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ON A FIRST PASSAGE PROBLEM FOR BRANCHING
BROWNIAN MOTIONS

By INGEMAR KaJ! AND PAAVO SALMINEN 2

Uppsala Universitet and Abo Akademi

Consider a (space-time) realization w of a critical or subcritical one-
dimensional branching Brownian motion. Let Z (w) for x > 0 be the
number of particles which are located for the first time on the vertical line
through (x, 0) and which do not have an ancestor on this line. In this note
we study the process Z = {Z,; x > 0}. We show that Z is a continuous-time
Galton—-Watson process and compute ‘its creation rate and offspring distri-
bution. Here we use ideas of Neveu, who considered a similar problem in a
supercritical case. Moreover, in the critical case we characterize the contin-
uous state branching processes obtained as weak limits of the processes Z
under rescaling.

1. Introduction and basic definitions. Let X = {X,; ¢t > 0}, X, = x, be
a branching Brownian motion in R with a constant creation rate a and the
offspring distribution p = {p,; £ = 0,1,2,...}. It is assumed that p, < 1 and
that X is (sub)critical, that is, X3 _,kp, < 1. The canonical sample space of X
is a space of marked trees which we now describe.

Consider the set

and let w be a subset of U with the properties (cf. Neveu [9]):

1. 0 € w,
2 Vu,velU: uww Ew=u € o,
B Vucwdvi(w)eNVjeN yew=>1<j<rv“w).

Such subsets w are called trees and we denote the space of all trees by (.
Elements in U are called particles. To explain the notation wv in (2), let
u="C~y,...,i)€elU v=_j,...,j,) €U, then uv = (,...,i5Jy,...,J,) €
U. The variable »* in (3) gives the number of descendants of the particle u. A
particle v is called an ancestor of a particle u, denoted v < u, if there exists
w € U such that u = vw. Defining Ou = uv and ©0 = u, it is seen that for
every u € U we have u < u and 0 < u.
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174 I. KAJ AND P. SALMINEN

Let
M:={({,v);¢{€R,, y:[0,{) » R, continuous, y(0) = 0}.
A marked tree «° (cf. Chauvin [3)) is defined as
(1.1) 0’ = (0,{({"7"); u € 0}),

where w € Q and ({%, y*) € M for every u € w. Let Q° denote the set of all

marked trees. For a given »® € Q° let w be the corresponding tree in (1.1). To

emphasize the structure we often denote the marks in w® with ({“(w?), y*(«°)).
The path of a particle © € w is defined as

x + y2(w?), ifu=0,¢t</{°
(1.2) E4(00) = { € (@°) + ¥¥(0°), ifu=+#0,t<¥,
A, if t > g%,

where u = yj for some j, 1 <j < v%(w), that is, v is u’s parent and A is a
fictitious cemetery state. The parameter ¢ in (1.2), when ¢ < (%, is called the
age of the particle u.

Next we introduce some relevant o-fields in Q° (cf. [3]). First, for every
u € U define in the space Q%% = {0° u € w},

F = oy (0°); 0 <5 <t A {*(0), 0® € QO¥)
and then, recursively,
£ = (2,92,
G =F"V A ofr(w); 0 € Q%)

where u # 0 and v is u’s parent. Intuitively, #* contains information on the
branch leading to the particle «. To include the history of the particle itself,
set

%u LR zu,
=\ KA ofv(w); 0 € Q4.

t>0
Finally, denote by & ° the smallest o-field on Q° which makes all marked
trees measurable, and let P, be the probability measure on (Q°, % °) associ-
ated with X, X, = x.
Let o) Q%% — [0, + ] be the first hitting time for the particle u to the
point y, that is,

o e inf{s; £2(w°) =y}, if{}) * g,

Y +x, otherwise.

Clearly, o,* is for every u a stopping time with respect to #"= {#;"; s > 0}.
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Setting

TU =

_{(ry", if o <oand Av <u:o0’ <,
Y

+o, otherwise,

the family 7, = {r¥: u € U} becomes a stopping line (cf. [3]) in the sense of:

DerINITION 1. A stopping line 7 is a family of nonnegative random vari-
ables 7%: Q%% — [0, »), such that:

(i) 7* is a stopping time with respect to #* for every u € U,
(i) the set L (0°) = {u € w; 7“(w®) < »} has the line property for every
»® € Q0 that is,

u €L, (0 = (Av <u:veL (o).

REMARK 1. This definition differs slightly from that in [3], page 1197,
because in our case 7* may attain ‘“the value”” +o and, therefore, v € L_ in
the case 7* = {*. However, this is of no importance in the present case.

To introduce the first passage process, which is the main topic of this paper,
assume that X, = 0, and for x > 0 define L, (0°) = L_(°) and

Lx+(w0) = U n Lx+1/n(w0)'
k=1n=k

Then, clearly, L, = L,, = {0}.

DEFINITION 2. The process
Z={Z,=IL,.|;x > 0},

where |{-}| denotes the number of elements in {-}, is called the (right-continu-
ous) first passage process associated with X, X, = 0. The random times
(n=1,2...)

T\(°) = inf{x > 0; L (°) # Ly(%)},
© T, (0°) = inf{x > T,(0°); L (°) # Ly, (o)}

are called the splitting times of Z.

In this note it is shown that Z is a continuous-time Galton-Watson process
(or a continuous-time Markov branching process in the terminology of Athreya
and Ney [1]) and its creation rate and offspring distribution are computed.
Further, in the critical case, we characterize the weak limiting behaviour of a
sequence {Z™} of processes of the type Z. These arise from a sequence {X )}
of branching Brownian motions, scaled to converge to the so-called super-
Brownian motion. In particular, if the offspring distribution is independent of
n and belongs to the domain of attraction of the 1 + B-stable law, 0 < B8 < 1,
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then the limiting process obtained from {Z(} is a random time change of a
spectrally positive 1 + B8 /2-stable process.

In [10] Neveu considers the first passage problem as introduced above but to
the lines (At — x, ¢), ¢ > 0, and for a (supercritical) binary branching Brownian
motion (see also [3]). It is seen that Neveu’s approach is applicable also in our
(sub)critical case. In fact, to make the paper more self-contained, when com-
puting the offspring distribution of Z in the next section, the basic facts in
Neveu’s approach are also recalled.

2. Characterization of the first passage process. In this section X is
a (sub)critical branching Brownian motion with offspring generating function
F(u) = Tp,u*. Let o(u) = a(F(u) — u) denote the infinitesimal generating
function (0 < u < 1). We have the following result.

THEOREM 1. Let Z be the first passage process associated with X, as
previously introduced. Then Z is a continuous-time Galton—-Watson process
with creation parameter vy = V2a. Let {r,; k = 1,2,...} denote its offspring
distribution and let G(v) = Lr,v* and B(v) = y(G(v) — v), 0 < u < 1, denote
the generating function and infinitesimal generating function, respectively.
Then

1 1/2
(2.1) B(v) = 2(/ M(u)du)

or, explicitly,

1 1 12
G(v) =\/§(Zpkk+—1(1—vk“) —E(l—vz)) +v.

Further,
Eo(Z,) = exp(—y/1 - F'(1) x)

and, hence, Z is (sub)critical if and only if X is (sub)critical.

Proor. We verify first that Z has the branching and Markov properties.
This is done using the strong Markov property at the stopping line .. We
recall briefly this concept (see [3]): For 7 := 7, introduce the stopped o-field
in Q°,

F0=V {o%u¢ D, (%)} n 2k,
uelU
where
D (0°) = {u;3viv<u,vel (o}
" Then we have '

(2.2) Eo( T £+ 0815°) - I B,

uel, u
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where f% 0 <f* < 1,is for every u € U a (Q° & °)-measurable function and
% is the shift operator 7 evaluated at s = v*. For the definition of 6.
Q%% N (% > s} - Q° see [3]. Informally, % maps a marked tree w° to the
marked tree @&°, which is the subtree of w° having the particle u at the age s
as the first element.
Consider now (2.2) with f“(0°) = f(°) = s%+“" where 0 < s < 1 and
x,y = 0. Then it is easily seen that

Bu(e# 12, - B T s5ee 001
uel,

= (E,(s%=))™
= (Bo(s%+12, = 1)),

which is the branching property of Z (cf. [3] Corollary 2.3). A similar computa-
tion combined with the spatial homogeneity of X gives the Markov property of
Z. Consequently, taking into account the fact that the paths of Z are step
functions, Z is a continuous-time Galton-Watson process (see [1], page 102).
In particular, Z has the properties:

@D T,-T,_,,n=12,... (T, =0),are independent and, given Z =k,
exponentially distributed with parameter y% for some y > 0.
Gi) Zy —Zy, ,n=1,2,... areiid.

To compute the parameter y and the offspring distribution, that is, the
distribution of Zy,, we need (cf. [10]) the following lemma. Unfortunately, we
do not have an exact reference for this, but see Williams ([12], Theorems 4.7
and 4.9). In any case, the lemma can be proved using the reflection principle.

LEmMMA 1. Let B={B, t >0}, B, =0, be a standard Brownian motion
and 7 ~ exp(a) independent of B. Then the random variables

M = supB, and R=M — B,

t<t

are independent and exponentially distributed with the parameter V2a . More-
over, the time point for the occurrence of M is a.s. unique.

Let M° = sup{¢? 0 <s < {°. Then, by Lemma 1, M° ~ exp(y2a) and,
from the definition of T, T, = M°. Hence, y = V2« .

To proceed with the offspring distribution, it follows from the spatial
homogeneity and the branching property of X that, in law,

) 4. v0
(2.3) Zy = ZR+ - +Z%, 0> 1,
' 0, 0 =0,

where Z® are independent copies of Z evaluated at the independent exponen-
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tial time R® == M° — £%_. Further, recall (see [1] page 106 or Neveu [10])):

LEmMa 2. Let N={N,; t>0}, Ny,=1, be a continuous-time Galton-
Watson process with the creation parameter B and offspring distribution {q,;
k=0,1,...}. For 0 < ¢, < 1, let $s(¢) = E({"), where E denotes the expecta-
tion operator associated with N. Then i is the solution of the initial value
problem

V=L,
l/I(O)= 1/10’

where £ is the infinitesimal generating function of N, that is,
#(u) = B(Taut - u).

Moreover, in the (sub)critical case,  is increasing with lim,_,, ¢(¢) = 1 and,
hence,

G(u) =¢' (" ().
By (2.3), for 0 < v < 1,
G(v) = Eo(v?m) = Bo(vZ+ = +20")
= /;wye_yszpk(Eo(UZs))k ds.
Let ¢(¢) == Ey(¢Z*), where ¢,, 0 < ¢, < 1, is given, and ¢(¢,v) = Ey(v%),

when ¢ is considered as a function of two variables. Making use of the
semigroup property ¢(t + s) = ¢(¢, $(s)) and Lemma 2 it is seen that

#() = B(0(0) = | [ ve F(F(s, 6(1)) ds - ¢(t>)

= 'y(-/:o'ye_ysF(d)(S +t))ds - ¢>(t))-

Differentiating with respect to ¢, using (d/dt) F(¢(s + t)) = (d/ds)F(¢(s + t))
and integrating by parts,

® d
#(0) = 9| [y Bt + ) ds - 60

= =Y (F((1)) — ¢(t)) = —2(4(2)).
Further, since ¢'(+x) = 0,

$(1)° = ~2[ H () (s)ds = 4 ¥ () a/(8(s)) ds.

* By Lemma 2, ¢t — ¢(¢) is increasing and therefore, because ¢(+x) = 1,

s 1/2
¢'(t) = 7(2L(t)(F(u) —u) du) ,
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which gives the basic relationship (2.1). Now observe that

G(1l)y=1-y1-F'(1).
Note also that G"(1) = +. From this the remaining statements are easily
obtained and the proof of the theorem is complete. O

REMARK 2. More generally, let Z (0,¢), x > 0, ¢ > 0, be the number of first
hits in a family tree to the level x during the time interval (0, ¢). To convince
the reader that the process Z is the “natural” first passage process we point
out that in the critical case one can prove

EO(Zx(O’t)) = P(?(Tx < t)7

where P is the measure associated with a standard one-dimensional Brown-
ian motion and 7, is the first hitting time of the point x. This should be
compared with the relation

Eo(Ni(x,7)) = P3(B, € (%,%))

for N/(x,y) the number of particles in the interval (x, y) at time ¢. Further-
more, there is an analogue of Theorem 1 for supercritical branching. We
intend to study these topics in a forthcoming paper.

ExampLE 1. Consider the family of critical offspring distributions for X
given by

o (u) = l—ig(l —u)"**, 0<B<l.

For this particular family the offspring distributions can be given explicitly.
With B8 = 1 this is the binary branching model p, = p, = 1/2. For 0 < g < 1,

(123)(—1)", k1,

Pr 1+p

p.1=0.
Note that the variance is finite only for 8 = 1. The offspring distribution of Z
is now of the same type with the infinitesimal generating function
Y
(1 _ U) 1+B/2

R FwsTewy

and offspring probabilities

. 1 1+8/2), \#
¢ \/(1+B)(1+B/2)( k )( bho kL

1+p5/2
1+p8 )
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Here, r, is the probability that the whole tree lies on the left-hand side of the
line determined by the rightmost maximum of the initial particle until the first
branching. Furthermore, for 0 < ¢, < 1,

1- 4, YB(1 = ¢)°"
¢(x) = E0(¢02t) =1- 2/B C = .
(1 +cx) V(L +B)(1+8/2)
From this formula, setting ¢, = 0 we obtain the probability P(Z, = 0) that
the whole tree lies on the left-hand side of the line (x, ¢), ¢ > 0 (cf. Walsh [11],
Proposition 8.14, which has a misprint).

3. Diffusion approximation, critical case. In this section we restrict
attention to the critical case and consider a sequence of branching Brownian
motions with the interpretation that each particle is assigned a decreasingly
small mass and life length, whereas this is balanced by an increasing density of
particles. More exactly, we consider a scaling which in a weak limit leads to the
distribution of “mass” on the real line known as super-Brownian motion. We
characterize the continuous state branching processes (CB processes) obtained
in this limit for the associated sequence of first passage processes.

For each n > 1, let X™ be a critical branching Brownian motion with
creation rate «,, generating function F, and infinitesimal generating function
o (u) =a,(F(u) — u). We assume that the processes X all start with one
particle at the origin. Let {X™); 1 < i < n} be independent copies of X and
let Z™ and Z®™ be the corresponding first passage processes. According to
Theorem 1 the characteristics of Z" are given by y/2a,, G, and %,, say.
Introduce the processes

1 »
Y™ = Yt‘")=—ZZ§"");tzO}, n=1,2,....
ni_1

It is well known that a possible limiting process of Y as n — « can be
expressed in terms of a random time change of a spectrally positive Lévy
process. This is due to Lamperti [8] for discrete time processes and it was
pointed out by Helland that the result also applies to the continuous-time
branching processes. Indeed, to see this relation let

H,(v) =G, (e "/")e"",
and denote by A", A{" = 1, a compound Poisson process with

(3.1) log E[exp(—v( A%, — A™))] = y2a, n(H,(v) - 1)t.

.

Then, Y converges in finite-dimensional distributions to a CB process Y,
Y, = 1if and only if A" converges weakly to a spectrally positive Lévy process
A A)=1.

Further, if the process Y does not explode (for a definition of this see the
proof below), then Y™ converges also weakly to Y. See Helland ([6], Theorem
6.1). (The quoted result refers to a slightly different but equivalent setting
emphasizing the scaling ¢ — nt; cf. Remark 4.)
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In order to study the sequence {Y ™)} via the relation (3.1) we recall some
results for the sequence {X}. For u > 0, let

(3.2) oy (u) = cu® + [:(e—su — 1+ su)w(ds),
where ¢ > 0 and v is a measure on R, such that

[:(s A s2)u(ds) < .
For each m > 0 and n > m put

naa/n(l - ;—) -, (u)

e,(m) = sup

u<m

We say that the branching mechanism of X is in the domain of attraction of
a branching exponent &7, (u) if

(3.3) lime,(m) =0, forall m > 0.

n—>wo
Under this assumption it is known that
12 _
— ¥ X%™ = super-Brownian motion with branching exponent .7,
ni_q

[weak convergence, e.g.,, in ([0, +»), .#), where .# is the set of finite
measures on R]. See Ethier and Kurtz ([5], Section 9.4). In particular, if N
(N ™) denotes the number of particles in X™ (X®™), then N™, n > 1,isa
sequence of continuous-time Galton-Watson processes such that the total
mass process has a weak limit

12 .
— ZN(l,n) = N, t>0,
ni-1

with h(t) == —log Ele *M] the unique positive solution of
K(t) = ~/,(h(t),  h(0) = 6.

We now present an analogous result for the first passage process Z.

THEOREM 2. Assume that the branching mechanism of X™ is in the
domain of attraction of a branching exponent &, as in (3.3). Then the

sequence of processes Y™, n = 1,2,..., converges weakly to a CB process Y,
such that its cumulant generating function h(t) = —log Ele Y] is the unique
positive solution of the equation

(3.4) K(t) = —B,(h(2), h(0) =0,

‘where

B, (v) = Z(LUM*(u)du)l/z.



182 I. KAJ AND P. SALMINEN

Equivalently, Y is a random time change of a spectrally positive Lévy process
A, A, = 1, with the Laplace transform given by

(3.5) logE[exp(—v(A,,, — A,))] = Z.(v)t, v=0.

Proor. We first establish that Y converges in distribution to a process
Y which is defined as a random time change of a spectrally positive Lévy
process A characterized via (3.5). More specifically, let 7, be the right continu-
ous inverse of the additive functional

inT ds
o A’
and set Y, == A_ in the case 7, < T. Because A is spectrally positive, A, > 0
fort < T and AT = 0. Further, note that if T = » and «, < «, then 7, is not
defined for ¢ > a,. In this case we say that Y has exploded. If T < « and
ap <o, weset Y, =0 for ¢ > a, and say that Y has become extinct.

Now by Theorem 6.1 in [6], it is enough to show that the sequence { A™},
where A™ is as in (38.1), converges in finite-dimensional distributions to the

process A. Since all processes have stationary independent increments, this is
equivalent to the convergence in one-dimensional distribution, that is,

log E[exp(—v( A, — A™))] = \2a, n(H,(v) — 1)t > B, (v)t, n -

= inf{¢: A, = 0},

a, =

However,
2a,n(H,(v) — 1) = ne"/"B,(e "'"),

so the desired relation follows from

lim

n— o

n@n(l - %) —B,(v)| =

But for each n > 1,

B.(v) = Z(fvl.sa/n(u)du)lﬂ

according to Theorem 1. Hence, for fixed v and n > v,

([ ora] o)
_9 (j;)n.Q/(l - —:—)du‘)lﬂ - (fo"m*(u)du)
o o

< 2(v.9,,(v))1/2 -0, n-o,

1/2
=2

n@n(1 - %) — @, (v)

1/2

naa/n(l - %) — ()

where the assumption (3.2) is used at the last step.
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We now verify that Y does not explode. For this it is enough to show that
T < o a.s., that is, the process A hits zero a.s. A result due to Zolotarev says
that

E[exp(—0T)] = exp(—%5'(0)), 6>0,

where #;! is the inverse of the continuous and increasing function &, (for a
nice proof, see Bingham [2]). Hence

P(T < ») = exp(— %;'(0)) = 1.

Finally, because Y is a random time change of a Lévy process, it is strong
Markov and has cadlag sample paths. Consequently, its cumulant generating
function is the unique solution of (3.4); see Kawazu and Watanabe [7]. The
proof is complete. O

We next consider some examples of offspring distributions.

ExaMPLE 2. Suppose that the variance o2 of the offspring distribution is
finite. Take a, = an and F, = F. Then

ol 2]l 2] 1= 2] - 5 of )

hence v(ds) = 0 and &7, (1) = ac?u?/2. The basic case is binary branching
with F(u) — u = (1 — u)?/2. We obtain £, (v) = /(2a/3) ov®? Thus Y isa
CB process of index 3 /2. The corresponding Lévy process is spectrally positive
3 /2-stable.

ExaMmpPLE 3. A standard example to illustrate the effect of infinite variance
is the case

c=0, wv(ds)=pT(1-B)"'s"@*Ads, 0<p<1,
in (3.2). Then

o (u) = I+ 0<B<1.

1+8°

If a sequence (a,, F,) is in the domain of attraction of this stable 1 + B type
exponent in the sense of (3.3), then for the first passage process

0
(1 + ydgs(B/2)0P%

—logE[e %] = 6>0,y=1V2a,

)2/13 ’

and

logE[exp(—v(A,,, — A,))] = ydgv' P2,  dz'=(1+B)(1+B/2).

Here, moments of order less than 1 + 8 are finite. Note that Example 1 with
a, =an® and & (u) = a,(F,(u) — u) provides a case which (trivially) yields
this limit.
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REMARK 3. Suppose that the branching Brownian motions are such that
the limiting branching law has the exponent

ut*h 0<B<l.

b

(3.6) Ay (u) = 145

The case B =1 is Example 2 with ¢ =1, and 0 <8 <1 corresponds to
Example 3. Let a,, ~ [n#/2]. Then for fixed «,

1 &
- YAQ) Y.
an P nt = t
Still another equivalent scaling for « independent of n is

1
n P = Y

ExamPLE 4. To obtain the general form of &7, in (3.2) define, for a given
branching exponent &7, a, = &4(n) and F(u) =u + &, (n(1 — u))/na,.
Then &7 (u) = a,(F,(u) — u) defines an approximating branching mechanism
such that (3.2) holds. See Dawson and Perkins ([4], Lemma 3.4c¢).

ExampLE 5. Consider again the situation in (3.6). The extinction probabil-
ity for the total mass process N is given by

—logP(N, = 0) = lim ’ = ((1 + B) /apt)"’.

2= (1+aB(1+B)” eﬁt)

Similarly,
~logP(Y, = 0) = (2/yBdt)"",  y=12a
where dg, 0 < 8 < 1, was given in Example 3 and d, = 1/ V3. For example, if
B = 1, the asymptotic relation
tP(N,>0) ~2/a, t — oo,

has the counterpart

t’P(Y,>0) ~12/y%, ¢t >,

which gives a quadratic rate of extinction for the number of particles reaching
far out to the right.
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