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THE EULER EQUATION: A UNIFORM NONSTANDARD
CONSTRUCTION OF A GLOBAL FLOW, INVARIANT
MEASURES AND STATISTICAL SOLUTIONS

By MAREK CAPINSKI' AND NIGEL J. CUTLAND
University of Hull

We present a simple nonstandard construction of a global Euler flow
and some classes of measures invariant with respect to the flow, including
examples of non-Gaussian ones. We also obtain existence of statistical
solutions of the Euler equation for a wide class of initial measures.

1. Introduction. Albeverio and Cruzeiro [1] gave the first construction of
a global flow for the two-dimensional Euler equation on a torus, such that the
flow leaves a certain Gaussian measure u.,, invariant. Here we give a simplified
uniform approach to this question using nonstandard methods along the lines
of [6]. We construct a single set () carrying a single flow that has a whole
family of Gaussian and non-Gaussian invariant measures.

The idea is as follows. Take Q =*CX where K is a hyperfinite set. For
w € O elementary methods show that there is an internal (nonstandard)
solution U(r, w) to the *finite-dimensional Euler equation with U(0, ) = .
For almost all w (with respect to each member of a family of nonstandard
Gaussian measures v,) the standard part °U(r,w) = u(t,w), t = 7, gives an
individual solution to the standard Euler equation. Since each nonstandard
measure v, is invariant for the nonstandard flow (because of the invariance of
enstrophy), it easily follows that the corresponding standard measures w.
defined on appropriate standard Hilbert space are invariant for this flow.
Moreover, our flow has non-Gaussian invariant measures of the form

w=[n,da(y),

where q is any probability measure on R . Such measures arise in a natural
way when, in the nonstandard setting, we investigate evolving measures that
are represented by densities on *C¥. We also consider the corresponding
measures based on the invariance of energy.

Our framework also gives an easy construction of statistical solutions in the
sense of Foias [11] to the Euler equation with a broad class of initial measures,
in particular measures absolutely continuous with respect to any of the
invariant ones.
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EULER EQUATION FLOW: NONSTANDARD CONSTRUCTION 213

2. The Euler equation. We briefly review the setting of [1] with some
minor changes of notation. The Euler equations for v: [0,») X R? - R? are

dv
— +{(v,Vv+Vp=0
(1) o TR0

divev =0,
where ( -, - ) is the scalar product in R2. We consider x € T2 = [0, 27] X
[0, 27r] and impose periodic boundary conditions, which is equivalent to work-
ing on a two-dimensional torus. As is well known (see [2]), v is a solution of (1)
if and only if v = V* ¢ for a scalar function ¢ solving

9
(2) a_tA‘P =(V*ep,VAp),

where

d a
Vi |——,—].
( dxy  0x, )
Now take an orthonormal basis of L%(T?2) given by e,(x) = (1/2m7)e!®*> for

k € 72. The functions e, are the eigenfunctions of the operator —A with the
eigenvalues k2 = (k, k). The quest is for real solutions of (2) of the form

o(t,x) = L up(t)ey(x)
keZ?

with u,: [0,) — C. Since ¢(¢, x) + g(¢) is a solution for any function g, we
may assume that u(¢) = 0 for all ¢.
For ¢ to be real we must impose the condition: for all k,

(3) u_(t) =u(t).
Defining %2 > 0 to mean k; > 0, or 2, = 0 and %, > 0, we see that it is
sufficient to find a family of functions (u ,(¢)), . , such that (2) is satisfied by

e(t,x) = X up(t)eyx),
0+keZ?

where for £ > 0 we define u_,(¢) = u,(t). Substituting this in (2) gives the
following system of equations for the family (u ,(2)), . ,:

4 . du, B
(4 L By,
where
B.(u) = —Wl”%:k(hl ,mymiu,u,

and h, m range over Z%\ {0}.

REMARK. It is easy to check that if (u,(¢)), ., solves (4), then (u,(¢)), .,
completed by means of (3) solves (4) for all k. This shows that some notational
ambiguities in [1] do not in fact cause any problem.
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The idea now (as developed in [1] and [2]) is to regard (4) as an evolution
equation for the vector u(¢) = (u,(¢)), ., in certain Hilbert spaces. The appro-
priate family is H?, p € R, given by

H? = {(up) 5o lull, < =},

where [lull2 = L, ok?"lu,l’. The elements of H” can be identified with the
elements of the corresponding Sobolev spaces of functions defined on T2 In
particular, we have H® = L%(T?) and H2 = dom(A).

Recall that the Gaussian probablllty measures ., vy > 0, supported on H”
for p < 1 are given by

yk*

1
du(u) = kI:Io o exp( - Eyk“luklz) du}, du?,

where u, = u}, + iu?.
For future use we define here finite dimensional approximations A%} of B,.
Let K, ={k € 7% k>0, k*<n). For k€ K, and v € CX» we put
A% (v) = By (), |
where
. v,, ifk%2<n,
o, =
0, ifk%2>n.

We need the following elementary identities.

Lemma 2.1.

(a) Y kAL (w)T, =0
k2<n

(b) Y kA (u)@, = 0.
k2<n

Proor. We prove (a) only. The proof of (b) is similar:

—27 Y, RANw)u,= Y k> )Y, (m*,h)R*u,u,u,
k2<n k2<n  h+m=k
h2, m?<n

Z Y (m*,h)k*R2u,u, b,
m2<n k—h=m
k2, h2<n

- X Y G kORYU T, |u,
m2<n \ k+j=m
k2, ji<n
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(putting j = —h, so that u, = %; and
(m*,h)=<Xk*~=h* h)={k* h)=—(k",j)).
Now using {j,k*+ ) = —(k, j* ), we see that the matrix
a,; = <J,k*k%%u,u,

is antisymmetric, so the sum in the brackets is 0. O

REMARK. These identities show that the enstrophy S = Yk*|u,|> and the
energy E = Zkzlukl2 are invariant; on the other hand, as in [1] for example,
these identities can be seen as a consequence of the invariance of S and E.

3. Nonstandard preliminaries. We assume the basics of nonstandard
analysis and elementary Loeb theory (see, e.g., [3], [7], [8] or [12]). We denote
the Loeb measure obtained from an internal measure v by v;.

Fix an infinite integer N and let Q =*CX, where

K=Ky=({k€*7% k> 0,k%<N}.

This will be our basic nonstandard hyperfinite dimensional space used to
represent the family of spaces H”. We use U,V to range over ) and we put
U ||§ =Y,cxk? IUklz. The internal probabilities », corresponding to w. are
given by

4
dv,(U) = T1 & exp( - —l—yk4IUk|2) dU} dUZ,
ek 27 2
where U, = U} + iU? and dU}}, dU}? denote * Lebesgue measure.

We denote by °U = st U the standard part of U in the product topology;
that is, if U, is nearstandard for all 0 < k € 72, we then put °U = u where
u, ="U,. This standard part is consistent with that for the norms | - ||, as
follows:

LemMa 3.1. Let U € Q. Then U is || - ||,-nearstandard if and only if
I°UN, = U, <

and if this is the case then ° U is the || - || ,-standard bart of U.
. For each vy denote by P, the Loeb measure (v,);. Note that all the measures

P, are supported on the single space ().
The following is well known (see [3] or [9]).
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THEOREM 3.2. Letp < 1. Then P -almost all U are || - ||,-nearstandard and
p,(X) =P, ost™(X)
for X ¢ H”.

Proor. From [9], Theorem 3.3, we simply have to observe that
> ikzp < o
k>0 YR ’
which is the case for p < 1. O

4. Construction of the flow and invariant measures. An evolution
equation for U(7) € Q, which is a nonstandard counterpart of (4), is given by

du,

&) = AU(), ke, 7e%0,%),
where

AU) = —5=5 L (R, m)mPU,U, ="By(0),
mk h+m=Fk
k2, m?2<N

where U_, = U, for k < 0 and

~ U,, ifk®<N,
U B =
0, ifk*>N.
In fact A, = A}, bearing in mind the notation introduced in Section 2; we
drop N since it is fixed. It is not hard to check that we also have

Equation (5) is in fact the Galerkin approximation of (4) in hyperfinite
dimension N. The transfer of standard theory (cf. [1], Lemma 2.2.1) tells us
that:

LEMMA 4.1. For each w € Q) there is a unique internal solution U(t) to (5)
with U(0) = w.

Denote this solution by U(r, w). The aim now is to show that in an
appropriate sense °U(r, ») gives a flow which leaves each w, invariant. First
note that:

, LEMMA 4.2.  For each y > 0 the internal measure v, is invariant for the
internal flow U(r, w), that is, for internal Y € Q and 7 > 0,

v (Y) = Vy({w: U(r,w) €Y}).
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Proor. It is sufficient to show that the right-hand side is constant in time
since both sides agree for v = 0.

v,({o: U(r,0) €Y})

yk*
- {w: U(r, )eY)kl—e_'[KEexp(__'yk IUklz) dUk dUk
yk* 1 dU(r,w) |
N YkIe—IK—2—7T—eXp(——_—'yk4,Uk(—T w)lz) de dwl dw?.

The Jacobian |dU(r, w)/d w| is given by the formula
‘dU(’T w) (/. 5 BAk(U(O' w)) ) _1

keK

where by dg/dU, for complex g = g' + ig? we mean dg'/oU} + dg?/0U}2.
Next,

d yk* r o, .
- k]_e—[ngxp(—Eyk U, (7, w)l )
dU.(7, ) _ k* 1
=|—-Re ), ‘)’k4k(_T)‘Uk(T o) T1 —y-exp(——yk“IUk(T,w)F),
kEK dr rek 2T 2
which is 0 because
dU,(7,w) —
L ykt———Ty(r,0) = ¥ yk*A,(U(7,0))Ty(r, ) = 0

keK keK

by Lemma 2.1. O

The next (standard) lemma plays a crucial role in [1] and is also important
for the development here.

LemMA 4.3. Let (A}),2_, be the standard finite dimensional approxima-
tions to B defined in Section 2 and let y > 0. Then:

(@) forp <landk € 7%, A} - B, in L*(H?, u,) and there are constants
¢, such that
Cr

E,(IBy()") < 42

() forp < -1/2, B € L*(H?, u,).
Proor. See Lemma 1.3.2 of [1]. O

For our use we derive the following information from this lemma.
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LEMMA 4.4. Let y > 0 be noninfinitesimal.
(a) For all finite k > 0 we have
E, (IA,(U)*) <
and
A(U) =B,(U) <
for Pa.a. U €
(b) Forp < —1/2,
E,,y(”A(U)”,z;) < o,
where A(U) = (A, (U)),cx € Q.

Proor. (a) Fix finite £ > 0 and any p < 1. From Lemma 4.2(a) we have
(note that A, = AY)

B, ("By(u) - A4(w)))} = 0,

where A,(u) = A(ulg). Thus *B,(u) = A,(u) for a.a. u €*HP with respect
to (*u,);. Now Anderson’s Lusin theorem (see [3] or [7]) gives *B,(u) =
B,(u) < « for a.a. u [since B, € L*(H”, u,)]. So Ay(u) = B,(Cu) for a.a. u.
Here each side depends only on ulx € ; now the projection of *u, on Q is
precisely v, so (a) follows.

(b) Thisyis immediate from Lemma 4.2 (b). O

LemMA 4.5. Let y > 0 be noninfinitesimal and 0 < k < . For P -a.a. ,
A, (U(r,w)) is S integrable on [0,T] for finite T, and hence Uy(r,w) is S
continuous for T < o,

Proor. Fix finite T'; using invariance of v, we have
fOTE,,y(Ak(U(T, ©))’)dr =T -E, (Ay(w)?),

which is finite by Lemma 4.3. By Lindstrgm’s lemma [7], A,(U(r, w)) is S
integrable over *[0,T] X Q and so for a.a. w, A,(U(r, ®)) is S integrable on
*[0, T]. Now

Uy(0,0) = Uy(0,0) + [ Ay(U(r, ) dr,
0
which shows that U,(-, ) is S continuous as required. O

Let Q, € Q be the set for which U,(r, w) is S continuous for 7 <  for all
finite %. Note that (), does not depend in any way on y or p and it is a full set
" for each of the measures P,. ’
For w € Q define u (¢, w) for standard ¢ and % by

uy(t, ) ="Uy(r, ), T = t.
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Then u,(¢, ») is continuous in ¢ for all v € Q,. Now let us state our main
theorem concerning the flow (u (¢, ), ., thus constructed. Let a.a. @ abbre-
viate P -a.a. w.

THEOREM 4.6. Fix a standard y > 0.
(a) Forallt, u(t,w) € N, H? a.s. and for X c N, H?,
P({o:u(t,0) € X}) =u,(X) foralk,

50 ., is invariant for the flow u(¢, »). .
(b) Fora.a. w and all k:

(i) By(u(-,0)) € L2[0,T], aliT <,
(ii) uy(t,0) = uy(0,0) + [By(u(s,w))ds, .allt <
0
(¢) Fora.a. w:
(i) u(-,w) € L%(0,T; H?) forallT <x, p <1,
(ii) u(-, o) € C([0,0), H?) forp < —3
(in fact u(-, ») is Holder continuous with exponent a for any a < 1/2).

Proor. (a) From Theorem 3.2 and Lemma 4.2 for all 7, U(r,w) is || - ||,
nearstandard for a.a. w. Moreover,

P({o: u(t,w) € X}) = P,({0: U(t, 0) € st™1(X)})
=P(st7'(X)) (byLemma4.2)
=u,(X) (by Theorem 3.2).

(b) (i) We have
Ep ["1Bu(u() dt = [Ep B, (u(t))* dt
0 0

=T EPlek(u)|2
< o

by Lemma 4.3, and the result follows by Fubini’s theorem.
(ii) Let T < ». From Lemmas.4.2 and 4.4, forall 7 < T,

‘A (U(7,0)) =B,(CU(1,0)) = B,(u("7,0)) aa. w.
Then by Fubini’s theorem, for a.a. w this also holds for a.a. 7 €[0,T].
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Combining this with Lemma 4.5 we have for a.a. w and ¢ < «,
uk(t, (1)) = OUk(t, w)

=°U,(0, ») +°[0‘Ak(U(T,w)) dr
=u,(0,w) + j;)tBk(u(°T,w)) d;r

= u,(0,0) + fOtBk(u(s,w)) ds,

where d ;7 denotes the Loeb measure of *Lebesgue measure d7 on *[0,T].
(¢) (@) is immediate from (a) and the fact that E, IIuH » < 0.
)

(ii) For any 7 < 7' € *[0,») and k& € K we have
’ f 2
<(r —T)Evy([ 1A, (U(c, »))| da)

E,,y(lUk(T,, w) — Uy, w)lz) = E,,y( ]:’Ak(U(O', w))do

= (7'~ 1) / (4,(U(o, w))I*) do

= (7" —7) E,,y(lAk(w)lz).
Thus
Evy(“U(T/’ w) = U(r, w)llf,) < (7 - 7)2EV7(”A(w)|I,2,) —o(r - 1),

where ¢ < « by Lemma 4.4 (given that p < —1/2 now). For any real « < 1/2,
the Kolmogorov continuity theorem (see [15] or [3]) now shows that for a.a. w,
U(r, ») is Holder S continuous with power a on the finite *dyadic rationals.
Now take real ¢ < ¢’ < » and *dyadic rationals 7 = ¢, 7' = ¢. Then

lu(?,w) —u(t,0)l, =1°U(7,0) =°U(r,0)ll, <°NU(7,w) — U(7, o),
which gives the result. O

We now consider the question of other invariant probability measures for
the flow we have constructed. Again let us emphasize that the flow u (¢, w)
defined for w € Q, C Q is constructed without reference to any measure on
or any particular space H”.

Observe first that the family of measures Kg,y discussed in [2] and [1] is
easily seen to be invariant for the flow we have constructed. They are obtained
from the internal measures v; ., on () given by

' BkZ + yk*
dvg (U) = 11"

1
0 — exp(—E(Bk2+yk4)lUkI2 dU}! dU?
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for y > 0 and B > —y. (In [2] and [1], B was restricted to be positive.) Let
PB,V = (VB,V)L’

then Theorem 3.2 applies also to P, , since

if p<land pg, =P, ost” ! 1t is routine to check that all the results for P,

and u, extend to Py, and ug .

All invariant measures mentioned so far are Gaussian. A non-Gaussian
family is easily obtained as follows: let ¢ be a Borel probability measure on
[0,») and define u, on N, H” by

Ro(X) = [ (X) dg(a),

where we make the natural definition u, = §,, the Dirac measure concen-
trated at 0 € H?. (We remark that @ = y~! is a better variable to index the
family ., but we have followed the convention adopted in [1].)

The internal counterpart of u, is v, on Q given by

v (Y) = [v,(Y) d*q(a).

Putting P, = (v,), it is routine to see that the results above apply to the
measures u, and P,; in particular u, is a non-Gaussian invariant probability
for the flow u(#, ») (unless g is Dirac).

We can similarly obtain further invariant measures from the family Mg, by
means of a probability 7 on {(a, 8) € R%: a > 0, B > —1}. On this set we
have B > —1/a = —v, say, and we define

Bl X) = 1,0 (X) dm(B, @),
where ug ,, = 8, all B. Then the measure u . is also invariant.

5. Invariant densities. The internal measures v, and v, on , invari-
ant for the internal flow U(r, w), have explicit dens1t1es agalnst *Lebesgue
measure on () = *CX, Here we pursue the idea of searching for invariant
measures having (nonstandard) invariant densities, using the methods of [4]
and [5]. ‘

Suppose that A is an internal probability on  and define the evolving
family A, by

A(X) = AU(7, ) (X)),

so Ay = A. The internal equation satisfied by A, (analogous to that introduced
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by Foias [11] for the Navier—Stokes equations) reads
d
(6) E(fw(U)dAT(U)) =fk§K¢k(U)Ak(U)dA,(U),

where : Q —»*R is *differentiable and bounded.
If A, have densities f(r,U) against *Lebesgue measure on (), then as in [5]
it is easy to derive the following density equation:
af — (AL (U)f) =0,
k EK aUk k

where by dg/oU, for complex g =g!+ ig? we understand dg'/oU, +
dg2/dU2. Since by the definition of A, (3/dU,)A,(U) = 0, the density equa-
tion reduces to

o YA U 0,
U + —

5 LA 377
where A,d/0U, = AL3/0U} + A%0/0U2. Hence the internal equation for an
invariant density f(U) takes the form

(7 Y A(U)—

keK aU'k

As is well known, a density f(U) satisfies (7) if and only if it is constant on the
solutions of (5). In particular the densities of the measures v, and v, , satisfy
(7) as is shown in the proof of Lemma 4.2. Their invariance stems from the
fact that energy E(U) = (1/2)X,c ¢k%U,*> and enstrophy S(U) =

1/2X, kU, k|2 are invariants of the motion, which is essentially the
content of Lemma 2.1. In fact any density of the form f(U) = r(E(U), S,(U))

is an invariant density where

h( ¥ szkei<k”‘>)dx
T ‘rek

Sy(U) = |

also is an invariant of motion for any continuous function %, as is shown in [2].

For a while let us restrict our attention to densities f that are constant on
surfaces of the form T, x%*U,I> = constant, which we call “enstrophy
shells.” Such densities take the form

(®) F0) = r( X KU

keK
From the point of view of the standard flow u(¢, ) obtained from U we get an
invariant measure only if the internal invariant density is nearstandardly
concentrated. We now show that in the case of the densities of the form (8) we
then obtain standard measures of the form w, as in the previous section.
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To this end we first prove a theorem concerned with measures uniformly
distributed on single enstrophy shells. Recall that we define u, = 6.

THEOREM 5.1. Let M = 2|K| where |K| denotes the number of elements in
K. Let 0 be the uniform probability on the surface

S, = {Ve Q: Y RYV,E = c}.
keK

Then Vis 0 -a.s. || - |, nearstandard. for real p < 1 if and only if ¢/M < o,
and in this case 0y °st™' = . where y~!' =°(c/M).

Proor. Consider first the case ¢ = M. Let V, = k2V,; then under 6, V is
uniformly distributed on the sphere

SM-Y M2y = (W: WP =M)cQ,

where [W|? = Z|W,|%.

Now consider U in ) under the Gaussian distribution » = v;. Then under
v, U}, i =1,2, are iid. N(0,1) and (M'/2/|U|)U is uniformly distributed on
SM=1(M1/2). Thus V(U) = (M'/2/|U|)U has distribution 6.

By direct calculation we have E,(|U?/M)=1 and E,((|U?/M - 1)) =
2/M = 0 so the normalising factor M'/2/|U| = 1, v, as. Now U is as.
| - [l -nearstandard, hence so is V(U), and °V(U) =°U a.s. (all under v,).
Therefore, V(U) is 6, -a.s. || - || ,-nearstandard and for X ¢ H? we have

0.(st™ (X)) = v, ({U:°V(U) € X})
=v,({U:°U € X})

= ,U«1(X)

by Theorem 3.2.

For general ¢ with y~! =°(¢c/M) < = the result follows by rescaling.

Now consider ¢ with ¢/M = H infinite. Again by rescaling, the argument
above shows that under 6, °(V//H'/?) is Gaussian distributed with variance
1/k*. Thus for finite &, °(V,/H'/?) # 0 a.s., and so V, is a.s. infinite. O

REMARK. This result (and its proof) is closely related to the main result of
[10] which shows that uniform measure on S™~1(1) gives Wiener measure.
The intuition underlying this goes back to Wiener [16], building on the
observation of Poincaré [14] that the normal distribution is obtained as the
limit of projections of uniform measure on S”~(yn) onto the 1-axis. Wiener
intuitively thought of uniform measure on S*(y ), which he called differential
space (see McKean [13] for a discussion). Nonstandard methods allow a
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rigorous treatment of S*(y) in the guise S¥~X(VN), or equivalently (as in
[10]) the scaled version S™~1(1).

We can now prove the main result of this section.

THEOREM 5.2. Let p < 1. Suppose that f(U) = r(Z, < ck*IU,|%) is a non-
standard density with corresponding internal measure v on Q, that is, v(Y) =
[y fF(U)dU. Let Q be the internal probability on *[0, ) given by

Q(*[0,a]) = /(. f(U) dU.

Lk U, <Ma)

Then v is || - || ,-nearstandardly concentrated if and only if @ is nearstandardly
concentrated, and then

vy ost™! = Mg,

where q = @ st~ L.
Proor. Let 6, be the uniform probability on S,. Then
v(Y) = [ 6ualY 0 Sie) dQ(a)

for internal Y and a similar equality holds for the corresponding Loeb mea-
sures. Now let Q, be the set of |- Il, nearstandard points in €. Then, from
Theorem 5.1, (6,),(Q, N S,) = 1ifand only if @ = ¢/M is finite. Sov,(Q,) = 1
if and only if @ is nearstandardly concentrated, that is, @,(F) = 1 where F
denotes the set of finite elements of *[0, ). If it is so, then for X ¢ H? we have

vi(st7H(X)) = [ (asa) (st 7H(X) 1 i) dQu(a)
= [neo-1(X)dQy(a)  (by Theorem5.1)
F

= [rai(X) da(a). g
By considering densities constant on the surfaces of the form

BY kAU +y ¥ EUU% =c,
keK keK

we obtain in the same way the invariant measures u, , and their integrals u .

REMARK. We do not know which (if any) standard invariant measure is
obtained by taking an internal invariant measure uniformly distributed on a
surface

{ 2‘, A cl} N { Y R4U,2 = cz}.

keK keK
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Do such measures fit into the spectrum of invariant measures already ob-
tained? Are they Gaussian?

6. Statistical solutions to the Euler equation. We conclude this pa-
per by showing that the flow u(¢, w) defined earlier gives an easy existence
proof for statistical solutions of the Euler equation for a wide class of initial
measures A,. Following Foias [11], by a statistical solution of the Euler
equation we mean a family of measures A, defined on one of the Hilbert spaces
HP and satisfying

(9 [o(u)dr ) = [u(u) duo(u) + [ [ (B(u), /() dA,(x) ds

for all ¢ and all test functionals ¢ on HP? of the form ¢(u) = exp(i{u,v),),
v = (v))y2 <, for some m, where by { , ), we denote the scalar product in H”.

TuroreEM 6.1. Take a probability measure A on HP and put P = (*A%),,
where *AX is the projection of *\ on Q =*CX. Suppose that:

() the mapping (t, w) — B, (u(t, »)) is L}[0,T] X Q) for all k and T < oo
(i) u,(t, 0) = u,(0,w) + [¢B,(u(s, ) ds for all k,t < © and P-a.a. o.

Then the family of measures
M(X) = P({0: u(t,0) € X))

is a statistical solution to the Euler equation with A, = A.

Proor. Basic Loeb theory shows that A, = A. Fix a test functional ¢ as
above. From (ii) for P-a.a. w,

d
—b(u(t,0)) =(B(u(t0)), ¥ (u(t, @),
= T e (u(t o) By(u(t, @),

k%Z<m

which is integrable on [0, T'] X Q. Next we integrate in time from 0 to ¢ and
then with respect to P:

Jo(u(t, @) dP(w) = [#(u(0,0)) dP(w)
+fj:(B(u(t,w)),w’(u(t,w))>p ds dP(w).

Now apply Fubini’s theorem to the last term. The definition of the measures
A, means that [g(u(t, w)) dP(0) = [g(u)dAr u) for any g so we have the
‘required result. O ’

ReEMARK. We have considered a weak version of the notion of statistical
solution which is reflected by the fact that the class of test functionals ¢ is
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narrow. However, this class is sufficiently large for the integrals [¢(u)dA of
all test functionals to determine the measure A. To get stronger statis-
tical solutions we would need to impose a condition such as B(u(-,-)) €
LY[0, T] x Q, HP), which is not satisfied by the members of a natural class of
measures considered below.

THEOREM 6.2. Let A < u, where q is a probability on [0,) and u, is
defined on H?, p < 1, as in Section 4. If dA /du,, € L¥(u,) and [a® dg(a) < o,
then there is a solution A, of (9) with Ay = A.

Proor. We write P, = (*u¥), = (v,), and P = (*A%),. Let R: Q "R be
any SL? lifting of dA/du,. Then P < P, with dP/dP,="R € L*(P,)). We
know that condition (ii) of Theorem 6.1 is satisfied by P, (see Theorem 4.6)
and hence by P. To check condition (i) we have

2

(Epj;)TIBk(u(t,w))lalt)2 = (qu(°R(w)f()qu(u(t, w))ldt))
< By (CR(w)")Ba [IBu(utt, )1t

= EPq(oR(w)z)TEPq(j;)TlBo’r( u(t, w))lz dt)

<

since u, is invariant and
E, (1By(w)*) < ¢, [a*dg(a)
by Lemma 4.3 (a). O

REMARK. It is routine to extend this result to measures A < u_ provided
dA/du, € L? and a/(1 + aB) € L¥(m).
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