, (1) = (1) as M — « [see
Feller (1968), page 282], we have

(8.3) lim sup P[C(0) is infinite] < ¢(A)
M-w

and the proof is complete. O

9. Proofs of Theorems 1 and 2 when ¢ has unbounded support. It
suffices to prove Theorem 2 for A > 1. For R > 0, set ¢gp(x) = ¢(x) if 0 <
lx|l < R, @gr(x) =0 otherwise. Set Jp = [repr(x)dx and set vp(M) =
L, cz¢,mPr(x). Also, set ¢'(x) = pg(x)/Jg, so ¢ is a well-behaved p.d.f. of
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bounded support. The percolation process by which G is constructed is speci-
fied by the function ¢ and the parameters A and M. Write P, , m for
probability for particular values of these parameters.

Since for all x we have

(Avr(M) /v(M))(er(x) /vp(M)) < Ae(x)/v(M),
we have by a coupling argument that for all M,
(9-1) P, (opary/oary, ml C(0) is infinite] < P, , ,,[C(0) is infinite] .

Since ¢ is assumed to be well behaved, vg(M)/v(M) - J; as M — . Also,
the Galton-Watson survival probability ¢(A) is continuous and monotone in
A. Hence, by the fact that Theorem 2 holds for ¢', the left-hand side of (9.1)
converges to y(AJy) as M — «. Hence,

linrln inf P, , 4[C(0) is infinite] > ¢(AJR).

Making R — « and again utilizing the conﬁnuity of ¢, we obtain (8.2). On the
other hand, the proof of (8.3) in the last section is still valid when ¢ has
unbounded support. O

10. Discussion: Site percolation and high dimensions. Let us now
consider site percolation on Z¢/M. Set ¢ to be the indicator function of the
ball of unit volume centered at 0. Let elements of Z¢/M (‘“‘sites’’) be indepen-
dently occupied with probability A /v(M), and let G(site) be the graph on the
set of occupied sites obtained by including as edges all {x, y} with x, y occupied
and ¢(x —y) = 1. Let A_(site) be the critical A above which G(site) has an
infinite component. Then one can show

lim A _(site) > 1.
lim 2 (site)

The limit is not 1 this time because the site model does not have mean field
behavior in the limit. Instead, it converges to the ‘‘Poisson blob model” [see
Grimmett (1989)] and A (site) M ¢ /v(M) (the critical density of occupied sites)
converges to the (unknown) critical Poisson density for that model; that is, to
pL¢) in the notation of Section 2. In terms of the site percolation analog of
Algorithm 1, Steps 7-10, when we consider a sequence of sites y with y ~ x
(for a given x already determined to be occupied), there is a nonvanishing
proportion of the y’s whose occupancy status has already been determined
(this did not happen for bonds).

On the other hand, our methods can be adapted to rederive the result of
Kesten (1990) that A (site) — 1 for nearest neighbor site percolation in Z¢ as
d — ». Here is a sketch of how to do this. Let L: Z¢ — 72 denote the linear
map

[d/2] d .
L(z®P, 23, . ,zD)y=| ¥ 20 Yy 20,
i=1 i=[d/2]+1

The place of the set B;; should be taken by L~Y(i, j)}. Using a lattice version
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of the local limit theorem, we can derive an analog to Lemma 1. Given &k, m
and k,, an estimate like that on E,s in Section 7 can be made because the
image under L of a random walk of at most % steps on Z¢ is a random walk of
at most k steps on Z2; hence as before, only finitely many q are feasible.

In the equivalent to Steps 7-10 of Algorithm 1, if x is a site which has just
been determined to be occupied, then one should consider only sites y which
differ from x in the jth coordinate, j being such that x has the same jth
coordinate as every site previously determined to be occupied during stage p
or during any stage ¢ with ¢ < p, ¢ feasible. This ensures that site y cannot
have already been considered; also, the number of coordinates j prohibited by
this rule is at most ¢, where c is a constant depending only on %, m and k;. So
for large d, one considers a proportion close to 1 of the sites neighboring x.

11. A coupling of continuum and discrete models. We now turn to
the continuum model. One method [used in Penrose (1991)] to set up the
random graph G on &, in the continuum model is to place the Poisson
process & and independent uniform [0, 1] random variables U, ,, x,y € R?, on
a single probability space, then include as edges of G those {X, Y}, X,Y € &,
for which Uy, < f(X - Y).

For x € R? write z,,(x) for the site of Z¢/M which is closest (in terms of
Euclidean distance) to x. The function z,, is well defined except on a set of
measure 0. Given a realization of the rate p Poisson process & and the
independent U[0, 1] random variables U,,, x,y € R<, let us couple the contin-
uum percolation process to a mixed site-bond percolation process on Z¢/M as
follows.

Let us say a site z € Z%/M is occupied if there is exactly one point X € &,
with z = z,,(X). Let the random set of occupied sites in Z¢/M be denoted Oc.
Let us say the edge {z, y} of Z?/M is open if and only if (i) the sites z and y
are in Oc, and (ii) the particles, Z and Y say, of &, for which Z € C, and
Y € C,, satisfy Uy y < fy (2 — y), where we set

(11.1) fy (&) = inf{f(u —v): { =2y (), 0 = 2z44(v)}, (€Z¢/M

[and we define ¢,,({), { € Z%/M similarly]. Let H denote the random graph
on Oc with edges given by the open bonds.

Thus the site at 0 of Z¢/M is occupied with probability exp{—pM~?}. With
probability 1, 0 is occupied for sufficiently large M. All other sites of Z¢/M are
independently occupied with probability pM~? exp{—pM 9}, and the edge
between occupied sites z and y of Z¢/M is open, independently of other pairs
of sites, with probability f;,(z — y).

The random graph H on the random set Oc is a reallzatlon of the following
mixed Bernoulli site-bond percolation model on Z?/M: (i) The site 0 of Z¢/M
is occupied with probability exp(—pM ~?); other sites are occupied with proba-
bility p M ~¢ exp(—pM ~2); (ii) for distinct sites z and y, the bond (edge) {z, y} is
open with probability f,,(z — y); otherwise the bond {z, y} is closed; (iii) all
sites and bonds are mutually independent; and (iv) having performed (i)-(iii),
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we remove all open bonds except those joining two occupied sites, and the
remaining open bonds form the edges of H.

12. Proof of Theorem 3. Let us say a point X of & is kth-generation if
it is in C(0) and the shortest path (in terms of number of edges) along edges of
G from 0 to X has k steps (ie., % edges). Let N, denote the number of
kth-generation points in &2.

In the coupled site-bond percolation process, let us say a site z in Oc is
kth-generation if there is a path along open bonds and occupied sites from 0 to
2, and the shortest such path has % steps (i.e., # open bonds). Let NM denote
the number of kth-generation sites in Z¢/M.

LemMma 4. Suppose f is continuous. Then for each positive integer k,

NM > N, almost surely as M — .

Proor. Consider the case k£ = 1. For each X € &, if {0, X} € G then
Uyx < f(X), so that for sufficiently large M, U,y < fi,(z23,(X)). Also, with
probability 1, for sufficiently large M there is no Y € & distinct from X with
2y (Y) = z,,(X) or z,,(Y) = 0. In short, for large M, for every edge from 0 in
G there is a corresponding edge from 0 in H.

Conversely, if {0, 2} is an edge of H, then there is some X € & with
z =2z,(X) and U,y < f1,(2) < f(X), so that {0, X} is an edge of G,. Hence,
for large enough M there is a natural one-to-one correspondence between
edges from 0 in G, and edges from 0 in H. This implies that with probability
1, NM = N, for large enough M.

For a given positive integer j, let a sequence of j edges of G (resp., H)
forming a path from 0 to some vertex x and not containing any loops, be
denoted a j-path in G (resp., a j-path in H). By a similar argument to the
above, with probability 1 we have that for large M there is a natural
one-to-one correspondence between j-paths in G and j-paths in H.

For each integer k, the number N, (resp., N}) is determined by the set of
J-paths in G (resp., the set of j-paths in H), 1 <j < k. So the remark in the
previous paragraph implies that with probability 1, N¥ = N, for large M. O

Proor or THEOREM 3. First suppose [ is continuous. Then by dominated
convergence,

(121)  pM¢ ¥ fu(z)op[f(x)dx =) as M.
ze(Z%/MMN\{0}

Let %k be a positive integer. Conditional on the value of N ,, the value of
NM is stochastically dominated by the sum of N | independent random vari-
ables, each distributed as X, .4,y (f,» Where I, are independently
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Binomial(1, f,,(2)pM~? exp(—pM~%)). Setting A,, to be the left-hand side of
(12.1), we have

E[NMINM,] <2y NM,,
0
E[NM] < X,

By Fatou’s lemma, E(N,) < A*, which implies (i) of Theorem 3.
By the above stochastic domination, we obtain

P[NM>0] <P[E}¥ > 0],

where B, k =0,1,2,..., is a Galton-Watson branching process with off-
spring distribution that of T, ,a 4L, and with B} = 1. As M — « the
distribution of =, ¢ 74 ,37y\ (0,1, converges to a Poisson(2) distribution; hence by
Lemma 4,

P[N, > 0] < P[E, > 0],

where (E,) is a Galton-Watson process with Poisson(\) offspring distribution.
Now let £ —  to obtain (ii) of Theorem 3.

Finally, we may drop the assumption that f is continuous, since the fact
that f is bounded and Riemann integrable implies that for £ > 0 there exists a
co;mtinuous function g on R? with [Rag(x)dx < [Ref(x)dx + &, and g > f on
Re. O

13. A site-bond percolation algorithm. We now turn to the proof of
Theorem 4. Assume for now that ¢ € Cy(R%) (continuous with bounded
support). Take R so ¢(x) = 0 if |lx|| > B — 1. By Theorem 3, for all p we have
Ap) > 1. From now on, A is fixed with A > 1. The next few sections are
devoted to showing that for large p, P,[#(C(0)) = =] > 0.

Choose X € (1,). Choose a function (M,, p > 0) in such a way that
pMp’d — 0 and psz_d — o as p —» . From now on, we shall drop the
subscript and write M for M, Note we shall now be making p and M
approach « in a linked manner, whereas in the last section we made M — «
with p fixed.

Let the graph H on Oc be as constructed in Section 11; that is, H is a
realization of a site-bond percolation process which is coupled to G. By the
construction of H, we have that if 0 € Oc, and the component of H including
the site at 0 is infinite, then so is C(0) in the continuum model.

As in the proof of Theorem 1, choose an ordering on Z¢/M. Let A, be an
arbitrary subset of (Z¢/M) N B,, with |A,| = 2m. The following random
algorithm generates a set of occupied sites, denoted S, and a set of vacant
sites, denoted V, in Z¢/M. It also generates a set of open bonds between sites
‘of Z¢ /M. At any stage of the algorithm, any site which is neither in S nor in V
has its status as yet undetermined.

As before, the algorithm also generates occupied and vacant sites on ., and
open and closed bonds on 7. Initially, set the site (0, 0) of . to be occupied,
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other sites to be vacant and all bonds of .# to be closed. Define the number
V(M) by vo(M) = X, c 24,10\ 0y9u(2), With ¢, defined as in (11.1).

ALGORITHM 3.

STEP 1. Set p = 1. Set S = {0} U Ay. Set all bonds {0, x}, x € Ay, to be
open.

SteP 2. Set i = i(p), j =j(p).

SteP 3. If the site (i, j) of . is occupied, go to Step 4. Otherwise, go to
Step 11.

Step 4. If p is odd (resp., even), let the set A, consist of the first m (resp.,
the last m) elements of A;;. Set D, ,=A,. Set D, , to be the empty set,
l<r<k.Setn=0.

SteP 5. Consider the first site x in D, ,,.

STEP 6. Let N(x) ~ Poisson(XM¢/p). Let x have N(x) “potential open
bonds” (POB’s) attached to it, each independently placed in (Z¢/M)\ {x}
according to the probability mass function ¢,,(- — x)/vy(M). If two or more
POB’s are on the same edge, remove them both. If any POB goes to a site
already in S, remove that POB. If there are more than 2AM?/p POB’s
remaining, remove all but the first [2AM¢9/p] of them. Take the remaining
POB’s to be actually open.

Then look at each site y at the end of an open bond from x, such that
y & V. Make y a ‘“potentially occupied site” (POS) with probability
pM~? exp(—pM~?); otherwise place y in V. If at most %, sites y are made
POS’s in this way, add them all to S and to D, ,,, ;; otherwise add the first &,
of the POS’s to S and to D, . ;.

Step 7. Consider the next x in D, , (if there is such an x), and return to

Step 6. If there is no next x in D, ,, go to Step 8.

Step 8. If n <k —1, increase n by 1 and go to Step 5. Otherwise,
increase n by 1 and go to Step 9.

StEP 9. Suppose p is even, and |D, , N B,,; ;.;| = 2m. Then change the
status of site (i + 1, j + 1) of - to “occupied” and that of bond e, of # to
“open,” and let A, ;. consist of the first 2m elements of D, , N B, ;..

Step 10. Suppose p is odd, and |D, , N B, ;_;| > 2m. Then change the
status of site (i + 1, j — 1) to “occupied” (if it was not already occupied) and
" that of bond e, to “open.” If A;,, ;_; has not yet been defined, let A, ;_;
consist of the first 2m elements of D, , N B, ;_;.

StEP 11. Increase p by 1, and return to Step 2.
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For a particular occupied x € Z?/M, and vacant y € Z?/M, let N,, denote
the number of POB’s from x assigned to the edge {x,y} at Step 6. By the
property of the compound Poisson distribution used before, N,, ~
Poisson(n,,(x, ¥)), where we set

(13.1) nu(%,5) = (XM?/p)op(y — x) /vy( M).

Also, N,, is independent of all N,,, z #y. We assumed ¢ € Co(R?); hence,
M=%, (M) > [p(x)dx = 1 as M — o [see (12.1)]. Since X < A we have for all
large enough M that for all x and y,

(13.2) P[N,, = 1] < Aoy(y — %) /p = fu(y — ).

That is, in Algorithm 3 the probability of including a given edge is no greater
than in the construction of H in Section 11. Also, the algorithm ensures that
no edge gets more than one chance to be made open, and no site gets more
than one chance to be placed in S.

Thus by similar reasoning to that in Section 4, the set S may be viewed as a
subset of the set Oc in the mixed site-bond percolation model described in
Section 11. Also, the set of open bonds on Z%/M joining occupied sites
produced by the algorithm may be regarded as a subset of the set of open
bonds in H.

So the probability that an infinite path from 0 of sites in S and open bonds
is produced by this algorithm is a lower bound for the probability that the
component of H including 0 in the site-bond percolation algorithm is infinite,
conditional on all sites in {0} U A,, being occupied, and all bonds of the form
{0, x}, x € A, being open. As before we shall show that the algorithm can
produce an infinite cluster with nonzero probability by comparison with a
BRW.

14. A two-stage BRW mechanism. Let x € Z?/M. Let
((Y(n),Z.(n),V,(n)),l <n <k)

be a two-stage branching random walk given by the rules below; here Z (-)
and V,(-) take values in .#, while Y,(-) takes values in the space of counting
measures on the set of edges between elements of Z¢/M. Roughly, if x € A »
at the nth generation, Y, (n) is the set of POB’s descended from x, Z,(n) is the
set of POS’s descended from x and V_(n) is the set of vacant sites descended
from x.

() Set Z,(0) = s,.

(ii) For 1 < n <k, create Y,(n) by making each atom of Z (n — 1), at y
.say, give birth to a Poisson(XM?/p) number of edges, each independently
distributed over the set of edges {y, z}, z # y, according to the probability
function assigning mass ¢, (z — y) /v, (M) to edge {y,z} [recall vy (M) =

Lza mnoy®uml
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(iii) If an atom at y of Z, (n — 1) creates an offspring edge of Y, (n) at {y, 2},
let the site z acquire an atom of Z (n) with probability pM~¢ exp(—pM~9),
and acquire an atom of V, (n) otherwise.

It should be clear that in this process, (Z, (n)) is simply a BRW on Z¢/M,
with a Poisson(X exp(—pM ~9)) offspring distribution, and offspring of a parti-
cle at y independently distributed over (Z¢/M) \ {y} according to the probabil-
ity mass function ¢,,(- — y) /vy(M).

On a probability space let (Y.(n), Z(n),V.(n)), 1 <n <k), x € Z%/M, be
independent two-stage branching random walks defined as above. On this
probability space construct a sequence of modified BRW’s (Y,(+), Z,(-), V;(-)),
p > 1, by the following algorithm. Specify A,,, and the initial status of sites
and bonds of .#, in the same way as in Algorithm 3. Also, initially set
Z()(O) = 50’ YI/(O) = erAooa(x,y)'

ALGORITHM 4.
Step 1. Set p = 1.
StEP 2. Set i = i(p) and j = j(p).

SteEP 3. If the site (i, j) of £ is vacant, go to Step 8. If site (i, j) is
occupied, go on to Step 4.

STEP 4. If p is odd (resp., even), let A, consist of the first (resp., the last)
m elements of A, ;.

Step 5. Let (Y,(n), Z,(n),V,(n), n=1,2,...,k) be the multistage
BRW on Z¢/M, obtained by aggregating the multistage BRW’s
(Y,(n), Z,(n),V(n));_, over x € A, [so Z,(0) = T, 4 0.], subject to the fol-
lowing modifications:

() If an nth generation particle of Z,(n), 0 < n <k, at y say, gives birth
to 2 or more (edge-valued) offspring in Y;(n + 1) on the edge {y, 2} for some z,
then remove these offspring from Y,(n + 1) (and remove all their descendants).
(ii) If an nth generation particle of Z (n), 0 <n <k, at y say, gives birth
to an offspring in Y,(n + 1) on the edge {y, z} for some site z which was
already determined to be occupied [i.e., z € Z/(n'), some 0 <n' <k,0<q <p
or z€ Z,(r),0 <r <n or z is the site of a descendant in Z (n + 1) of some
particle at y' € Z,(n) which came before y in our ordering on 7¢/M], then
remove the edge {y, z} from Y,(n + 1) and remove its subsequent offspring.
(iii) If a particle of Z,(n), 0 < n <k, has offspring of Y,(n + 1) on more
than 2A M¢/p bonds [after carrying out steps (i) and (ii)], remove all but those
on the first [2AM? /p] of these bonds (using the prechosen ordering on edges of

Z%/M) from Y,(n + 1) (and remove their subsequent offspring).
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(iv) If a particle of Z,(n), 0 <n <k, has offspring of Z,(n + 1) in more
than &, positions, remove all but those in the first %, of these positions (along
with their subsequent offspring).

(v) If a particle of Z,(n), 0 < n <k, at y say, gives birth to an offspring in
Z(n + 1) at 2, for some site z which was already determined to be vacant [i.e.,
zeV)(n),somel <n <k, 1<qg<porzeVyi(r),0<r<n orzis the site
of a descendant in V,(n + 1) of some particle at y’ € Z(n) which came before
y in our ordering on Z?/M], then remove that site z from Z (n + 1) and
remove its subsequent offspring.

STEP 6. Suppose that p is even, and that Z,(k) places 2m or more
particles in B,,; ;,;. Then change the status of the bond e, = ¢,;, of - to
“occupied,” and change the status of the site (i + 1, j + 1) of .£ to “open.”
Also define A, ,, ;,, to consist of the sites of first 2m of these particles (in the
prechosen ordering on Z¢/M).

STEP 7. Suppose that p is odd, and that Z,(k) places 2m or more particles
in B;,; ;_;. Then change the status of the bond e, = e;;_ of #" to “open”;
also, if (i +1,j — 1) is vacant (which implies A; ; ;_; has not yet been
defined), change its status to “‘occupied”” and define A, ;_; to consist of the
first 2m of these particles.

STEP 8. Increase p by 1, and return to Step 2.

After running this algorithm, let S be the set of all sites which were
included in Z(n) for some p > 0 and some n € {0,1,..., k}. On examination
we find that the set S of occupied sites and the set of open bonds [those in
Y,(n) for some p > 0 and some n, 1 < n < k] have the same joint distribution
as the set S and the set of open bonds generated by Algorithm 3.

15. Proofs of Theorems 4 and 5.

ProoF oF THEOREM 4. First assume ¢ € C(R%); take R so ¢(x) =0,
lxll > R — 1. Let ¢ > 0 be so small that for oriented Bernoulli percolation on
_Z with each bond open with probability 1 — 5¢, there is an infinite path from
0 with nonzero probability. Choose & and m so that under the hypothesis of
Lemma 2, with A replaced by X, (3.1) and (3.2) hold for large M. Recall N(x)
is the number of POB’s from x. For each occupied site x, Var[ N(x)] < 2AM¢ /p,
and by Chebyshev’s inequality, for large enough p,

(15.1) P[N(x) > 2AM%/p] < P[IN(x) — EN(x)| > AM?/p|
’ 'Sp/(/\Md)<e.

By the property of the compound Poisson distribution used earlier, the
number of POS’s attached to open bonds from x is dominated by a Poisson(2)
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random variable denoted N'(x). As argued earlier [see (7.2)], for suitably large
kl’

(15.2) P[N'(x) > ky| <e/(mk?).

For a particular y € Z¢/M, y & S, let N,, denote the number of POB’s
from x assigned to the edge {x,y}. Then N ~ Poisson(n,,(x, ¥)), ny(x,y)
being given by (13.1), and P[N,, = 1] </\goM(y —x)/p by (13.2). So the
probability that the bond {x, y} is made open and y is made a POS is at most
Aoy (y —x)/Md Also, the set of sites y with |ly — x|l <R and y already
vacant is contained in the set of sites of V/(r), for some ¢ <p, r <k and ¢
feasible in the sense that [[(i(q), j(g),0,0,...,0) — (i(p), j(p),0,0,...,0| <
2kR + 2. We have

X X V(n(RY

g<p r=<k
q feasible
Hence the probability of there being a POS from x at one of these sites is at
most 4mm(2kR + 8)%k¥*N\2K /p, where we set K = sup{p(x): x € R?} as
before.
For any fixed y, for p large enough, P[N,, > 2] < (AK/p)?, and so

< 2mm(2kR + 3)°kET1(2A M4 /p).

P U {N,, = 2}| < const. M¢/p* < &
y€ZNO0c, lly—xl<R

for p large (by the choice of the function M,).

By similar estimates to those in the proof of Theorem 1, for the chosen
values of m, k& and %, and for large enough p, at stage p of the algorithm the
probability that any of the mechanisms for removal of POS’s occurs is at most
5¢; also, if none of these mechanisms occurs, by Lemma 2 the probability that
edge e, is not made open is at most ¢. Hence, the probability of an infinite
cluster i is nonzero for large p. The case ¢ & Co(Rd) is considered below. O

Proor or THEOREM 5. By Theorem 3, P[#(C(0)) = ] = ¢(A), and for
@ € Cy(R?) the opposite inequality follows from a combination of the ideas of
the above section with those of the proof of Theorem 2; we omit the details.

Now suppose ¢ has unbounded support, but ¢ is Riemann integrable. Then
for & > 0 there exists ¢’ € Cy(R%) with ¢’ < ¢ everywhere and [¢’ > 1 — &. By
application of Theorem 5 to ¢’ we have that when p — » with A fixed,

lim inf P,[#(C(0)) = ] > ¢(A(1 — £)).

Since ¢ is arbitrary, the proof of Theorems 4 and 5 is now complete. [
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