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A VARIATIONAL METHOD FOR ESTIMATING THE
PARAMETERS OF MRF FROM COMPLETE OR
INCOMPLETE DATA

By MuRrILO P. ALMEIDAY 2 AND BasiLis Gipas!

Brown University

We introduce a new method (to be referred to as the variational
method, VM) for estimating the parameters of Gibbs distributions with
random variables (‘‘spins”) taking values in a Euclidean space R*, n > 1,
from complete or degraded data. The method applies also to the case of iid
random variables governed by exponential families, and appears to be new
even in this case. For complete data, the VM is computationally more
efficient than, and as reliable as, the maximum pseudo-likelihood method.
For incomplete data, the VM leads to an estimation procedure reminiscent
of, but simpler than, the EM algorithm. In the former case, we show that
under natural assumptions a certain form of the variational estimators is
strongly consistent and asymptotically normal. We also present numerical
experiments that demonstrate the computational efficiency and accuracy of
the variational estimators.

1. Introduction. The massively computational tasks in image processing
and computer vision problems [4, 11, 13, 16, 17], neural modelling and
perceptual inference [1, 22] and speech recognition [27, 34] have created a need
for more and more computationally efficient and reliable procedures for esti-
mating the parameters of Gibbs [equivalently, Markov random fields (MRF)]
and related distributions. From the theoretical point of view, these estimation
problems generalize those of time-series analysis, and have given rise [6, 14,
20], to an interesting interplay between statistics and the phenomena of phase
transitions in statistical mechanics.

The main methods that have been used for estimating the parameters of
Gibbs distributions from complete data are: (a) maximum likelihood (ML) [12,
29, 41, 42, 20, 31, 35]; (b) maximum pseudo-likelihood (MPL) [3, 14, 18];
(c) a “coding” method [3]; and (d) a logistic-like method [9, 33]. The two main
procedures that have been employed for estimating the parameters of Gibbs
distributions from incomplete (noisy, degraded) data are: (i) maximum likeli-
hood via ‘the EM algorithm [8, 16, 39] and (ii) the method of moments [16].
From the theoretical point of view, consistency and asymptotic properties of
various estimators have been studied in [7, 14, 18, 20]. From the computa-

Received November 1989; revised September 1991.

'partially supported by ARO Contracts DAAL03-90-G-0033, DAAL03-86-K-0171 and ONR
N00014-91-J-1021.

2Partially supported by CAPES (Coordenagdo de Aperfeicoamento de Pessoal de Nivel
Superior-Brazil).

AMS 1991 subject classifications. 60K35, 60J99, 62H12, 62M40.

Key words and phrases. Super-stable Gibbs distributions, variational estimators, consistency,
asymptotic normality.

103

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access

The Annals of Applied Probability . STOR IS

[Za

to |4

Www.jstor.org



104 M. P. ALMEIDA AND B. GIDAS

tional point of view, the MPL procedure is the most efficient; it applies only to
complete data, but to both continuous and discrete (categorical) random
variables. For incomplete data, the ML method via the EM algorithm is
computationally intensive, but feasible [8, 16].

In this paper we introduce a new computationally efficient method for
estimating the parameters of Gibbs distributions with continuous random
variables (‘“‘spins” [25, 36, 37, 32]) from complete or incomplete data. The
method is also applicable to the case of iid random variables governed by
exponential families, and appears to be new even in this case. For reasons to be
justified later, we refer to the method as the variational method (VM) and to
the corresponding estimators as variational estimators (VEs). In addition to
the VM, we describe a class of Gibbs distributions (motivated from quantum
field theory models [40]) that we used [2] successfully in synthesizing and
representing textures, and appears to be appropriate for other spatial statistics
applications.

We present two distinct, albeit conceptually related, versions of the VM.
Both versions involve arbitrary vector statistics, and hence lead to a class of
VEs. For complete data, the VEs are solutions of a system of linear equations.
For a particular choice of the vector statistics, one of these systems [see (1.9)]
has a structure similar to that of the Yule-Walker equations in time series
analysis. For incomplete data, both versions lead to nonlinear equations, and
to an estimation procedure reminiscent of the EM algorithm. We show (Sec-
tion 3) that certain VEs of Gibbs distributions from complete data are strongly
consistent regardless of the occurrence of phase transitions, and asymptoti-
cally normal under natural conditions. Our asymptotic normality result (Theo-
rem 3.2) required the proof of a central limit theorem (Theorem 3.3) for
dependent random variables; Theorem 3.3 appears to be of independent inter-
est. Numerical experiments (Section 4) demonstrate the computational effi-
ciency and accuracy of the VEs, and show that (for complete data) the VEs are
less costly and as reliable as the MPL estimators.

The precise description of the VM for Gibbs distributions, with complete or
incomplete data, is given in Section 2. In brief, the VM involves two basic
steps. The first step uses the divergence theorem (equivalently, the integration
by parts formula) to derive certain identities. The second step consists in
replacing, in these identities, certain theoretical expectations by empirical
expectations. In the present context, the divergence theorem has an interpre-
tation in terms of a certain invariance of our probability laws (see later in this
Introduction). The integration by parts formula was used previously in [5] (we
thank one of the referees for bringing to our attention reference [5]) to derive
moment recursion relations for a class of multimodal distributions; these
relations are special cases of our equations. Our second step should be con-
trasted with the basic idea that underlies MPL, whereby one replaces “global”
* expectations with ““‘local”” expectations (using the Markov property) and evalu-
ates the neighbors of a pixel at the observed data. In fact one form of the VEs
may be derived from the MPL equations or generalizations thereof [see (2.19)
and remarks following it].
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The two basic steps of the VM are simpler and more transparent in the case
of iid random variables governed by regular exponential families, and for this
reason we present this case here: Let 7,(dx) be a regular exponential family
on R"™ which is absolutely continuous with respect to the Lebesgue measure
dx, with density m,(x) given by

_ exp(~ 00U (x)) _ exp(=0- U(x))
(L) (=) = 70 ==

where U®(x), a = 1,..., m, are m sufficient statistics, § = (8V,...,0(™) e
R™ are the natural parameters (to be estimated from the data) with natural
parameter space ® C R™, and Z(6) is a normalizing constant. The first version
of the VM is obtained by choosing m vector statistics W®(x) =
(W (x),...,WNx)), a =1,...,m, so that

(1.2) [V (WO (x)my(x))dx =0, a=1,...,m.
-

By the divergence theorem, (1.2) is an identity provided that the W(*’s are
chosen so that the surface integral at infinity is 0 [see below for a ‘‘ variational”
interpretation of (1.2) in the present framework]. Writing (1.2) explicitly, we
obtain the identities

(13 ¥ 0 [ {W(x) - VUP(x)}my(dx) = [ (V- W(x)}my(dx),
B=1 R R

a=1,...,m.

If we replace the theoretical expectations in (1.3) by their empirical values, we
obtain a linear system of equations (see Section 2) for the parameters
6D, ..., 0. If the empirical estimate 7'“#” of the matrix

T (@, B) =f (W@(x) - VUP(x)}mry(dx)
R™

is invertible, then we obtain an estimator of 6 = (8V,...,8™) that depends
on the choice of the W s, The invertibility (or lack thereof) depends on the
W’s, In Section 3, we show that invertibility is guaranteed (even for Gibbs
distributions) if we choose

(1.4) W (x) =VUP(x), a=1,...,m.

If m,(dx) is Gaussian with (unknown) mean p and (unknown) variance o2,
x € R, the equations induced by (1.4) are exactly the ML equations. Further-
more, in Section 3 we show that the analogues of (1.6) and (1.4) for Gibbs
distributions lead to VEs, which are strongly consistent and asymptotically
normal.

Another choice of the W®’s is: Choose m scalar statistics F(*(x),
a =1,...,m, and then define W*’s so that

(1.5) V-W(x) =F%), a=1,...,m.
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Then (1.3) reads

(1.6a) f‘, e<ﬂ>/ (W (x) - VUB(x)}r,(dx) =f F@(x)m,(dx).
B=1 R” R”

Again we replace the theoretical expectations with the empirical expectations,
to obtain a linear system of equations for the #(*’s. The choice (1.5) is natural,
since the right-hand side of (1.6a) is related to the moment equations

(1.6b) / f@(x)m,(dx) = empirical value of F©@, a=1,...,m
R™ .

and in particular to the ML equations corresponding to F((x) = U“X(x),
a=1,...,m. In an obvious sense, the VE induced by (1.6a) is (if it exists) an
approximate solution to the moment equations (1.6b). Numerical experiments
(not reported in this paper) with Gibbs distributions, and with the choice
F(x) =U™®(x), & = 1,..., m, have given satisfactory results, but we have
no theoretical results of consistency in this case (except in special situations).

The second version of the VM proceeds as follows: Choose m scalar statis-
tics G®(x), a = 1,...,m, and m vector statistics W(x), a = 1,...,m, so
that (1.2) with W replaced by W®(x)G(x) holds. The analogue of (1.3)
now reads

W Y 0B([W VU(B)]G(a)>(‘”
1.7 B=1

= . (@) 1@\ @ (a) . @)\ @
([V: WGP (W@ . yG)

where ¢ - Y® denotes the expectation with respect to ,(dx). (Warning: Abus-
ing notation—we use, throughout this paper, lower case letters to denote both
the random variables and their realizations; in Section 2, we use upper case
letters to denote a particular set of data.) Multiply both sides of (1.3) by
(G®Y?® and subtract the result from (1.7) to obtain the identity

m

Y 6P Covy(W® - VU®, G®)
(1.8) B=1
= (W@ . VG@® 4 Cov,(V - W@, G®),
a=1,...,m, where Cov,(+, - ) denotes the covariance with respect to m,(dx).

If the W*’s are chosen so that W*)(x) =x € R* for all @ = 1,..., m then
(1.8) becomes

m R
(1.9) Y 6P Covy(x - VUP,G@) =(x-VG?,  a=1,...,m.

p=1
This identity has a structure which is similar to that of the Yule-Walker
equations in time-series. If the theoretical expectations and covariances in
(1.9) [or (1.8)] are replaced by their empirical values, we obtain a system of
linear equations for 8%, ... 8™, This gives another VE for 6. Identity (1.8)
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with G“(x) = U(x), may be derived by differentiating (1.3) with respect to
6@, Identities (1.6) and (1.9) easily yield the moment recursion relations of [5].

In the present framework, identity (1.2) has the following interpretation
which justifies the term ‘variational method”: The measure 7,(dx) is invari-
ant under the transformation (‘‘variation” of random variables) x; = x; + ¢;,
g; €R, i=1,2,...,n, but its sufficient statistics U‘(x) are not. Thus, if
¢(x) = ¢p(x4,...,x,) is a scalar statistic, then its expectation

(pY? = /Rncj)(xl, .. ,xn)Wa(xl’ coey Xy d

is invariant under the particular transformation x; —» x; + &, x; — x; for all
J # 1, e €R, that is,

(1.10) <¢>>(9)=f S(xy, ., x; e, %)X, oy x; T &, ,%,) dx.
Rﬂ

Differentiating both sides of (1.10) with respect to ¢ and setting & = 0, we
obtain (formally)

a
(1.11) [Rna—x((ﬁ(x)vo(x))dx =0.

Applying this with ¢(x) = W *(x), i = 1,2,...,n, and summing over i, we
obtain (1.2). The above differentiation (with respect to ¢) is formally equivalent
to the standard procedure for deriving the ‘variational” (Euler-Lagrange)
equations in partial differential equations. Here, this procedure amounts in
expanding (formally) the integrand in (1.10) in a Taylor series in ¢, and then
setting to zero the linear in ¢ term to obtain (1.11).

The preceding arguments show that the first version of the VM has its roots
in the ‘“variation” of the variables. The second version stems from the
““variation” of the variable and of the parameters [recall that (1.8) with
G@ = U@ js obtained by differentiating (1.3) with respect to 6(*].

The VM as previously presented is appropriate for continuous random
variables taking values in R" or in a compact manifold without boundaries (so
that no boundary terms appear in the divergence theorem). If the manifold has
boundaries (e.g., a bounded interval in R), then the procedure still applies but
the equations may not be simple because of the boundary terms. The VM can
be formulated also for categorical variables (e.g., binary Ising model). But in
this case, the equations are nonlinear even for complete data; for the Ising
model the equations have a structure similar to those of MPL, but for general
models the equations are not very convenient for estimation.

The VM is ideally suitable for Gibbs distributions with superstable regular
interactions [25, 36, 37], to be briefly described in Section 2. Here we present a
particular class of these distributions which has been successfully used [2] in
certain image processing tasks, and has recently been recommended [24] as
priors in emission tomography: Let = {J(i —j)}; ;c 9« be a positive definite
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matrix such that
J(j) =d(-j) forall je 27 Y ()] <o
i€’
In the experiments of Section 4, d = 2 and J(j) = 0 for |j| larger than some
R,. Let
(1.12)  p(x;A) = X&Wg2m 4 \Em-Dy2m-1 4 .. L )\Dx . xeR
be a polynomial of even degree with A®™ > 0. With each pixel i € 29, we

associate a random variable x; € R. Let A be a window (typically a hypercube)
in 2. Consider the energy function (Hamiltonian) in the finite window A:

HP(x(A) =5 X J(—j)ax;+ X p(x;4),

i,jeA i€A
(1.13) x(A) = {x;:i €A},
0=(J,A).

The distribution of x(A) = {x;: i € A} is given by the “finite window” Gibbs
distribution

exp[ —H{"(x(A))]
Zo) Ll

For fixed A, the distribution (1.14) is of the exponential family, but the
random variables {x;: i € A} are dependent. In fact, for some values of the
parameter 6 = (J, A), these models exhibit the phenomena of phase transitions
(and long range dependence) as A — 2¢. It is these properties that make this
class of distributions suitable for spatial statistics applications such as image
processing tasks and Bayesian regularization [2]. A particular subclass of (1.14)
behaves qualitatively and quantitatively like binary Ising models [see (4.2) and
remarks following (4.2)]. For J(j) =0, j € 2%, the random variables are iid
whose density coincides with those of type N and G in [5].

The general class of Gibbs distributions described in Section 2 is (for finite
A) of the form (1.14) with H®’s linear in 6 € R™. We will be interested in
estimating the parameters # from a single realization (complete data case)
X(A) = {X;: i € A}, or a single partial observation Y(A) = {Y;: ¢ € A}. Consis-
tency and asymptotic normality are studied as A — 2¢; hence, this study
generalizes that of time series analysis.

Since the VEs of Gibbs distributions from complete data are solutions of
linear equations, they are computationally more efficient than the MPL esti-
mators (see Section 4 for comparison of CPU times). Furthermore, our numer-
ical experiments show that the VEs are as accurate as the MPL estimators.
The comparison of the asymptotic (as A — 2¢) variances of the VEs and MPL
estimators (when both are asymptotically normal), that is, the estimation of
their asymptotic relative efficiency, is an interesting open problem; this is
similar to the analogous (and still open) problem for ML and MPL estimators.
These problems appear to be subtle even for the models (1.11) and their

(1.14) mo(dx(A)) =
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simpler versions (4.2). They lead to certain correlation or moment inequalities
whose proof (if true) seems to be delicate.

The organization of this paper is as follows: In Section 2 we set up our
notation and describe the variational method for Gibbs distributions. Section 3
contains the theorems and proofs of consistency and asymptotic normality for
certain VEs. Numerical experiments with the VEs and comparison with MPL
estimators are reported in Section 4.

2. The variational method for parameter estimation. In this sec-
tion we describe in detail the variational method (VM) for estimating the
parameters of Gibbs distributions with unbounded continuous random vari-
ables from complete and incomplete data. For the case of complete data we also
derive a generalization of the maximum pseudo-likelihood (MPL) equations.
But first we introduce some basic definitions and properties for superstable
regular Gibbs distributions [25, 26, 36, 37, 23].

A. Superstable regular Gibbs distributions. We consider the configura-

tions (or state) spaces
o=@, o=@,

where A is a finite window (‘‘ volume’”) in 2¢. The Gibbs distributions treated
in this paper are defined on (). They are limits (in a weak sense) of the
so-called finite-volume Gibbs distributions defined on (),. Configurations
(states) in Q and Q, will be denoted by x ={x;: i € g)d} and x(A) =
{x,: i € A}, respectively. For Gibbs distributions in general, R" is replaced by
an arbitrary state space (),. We assume that a reference Borel measure u, on
R™ is given such that

fereot dpg(x) < +e

for all @ > 0. We set dug \(x(A)) =TT, ¢, duox).

Gibbs distributions are defined in terms of potentials (interactions). Let 7
denote the set of all finite subsets of 2. A potential isa map ®: Uy, Qy = R
so that ®(x(V)) is u -measurable. We will always assume that the potentials
are invariant (stationary) under translations of 7.

The energy associated with a configuration x in a finite-volume A € 7 is

defined by
(2.1) Up(x) = Uy(x(A)) = X @(x(A)).

VcA

The potential ® (or the energy) is said to be superstabie [36, 37], if there exist
A > 0, B € R such that

(2.2) U,(x) > Y (Alx* + B)

ieA

forall A € 7. For A, N € 7, AN N = O, the interaction between A and A’ is
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defined by
(2.3) Iy x(x) = Uyyn(x) — Uy(x) = Uy(x) = )y P(x(V)).
VnX:g:jl\/nA’

The potential ® (or the energy U) is said to be regular [36, 37], if there exists a
monotonically decreasing function ¥: £, — R, with

Y Yl <+,

jeg?
such that :
(2:4) Lox(@) <3 X X (i —jD) (il + 1x,l7)
ieA jeN
for all A,N€ ¥, An N =. Here | - | denotes a norm on Q¢ defined by
Ijl = max{|jl,...,j,l}.

The energy U(x(A)), A € 7, is called the finite-volume energy with free
boundary conditions (b.c.) on A°. If A is a torus, then Uy(x(A)) is the energy
with periodic b.c. We now introduce other b.c. [25]. A configuration z € () is
said to be an admissible b.c. if

UA,z(x(A)) = Uy(x(A)) + 1 a(x(A) V 2(A%))
(2.5) = L ox(V)VveaV))

ve?
VNA+D

is well defined and

2y, (®) = [ exp[=Uy (x(A)] dro,a(2(A)) < +o.

A

The configuration x(V) V 2(V) in (2.5) is defined by
96 - v x;, ifieVnA,
() (x( )\/z( ))i_ z;, ifi e V. AS.
Examples of admissible b.c. are given in [25] (Section 3). The case z = 0 will be
referred to as Dirichlet b.c.
The finite-volume Gibbs distribution in A € ¥ with (admissible) b.c. z is

defined by

(2.7a) T, a,-(dx(A)) = 7o, 4, (X (A)) dpo a(x(A)),
exp[ - U, (x(A)]
(2.7b) W@,A,z(x(A)) = Z, (D) .

’ A probability measure m on () is called a Gibbs distribution relative to the
potential ®, if the conditional distribution m(dx(A)|z(A°)) for any A € 7" and
admissible b.c. z has a version given by m(dx(A)|z(A%) = 74 , (dx(A)). It is
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called tempered if

77'{ EV) N { Y lx? < N2(2n + 1)"}} =1

N n lil<n

The set of all Gibbs distributions associated with ® will be denoted by G(®),
and its subset composed of all stationary distributions will be denoted by
Go(®). Lebowitz and Presutti have shown [25] that if ® is superstable and
regular, then G,(®) is nonempty. Furthermore, the elements of G,(®) are
regular in the sense that

dr®(x(A '
D _ 5

Mo, A ieA
for some y > 0, § € R. Here d7™(x(A)) denotes the restriction for 7 to ,.
If G,(®P) is not a singleton, then we say that a phase transition occurs. The set
G(®) is convex and its extremal points &,(®) are the ergodic Gibbs distribu-
tions. Follmer has shown [10] that any = € G(®) has an ergodic decomposi-
tion, that is,

(2.8)

(2.9) w(-)= [ PO(C)dp, (),
Eo(D)
where dp_(-) is a probability measure on &y(®).
In this paper we fix m superstable regular potentials ®®, a = 1,..., m,
and consider Gibbs distributions parametrized by a vector = (69, ..., 6™) e

R™. The parameter space O is either R™ or a convex subset of R™. Let U\%) be
the energy, (2.5), associated with & and with b.c. z. The finite-volume Gibbs
distributions parametrized by § € ® are obtained from (2.7) by replacing U, ,
by

(2.10) H (x(A)) =0T, (x(A)) = Z 9T (x(A)),
that is,

xp[ ~HOL(x(A -1, (x(A
(2.11) o 5, (%(A)) = - p[ Zy (Ej;( ))] - e Z, (0§x( 2

H{®, will be referred to as the finite-volume Hamiltonian with b.c. z. For z = 0
or periodic b.c., we will suppress the index z. The set of all Gibbs distributions
corresponding to a particular value of § will be denoted by G(6), and the set of
all stationary (with respect to translation on 9¢) Gibbs distributions will be
denoted by G(6).

B. The variational method for complete data. Here and in the remainder
of, the paper we will assume that the reference measure du, on R” is the
Lebesgue measure, that is, duy(x;) = dx;. We will also assume that the
potentials ®®, ¢ = 1,..., m, are of ﬁnlte range, that is, ®(x(V)) = 0 when-
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ever the diameter, d(V) = max{|i — j|: i, j € V}, of V is larger than a con-
stant (integer) R, called here radius of interactions (most of our arguments
can be extended to infinite range interactions). We will denote by .#; the set of
pixels j € 2% j # i, that interact with i (note that if j € .#;, then [i —j| <
R,). Let A ¢ 2? be a finite window (volume) with complement A° = 29\ A.
The interior A° of A is defined by A° = {j € A: .#; N A° = &} and the (exterior)
boundary dA of A by A = {j € A°: #; N A + @}. For i € A we define %%} (in
shorthand notation %{*) by

(2.128) %@ = U (3, 8(H ) V 2(H)) = L OO((V) V 2(V))
' ieVv
iteEAN,a=1,...,m,
where the configurations x(V) Vv 2(V) and x(.#;) V z(.#;) are defined relative
to A by (2.6). Note that

(2.13) (A )Y Vea(H)=x(AH) ifie A

Hence

(2.12b) U = UN(x;, x(A;)) ifi €N,

is independent of z (and A) if i € A°. We also define

(2.14) HO = HO(x,,2(H ) V 2(H)) = L 092, i€ A.
a=1

The local characteristics of m, , ,(dx(A)) are given by
exp| —H®|

(2153) d‘lTo’i = wo’A(dinx(e/I/i ) \ Z(e/f/l )) = m, 1€ A.
Because of (2.13) we have for i € A°,

exp| —H®(x,;, x( AN
(2.15b) dm, ; = my(dxlx(A])) = xp[ —HO(x;, x(47)) dx;.

Jrn exp[ _Hiw)(fi, x(A; ))] dé;

These are also the local characteristics of any 7, € G(9).

Throughout this and the next subsection the finite window (volume) A
and the boundary condition z are fixed. We are interested in estimating
the parameter vector 8 = (V,...,0")) from a single realization X(A) =
{X,: i € A). The variational method (VM) proceeds as in the case of (1.1): We
choose m vector statistics W{®(x(A)) = {W,®)}, _ , (possibly z dependent) whose
components are ‘‘localized,” that is, they have the form

(2.16) W@ = WS(x;,x(A) Va(At;)), i€Aa=1,...,m,
where x(A#}) V z(#]) satisfies (2.13). We assume [compare with (1.2)]

(2.17) fﬂ (V- (W (x(A)) 7,0 (2(A)))}dx(A) =0, a=1,...,m.
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As in (1.3), this gives the identities

U ouP
X 0P Zfﬂ W — ",y (dx(A))
= €A i
(2.18) P70 VS
W(a)
= L[ Smaadds(A),  a=1,..,m.

ieA "y i

We will use this identity to derive the two versions of the VM. But first we use
(2.18) to derive a system of (nonlinear) equations that generalize the MPL
equations: Using the local characteristics (2.15) we write the left-hand side of
(2 18) in terms of an “‘inner” (local) expectation with respect to d, ;, and an

“outer” (global) expectation with respect to m, 5, ,(dx(A — {i})). Then we
replace the outer expectation with its empirical value, and on the right-hand
side of (2.18) we replace the expectatlon with its empirical value. This leads to
the equations

T 6® Z/ Wi (2, X(AH; ) V 2(A;))
B=1 ieA

0% F (%1, X(A7 ) V (A7)
x ax;

13

(2.19)

To, N(dx | X (A7) V 2(A7))

- z—wm(x X(H)Va(A)),  a=1..,m.

lEA

[Recall that %{% and X(.#]) V z(.#;) satisfy (2.12b) and (2.13), respectively.]
These nonlinear equations generalize the MPL equations. Indeed, if the W{®
are chosen so that

(2.20) — =™, ieAa=1,..,m,

then it can easily be shown that (2.19) are equivalent to the MPL equations.
The first version of the VM goes a step further and replaces the local
expectations in (2.19) by their empirical values. This amounts to replacing the
theoretical expectations in (2.18) by the empirical expectations. This gives the
system of linear equations

0% (%, X(A) V 2(A))

Z AUDY W(”(xwX(JV) Vv z(A7))
ieA i

(2.21) °

a
= ¥ Wi, X(H) V()  a=1..,m.
i€eA i
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If the matrix
B)

J
(2.22) T4P(X(N) = X WO—
’ . 0X;
€A i
is invertible, then (2.21) gives the first VE, éA, of 0.
A natural choice for the W(*’s is as in (1.4), that is,
(2.23a) W(x(A)) = VUE(2(A)), a=1,...,m

or in terms of components,

(2.23b) W@ =

In this case, (2.21) reads
m ow™ P\ . PY
{ } i€A

s a=1,...,m,

2.24 0P
(2:24) Bgl ig\ dx, ox; dx?
where we have used the notation of (2.12a) [the arguments in (2.24) are
evaluated at the data X(A)]. In Section 3 we show that for A sufficiently large
the solution of (2.24) exists and, under suitable conditions, is strongly consis-
tent and asymptotically normal as A — 2. In Section 4 we report numerical
results that demonstrate the computational efficiency and accuracy of these
estimators. '
Another choice of the W{*’s is a generalization of (2.20): Let F{*(x(A)) be a
(possibly z dependent) scalar statistic built out of local pieces, that is,
(2.25) F®(x(A)) = X FR(x;,x(A;)Va(A)), a=1,..,m.
ieA
[F{*(x(A)) may be chosen to be independent of z, in which case, x(.#]) in
(2.25) is replaced by x(.#; N A).] Now we choose the W{*’s so that
W
— = F@®), ieAa=1,...,m.
ax; ’

13

(2.26)

Note that in this case the right-hand side of (2.18) reads
/, VW (@A), o dx(4)) = /, F(2(A)T 0, (d(4)).
Hence (2.21) gives an approximate solution of the moment equation
(2.27) fQAFA("‘)(x(A))w,,,A’z(dx(A)) = F®(X(A), a=1,...,m.
If F{*(x(A)) = 2{*Ux(A)), b= 1,..., m, (2.27) are exactly the ML equations.
The second version of the VM proceeds as in the derivation of (1.8) [and

(1.9)]: We choose m vector statistics W(* localized as in (2.16), and m scalar
statistics G{* built of local pieces as in (2.25). Then proceeding as in the
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derivation of (1.8), we arrive at the identities (o = 1,...,m)

Mz

69 Cov, , (W - VU®), G)
1

Il

(2.28) 8

= (W@ VG + Covy » (V- W, G(),
where Cov, , ,(-,-) and (- YY), denote covariance and expectation, respec-
tively, with respect to m, , ,(dx(A)). If W{(x(A)) = x(A) for @ =1,...,m,
then (2.28) becomes

m ou® 3G\
B) . ¢ () = . ¢
(229) ﬁgle { Z COVO,A,z(xz 9% ’Gj )} Z <xt axi >

i,JEA i ieA A,z

a=1,...,m.

As in the iid case (1.9), the structure of the identities (2.29) is similar to that of
the Yule-Walker equations in time-series. A VE is obtained if we replace the
theoretical covariance and expectation in (2.29) by their empirical values. For
the iid case (1.9), these empirical values are straightforward and lead to the
following equations: If X®, ... XM (X® € R") are the iid data, then

m 1 N ) ) _ ) _
y 9(13)_1\_, Y {[Xm L VUB(XD)) — Ag\t;)][g(a)(X(J)) - G}c;’]}
B=1 j=1
(2.30) . |
=— Y X9 -VG9(xY), a=1,...,m,
N T
where
_ 1 XN 1 N
B = _ Y XO.yUB(XV), G@=-=—Y GIXD).

However, in the case of Gibbs distributions with a single observation X(A) =
{X,: i € A}, an empirical estimate of the covariance in (2.29) is not straightfor-
ward. But an approximate estimate of the covariance may be derived as
follows: Let m, be the underlying true (infinite-volume) Gibbs distribution
and suppose that

1
Al_l_f;d X COVOO,A,z(x(A) ' VUA(,ﬁz)a G/(\a))

2.31
(2.31) U o 0 o\ @)@
. _jezg?d 0 ox, |V ~\ox, (&)™

Typically such an equation holds, and its right-hand side is finite, if m, is
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translation invariant and has good mixing properties. If it holds, we estimate

o2\ Ao ouP
X X;
® oz, P iean %
<nga>>("°) Go=— Y G®

IAl ieA

and approximate the sum over 2¢ by a sum over some neighborhood S,. of
0 € 29, for example, S, = {0} U .#,,. Then we arrive at the following approxi-
mation for the covariance:

802/(’3) — _
Covy 5 .(x(A) - VUL, GE) ~ —— —AP| ¥ [6® - G®]},
LGA " ox; j€ES,

where S; = 7'S,, and 7 denotes translation on Q<.

ReMARK. For iid random variables, the second version of the VM is compu-
tationally as easy as the first. Both versions have the same order of accuracy.
This is not true in general for Gibbs distributions, because the preceding
approximations of the covariance in (2.29) may not be accurate if the underly-
ing true distribution does not have good mixing properties.

C. The variational method for incomplete data. Here we extend the varia-
tional procedure of the previous subsection to the case of incomplete data. For
simplicity, we treat only degraded data arising from additive noise. More
specifically, we assume that at each pixel i € A we observe y, =x; + 7n,,
x; € R*, n; € R", where {n,;} are iid (independent of x,) with probability law
Q(n;)dn;. The marginal of y = y(A) = {y,: i € A} is

Po,a((8)) = [ 7 ((x(A))Q(¥(A) = 5(A)) dx(A)

= [ 70.a(y(A) = 2(A))Q(n(A)) dn(A),
where Q(n(A)) =11, ,Q(n;) and dn(A) =T11,., dn,;. Here and below the
presence of b.c. z is suppressed. In the remainder of this subsection the
volume A will be fixed, and its presence will be dropped. Thus x, y, n will stand

for x(A), y(A), n(A), respectively. As in the complete data case we choose m
vector statistics W®(y), & = 1,..., m, so that

fV (W) Py(y))dy =0, a=1,...,m.
" This leads to the identity —

(2:32)  [(W(y) - Vin Py(y)}Py(dy) = = [V W(y) Py(dy).
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A straightforward computation gives

m
Vin Py(y) = = X 0PE,(VUPly),
B=1

where E,(-|y) denotes conditional expectation with respect to the posterior
P,(dx|y). Thus

(233) ¥ 0® JIW(y) - B(VUPIy))P,(dy) = [{T - W ())P,(dy),

=1
a=1,...,m.

Now we replace the theoretical expectations [with respect to P,(dy)] by the
empirical expectations. If Y = Y(A) = {Y;: i € A} is a single observation in A,
we obtain

(2.34) ) 0P{WE(Y) - E(VUP|Y)} =V -W(Y), a=1,...,m.
B=1

Good choices for W(*)(y) depend on the particular applications. The variational
equations (2.34) are nonlinear, but they are simpler than the ML equations.
They may be solved by an iterative procedure such as Newton’s method or
variants of it. An equivalent form of (2.34) is obtained by noting that
Vin Py(y) = E(V In Q(x — y)|y). Inserting this in (2.32) and replacing again
theoretical expectations by empirical expectations we arrive at (o = 1,...,m)

(2.35) WE(Y) - E(VInQ(x — Y)IY) = —V - WO(Y).

In Section 4 we test (2.35) with an example of iid random variables governed
by an exponential family.

The second version of the VM for incomplete data proceeds as in the case of
complete data, and for this reason, we will not spell out its details here.

3. Consistency and asymptotic normality results. In this section we
prove that the VE corresponding to (2.24) exists and is consistent and asymp-
totically normal as A — 2¢, under suitable conditions. Asymptotic normality
holds if the underlying true distribution is ergodic; if it is not ergodic but only
translation invariant, then we establish an asymptotic law which, in general, is
not normal. Our asymptotic normality result involves a new central limit
theorem (Theorem 3.3) which is of independent interest. Throughout this
section the potentials ®®, @ = 1,..., m, in addition to being superstable and
regular, will be assumed to have continuous first and second derivatives, and

, to be of finite range (with interaction radius R).

3.1. Preliminaries and main results. Let A C 2? be a finite volume in
2“. The (exterior) boundary dA of A has been defined in Section 2B, and we
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set A = A U dA. We replace (2.24) by

0w oP 1 U

moq
3.1 68— - . a=1,...,m,
(3.1) B§1 Al EA ox, ox,  IAl iEZA 92 “

where (® = 2 Nx;, x(A})), @ = 1,...,m, is defined as in (2.12a). Here, in
contrast to (2.24), we assume that we are given the data x(A) = {x;:i € A} in
A = A U A rather than in A (in this section the data are generic and will be
denoted by lower case letters). Thus (3.1) contains only the observed data
x(A), and no boundary conditions enter in (3.1). We are interested in estimat-
ing the parameter vector 6 from a single observation x(A), and then studying
consistency and asymptotic properties as A — 2?. The sequence (or net) of
observations x(A) for an expanding sequence (net) of volumes A c 27 is
assumed to arise from an infinite sample x € Q, x = {x;: i € 29}, for which
we observe larger and larger pieces x(A) = xlz.

In order to prove consistency, we need an identifiability condition. The
natural identifiability condition would be: 6, € O is identifiable if

(3.2) 0+ 8,, 0 € ® implies G,(0) N Gy(8,) = 9.

However, we will impose an alternative identifiability condition: 6, € ©® is
identifiable if for C = (C®,...,C™) € R™,

(3.3) Y, C@Og{M (x4, x(A)) = constant,
. a=1

my,-a.s. for all m, € Go(8,),iff C = 0.

This condition is in general stronger than (3.2) [it implies (3.2), but (3.2) does
not necessarily implies (3.3)]. Since Z{*(x;, x(#;)) and Z{*(x;, x(A})) —
2§20, x(#;)) give rise to the same local characteristics (2.15b) for all § € ©
and i € 29 we can normalize the potentials so that Z§*(x;, x(.#])) =0
whenever x; = 0. Assuming this normalization, and the differentiability of the
potentials, condition (3.3) is equivalent to

U

dx,

m
(3.3) Y C@w =0, m,-as. forallm, € Gy(6,),iff C=0.
a=1

We will use this form of the identifiability condition. We will also need a
precise analogue of the divergence theorem (2.17), in the limit A = 2¢. We will
assume

a [ow§
fnd’ﬂ'oo‘/;}n '5;:)‘ —é-gwoo(xolx(./l/o)) dxo =0

forall my € Gy(8y), ¢ =1,...,m.

(3.4)
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Our existence and consistency result, to be proven in Section 3.2, is the
following:

TueOREM 3.1 (Existence and consistency). Let 6, € © be the true parame-
ter vector, and w, € G(0,) any translation invariant Gibbs distribution.
Assume that (3.3) and (3.4) hold, and that (0% /9%0)? and 3*%(™ /9x§ are
mo-integrable. Then for sufficiently large A, (3.1) has a unique solution GA
which Tp,-0.5. converges to 0y as A > .

REMARK 3.1.1. The limit A -» 2¢ in Theorem 3.1 and throughout this
paper will be taken in the sense of van Hove [38].

REMARK 3.1.2. Because of the regularity (2.8) of the Gibbs distributions,
the integrability assumptions in the theorem are easily satisfied in practice.

REMARK 3.1.3. The assumption m, € G(6,) [rather than m, € G(6,)]
could possibly be eliminated using large ’deviations results as in [7].

Our asymptotic normality result, to be proven in Section 3.3, is the follow-
ing:

THEOREM 3.2 (Asymptotic normality). Let 6, be the true parameter vector,
and m,, any ergodic Gibbs distribution. Assume (3.3 and

35 [ 0 [2%”

R” 3.’}60

7r0 (xolx(A5))| dxg =0, meas. a=1,...,m.

Also assume that 0%§* /dx, and 82%(“)/8350 are in L(d, ) for any positive
integer k. Then the VE of Theorem 3.1 is asymptotzcally normal, that is,
under m,,

(3.6) IAT (8, — 6o) =5 N(0,3),

where 3, is an explicitly computable covariance matrix (see Section 3.3), and
-, denotes convergence in distribution.

REMARK 8.2.1. If m, is not ergodic but only translation invariant, then we
prove at the end of Section 3. 3, that V|A[ (8, — 6,) converges in distribution to
a nonnormal law.

ReEMARk 3.2.2. Condition (3.5) is a stronger for‘m of (3.4); our proof of
Theorem 3.2 uses a slightly weaker form of (3.5).

* REMARK 3.2.3. Because of the regularity property (2.8) of Gibbs distribu-
tions, the integrability conditions of Theorem 3.2 are easily satisfied in prac-
tice.
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3.2. Proof of Theorem 3.1. Throughout this subsection . will denote the
o-field generated by the translation invariant (measurable) subsets of Q =
(R™)?°, and E,(-|.) will denote conditional expectation with respect to m, .
The proof of the theorem will be given via four lemmas.

LEmma 3.1. Let

. , 1 0w aa®
(3.7) T P(x) = T P(2(M) = 7 L
i€EA 1

13

ax;

Under the hypothesis of Theorem 3.1 we have m, -a.s.,

OwU§® ou P

dxy, Odxg

A - d
Ped(x) 2225 p@p(.y = E,

/}.

Proor. This is a straightforward application of the ergodic theorem, not-
ing that |A|/|Al > 1as A - 2¢. O

/},
(3.8)

i

TAl 2
Al ;Sh  0x;

1 PUD \ g Ui
E,

ax2

ReEmaRK. If 7, is ergodic, then T*#)(-) is a constant.

LeEMMA 3.2. Under the hypothesis of Theorem 3.1, the matrix T *PX(-) is
y,@.S. positive-definite, and satisfies
/}.

Proor. First, we prove the lemma for m, ergodic. Then an application of
the ergodic decomposition (2.9) will yield the femma for any mo € Go(8,).
Note that for any C = {C“)™ | € R™,

m (a) 2
Y C‘“’a%0 >0
a=1 dx, h

m 929y (x)

dx2

z T@B(.)o) = an{

m
Z T(@BC@C®B = EB0
a=1

with equality if and only if

OUs”
c™® =0, m,-as,
dxg

which, by (3.3'), implies C = 0. Next, using the Markov property and (3.4), we
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obtain

U 0w
Bod oy |~ Jamo k) g | Ty ol (00|

U GH
+ [ 7o dx)[ .
Q Xo 0%,

m { oU UP }
; .

Z O(B)Eo
B—1
This completes the proof of the lemma when 7, is ergodic.

Next assume that m, € G,(6,) is not ergodlc Let ¥(x) = {¥@(x)}™ ; be
#measurable. To show that T#)(-) is positive-definite, we will show that

dxg 0%,

Y TOP()¥O(2)¥P(x) =0 7 -as,
a,B=1 :
implies ¥(x) = 0, 7, -a.s. Integrating over () and using the ergodic decomposi-
tion (2.9), we obtain
2

P©(dx) = 0.

()

m 4
sl

(@)

Since P{® is ergodic and ¥(*)(x) is .#measurable, we have that ¥(*(x) = C®,
P{®-a.s. Thus the equation above implies

] (a)
(@
Z ¢ ax,
and by (3.3), C = {C(“)};’;l = 0. Thus
mofx: W(x) # 0} = [p,, (d€) PE{x: ¥(x) # 0} = 0.

Next we show that T(*#)(-) satisfies the equation of the lemma: Let A € .7,
then

=0 PPas,

2 U

0
/, EWO{ 72 /}w,,o(dx) = fA——ax—g——wgo(dx).

Using (2.9), Fubini’s theorem, and (3.4) we have

32%(()41) (a)
— (&)
[A E,%{ P /}wgo(dx) = [fo(@pwo(df) [A EP@ e }Poo (dx)

k1o (90)

= o "60( f)/EP(f){ }Po(g)(dx)

%(d) 0H(B°)
- [ E,,B{ o (dx).
A o Xy

This proves the lemma, since A € . is arbitrary. m]
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LemMA 3.3. Let A = (a'*P) be an m X m nonsingular matrix, and A, =
(al*P) be a sequence of m X m matrices, which converges to A entry-wise, that
is, a'»P — a(*PB) Then there exists an N, such that for n > N,, A, is
invertible, and A;' - A~ in norm as n — o,

Proor. Let || - | denote any of equivalent norms on the space of m X m
matrices. We have ||A, — All - 0. Let N, be such that |4, — Al < (JA~p~?
for all n>N,. Thus |[A"A - A)I <||A7Y|]JA — A,|l < 1. Therefore
I-A"A-A,) and A, =A[Il - A" (A — A))] are invertible for n > N,,.
Using the series expansion of [[ — ATY(A — A,)]"' we obtain for n > N,,,

TATHIIA = Al
1—ATYIIA = ALl

A — A7 < |A7YI

Hence |[A;' - A7 Y > 0as n > ». O

LEMMA 3.4. Let A = (a®P) be an m X m nonsingular matrix and con-
sider the system of equations

m
(3.9a) Y a@PeP) =p@ g =1,...,m.
B=1
Let
m
(3.9b) Y a@PgP =p® a=1,...,m
B=1

be a sequence of linear systems so that a'®P — a*®, and b - b, a =
1,...,m, B=1,...,m. Then there exists an N, such that for n > N, (3.9b)
has a unique solution 6, = (0, ...,0™) such that |6, — 6| > 0 as n — .

Proor. By Lemma 3.3 there exists an N, such that for n > N, A, is
invertible. Thus for n > N,, (3.9b) has a unique solution

6,=A,'0,=A"(b,—b)+ (A} —A")b +0,

where 6 is the unique solution of (3.9a). This, together with the fact that
lA;* — A~} - 0, quickly yields the lemma. O

Proor oF THEOREM 3.1. The proof is now a straightforward consequence of
Lemmas 3.1-3.4. O .

3.3. Proof of Theorem 3.2. Subtracting

1 OUL™ U
Al ;ep 9%,  dx;

13

m
X 6
B=1
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from both sides of (3.1) and multiplying by V|A| we obtain,

m

. A ) IR (5 o)

(3.10) 1 RPU@  9Y GH SO 1
— — N a=1,....m,
Al jca | oa? ox; 0%,

where T\(*#)(x) has been defined in (3.5). The limit of this matrix is given by
(3.6). Below we will show that the rlght hand side of (3.10) satisfies a central
limit theorem. Let

PUSD oY@ JHOO

Y@ = _
’ axf ox; ox;

YA(C!) —

Z Y@,
V ieA
Y, = {YA(a)}Z;l
We will prove the following results:

THEOREM 3.3. Under the conditions of Theorem 3.2, for any t € R™ we
have

(3.11) lim E,{exp[it - Y]} = exp| — 3t - Bt],
A—>Q

where E, denotes expectation with respect to w, , and the matrix B = (B #)
is given by

B@B = an{Yéa) E y}(B)}’

(3.12) J€Vo
Vo = {0} U A4

In particular, under Ty

(3.13) Y, -5 N(0, B).

REMARK 3.3.1. The proof of Theorem 3.3 is lengthy and technical, but
property (3.15) is the most intrinsic property needed for the validity of the
theorem. In fact, any set of dependent random variables {Y*}, j € A, a =
1,..., m, that have property (3.15) and satisfy appropriate 1ntegrab111ty condi-
, tlons satisfy (3.11).

'REMARK 3.3.2. The matrix 3 in (3.5) is given by 3 = T'BT where T is
the (constant) matrix in (3.7).
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REMARK 3.3.3. We believe that (3.11) still holds if the interactions are not
of finite range, but satisfy

Yy Eoo{Yéa)Y}(B)} < o
jeg?
REMARK 3.3.4. Theorem 3.3, together with the 7, -a.s. convergence of the
matrix 7 #(x), and Lemma 6.4.1 of [28], page 439, 1mply Theorem 3.2. Thus

we need only to prove Theorem 3.3; its proof is based on the following
proposition.

ProposiTiON 3.1. Under the hypotheses of Theorem 3.2, we have for any
integer k > 0,

(3.14) lim E,{(t-Y,)") = [(t-y)"F(dy),
A—> Q¢
where F is the distribution with characteristic function exp{—(1/2)t - Bt}.

The proof of this proposition is technical and lengthy. It will use a series of
lemmas.

Lemma 3.5. For any m, € G(6,), we have

(3.15) E, (Y @l(2? - {jH} =0, je@Va=1,...,m

Proor. Consider
(e) P2

Ba) a7 x(?d—{j})} s o4 (97 ~ () dx

and apply condition (3.4). O

Let Z, =t - Y, =X t9Y®, j € A, and write

(3.16) E,f(t - YA)} |A|k/2'

We will split the sum in (3.16) into three parts according to the “clustering”
(separation) of the pixels in the k-tuple (j,,...,j,) € A* (A* = A X -+ XA,
k copies of A). The splitting is facilitated by the following definitions.

DEFINITIONS.  Recall that R, denotes the interaction radius of the poten-
tials.

'1. The distance between two sets of pixels {i;,...,7,} and {Ji--sdg) 18
‘defined by

D({il,...,ip},{jl,...,jq})=min{|il—jm|:l= 1,...,p,m=1,...,q}.
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2. A k-tuple (j, ..., j,) is said to be an R,-cluster if it cannot be separated
into two subsets with distance strictly larger than R,,.
3. The number of R -clusters of a k-tuple (j,, ..., j,) will be denoted by

KRO=KR0(j1""’jk)'

Next we define three disjoint subsets B;, B,, By such that A* = B, U B, U
Bg: (a) B, is the set of k-tuples (j,,...,j,) € A* which have at least one
R ;-cluster containing only a single pixel. (Note that the complement, A*\ B,,
of B,, contains at most [k/2] R -clusters, where [k/2] denotes the integer
part of k£/2.) _

(b) B, is the subset of A*\ B,, defined by

. . . .k
B2 = {(Jl""’.]k) = Ak\31: KRO(Jl,H-’Jk) < 5}

(Note that A* = B; U B, if & is odd; if % is even then there is one more

subset.)
(c) By is the complement of B, U B, in A%, that is,

=BIUBZUB3’ B3m(B1UB2)=®
or equivalently,
. . ' . k
Bo = {(Jl""’fk) € NN\ (By UBy): Kp((J1,---»Ja) = E}.
[Note that B is empty if £ is odd; if & is even, say k = 2, then any

(j1s -+, Jr) € By has exactly [ R -clusters: Each cluster consists of two (possi-
bly identical) pixels; the clusters are separated by a distance strictly larger

than R,.]
Now we write
(3.17a) E{(t-Y,)") =IO, + IO, + IS,
1
(31)  IN=IN® = L B2, Z),
(G7TRN Jr)CB;
1
(3170) I]f)A— (2) (t) 'Alk/z Z Eoo{Zjl Zlk}’
Uiseees jk)CBz
1
1) Q=IO = L B2, Z)
Giyeeons jk)CB3

Each of these terms is controlled (as A — 29) in the following three lemmas;
the third lemma (Lemma 3.8) is the most subtle.

" LEMMA 3.6.
(3.18) ‘ Y E‘,O{Zjl ij} =0



126 M. P. ALMEIDA AND B. GIDAS

Proor. Let j; form an R-cluster by itself. Using the Markov property
and Lemma 3.5 we obtain

an{Zjl o ij} = ,/;)an{zjllx(g)d - {jl})}zjz e ijweo(dx) =0. o

LEmMMma 3.7.

3.19 lim ———
( ) Aln;)d |Alk/2

Proor. Since the number of R,-clusters in B, is strictly less than £/2, it

is easily seen that the number |B,|, of k-tuples of B,, satisfies |B,| <
CIAI*~D/2 with a constant C 1ndependent of A (C depends on R, and k).

Therefore as A — 27,

IR <

1
G /2C|Al(k V2E, (120"} < C't'kﬁEeo{lYol"} 0. -

REMARK. Lemmas 3.6 and 3.7 prove Proposition 3.1 when % is odd.

LEMMA 3.8. Let k be a positive even integer. Then

k!
2k/2 (t ’ Bt)k/z’

3
Ahm IP(t) = /2!

where I{)\(t) is defined in (3.17d).

Proor. By definition, any k-tuple (ji,...,j,) € B; has exactly £/2 R,
clusters, and each cluster contains exactly two (possibly identical) pixels. This
means that there exists a permutation 7 of (1,2,..., k) so that the R,-clus-
ters of a k-tuple (jy, ..., j,) € B; take the form {j 1y, jp@) I =1,...,k/2.
By definition |/, 5;-1) = Jr@| < By, and the distance between any two clusters

{j‘n-(2l—1)’j1-r(2l)} and {jﬂ'(Zm—I)’jﬂ-@m)}’ m # 1,

is strictly larger than R,,.
Let B¥ be the subset of B, defined by

B = {((J1,---»Jx) €Bg:ljz—1 —Jjul < Ro, 1= 1,...,k/2,
(3.20) diSt({jzz—pjzl}’ {Jom-1, j2m})
>Ry, l#+m,l,m= 1,2,...,k/2}.
Also, let &, = £(1,2,...,k) be the set of permutations of (1,2,..., k). Then
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it is easily seen that
Y Eﬂo{Zjl’“"ij}
((G7Tron Jjr) €Bg

(3.21) ) "
B (k/2)12%/2 ) D E"O{ I—Ilzjw(zl—nzjwal)}‘

eZ, Umcays v vs Jmky €BE =

Next we split the sum over Bj into two parts: Let R > R, and define two
disjoint subsets B3, (R) and B¥(R) of B} by

B3(R) = {(J1,---,Js) C B¥: at least two R,-clusters
have distance strictly less than R }
Bj = Bj(R) UB%(R),  Bi(R) N Biy(R)

Note that the distance between any two R ,-clusters of a k-tuple ( Jis---sJp) €
B3,(R) is larger than or equal to R. We write

1 k/2
(3.22a) IAl—k/Z 4 :,) . 00{“ o1 le} JO(R) + JA(R),
Loeens Jr)EBY¥
where
1 k/2
(3.22b) JO(R) = IO R) = — s )Y E 112, 2,
A= Gy ipeBsry i1
1 k2
(3220) J(z)(R) = (2)(t R) |A|k/2 Z Go{n Joi-1 le}
(jl ..... Jk)EBgz(R)

The terms J{")(R) and J{*\(R) are controlled in the next two lemmas.

Lemma 3.9. For any finite R > R, we have
(3.23) lim JM(R) = 0.

A-Q¢

Proor. The proof is the same as in Lemma 3.7. O

LeMMA 3.10. Given € > 0 there exists an R(¢) > R, such that for R > R(e),
(3.24) lim [J®(R) — (t-Bt)*?| <

A-Q4

for t in any subset of R™.

Proor. Note that

t-Bt = Ef,o{z0 Y zj}.

JeVy

Recall that if i € 99, then .#; denotes the neighbors of i, and V, = {i} U ..
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For any R > R, we define

k
B**(R) = {(jl,...,jk/z) € N /2 dist(V;,V; ) =R, l#m;l,m=1,...,

Do
_—

Then
JP\(R) = M"\(R) + MP\(R),
where
k/2
M{\(R) = —— > Ey, nZLl Y Z
|A| (G2 jk/z))EB**(R) = zeV
k/2
- nan[z,, > Z]
eV,
1 k/2 . 2
M®(R) = —7 z [1E, 2, ¥ Z| - (t"Bt) /
A oo i a0 eB**(R) 1=1 iev,

The ergodicity of m,, and the L,(dm, ) integrability conditions of Theorem
3.2, imply that given ¢ > 0 there exists an R(e) sufficiently large so that for
R > R(e),

k)2 k2
l_IZl, Y Z HE Z, Y Z
=1 ‘jey, ieV,

for t in compact sets of R™. Thus for sufficiently large R,
IB**(R)|

(1) ZWR)| < —_IAIk/Q

E.

By translation invariance,

i€V,

k/2
' ]_[EBO[Z” )y z] = (t- Bt)">.

Therefore

|B**(R)|

)(t - Bt)*"%
Hence, for sufficiently large R,

(3.25) I, — (t-Bt)*?| < 1B (R)I ( IB**(R)|

I . k/2
) |A|k/2 |A|k/2 )(t Bt) .
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It is easily seen that

|B**(R)|

|A|—k/2—>1, aSAﬁg)d.

This, together with (3.25), yields (3.24). O

Proor oF LEMMA 3.8 (completed). Combining Lemmas 3.9 and 3.10 with
the identity (3.21), and noting that the number of permutations in &, =
HQ1,...,k)is k!, we quickly obtain Lemma 3.8. O

Lemmas 3.6-3.8 yield

0, if % is odd,
3.26 lim E,{(t-Y,)" = k! .
( a) AE;" 00{( A) } W(t . Bt)k/z, if & is even,
(3.26b) = [(t - y)F(dy).

This proves Proposition 3.1. O

Proor oF THEOREM 3.3. Note that the Taylor series of
ea(t) = Eoo{eXP[it : YA]}
converges, as A - 29, term by term to the Taylor series of
¢(t) = exp[ — 3t - Bt].

Now we will prove that ¢,(t) converges to o(t) as A - 2?. Consider the
Taylor series with a remainder

pp(t) = an{cos(t -Y,) +isin(t - Y,)} = SENV-D + RV,

where
2n—-1 jk i
SENTY = SEY I = E rEf(t Y'Y,

REY = REV(t)
2N

~ (2N)!

E, {[cos(6,(t = Y,)) + isin(0,(t - Y2))](t - ¥,)*")
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with [0,] <1, |8,] <1 (6; and 6, are random quantities). Similarly ¢(t) =
S@N-1 4 RCN) Note that

lim sup|R®M)| < V2 11m Eoo{(t YA)2N}

1
A-—)?d (ZN)'

(3.27) 1 N
= @W(t - Bt)
-0, as N —» o,

Also SZN~D converges (term by term) as A —» 2¢ to S@¥~D. This, together
with (3.27), implies the convergence of ¢,(t) to ¢(t) as A — 2<.

We end this section by deriving an asymptotic law for v|A| (éA — 6,) when
the true distribution m, is not ergodic but only translation invariant. O

THEOREM 3.4. Let 6, be the true parameter, and assume that the true
distribution m, € G(8,) is translation invariant but not ergodic. Assume
that the ergodtc measures P € &(®), in G(6,) satisfy the conditions of
Theorem 3.2. Then VIA| (8, — 6,) converges in distribution, to a nonnormal
law, as A > 29,

Proor. By the ergodic decomposition (2.9) and Fubini’s theorem we have
Ewgo{eXP[it ) ‘/W(ézx - 00)]} = fé)o(q))Pweo(df)Epgf)){exp[it ) \/l_Xl_(éA - 90)]}~

Using the dominated convergence theorem, and Theorem 3.2, we obtain

i . fonlie- VAT, - )]

- p""e (dg) hm Ep@){exp[it . \/|_K|_(§A — 00)]}

Ey@ 0

oo )pwe(df)exp[——t C,t],

where
C, = Ty 'B,T; Y,

0w dwusP
Ixy dxq |’

TP = Epg,g){

Bé""ﬁ) Ep(f){Yé oy Y(B)}

JEV,
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Since expl(—1/2)t - C,t] is positive-definite, continuous at t = 0 and bounded
by 1, we conclude (by the dominated convergence theorem) that

Ly ol d€)exe =3t - Cet]

is also positive-definite and continuous at t = 0 and, hence, it is the character-
istic function of a probability distribution. O

4. Numerical experiments. In this section we present six numerical
experiments with complete data for testing the VE of (2.24), and one experi-
ment with noisy data for testing the VE of (2.35). In the complete data
experiments, we also apply, for comparison, the MPL method. In all six
experiments the CPU time used by the VE is much less (by a large factor) than
the one used by the MPL method, and the results are comparable. A simula-
tion device, given in Section A, is interesting in itself.

The generic class of Gibbs distribution we use in our experiments is defined
as follows: Let e, € 2%, a =1,...,%, be m distinct vectors in 22 (here we
work on the lattice 22 rather than 9¢). Let A be a finite window on ?
(typically an M X M square; in our experiments M = 128). For simplicity we
assume periodic boundary conditions (i.e., A is a torus). The Gibbs distribu-
tions are given by (1.14) with

m
HO(x) =5 L BOY (% —%15.)° + L p(a;54),
a=1 i1eA 1€A

(4.1)
0=(B,A),B*“>0,a=1,...,m,x, €R,

where p(x;A) is the polynomial (1.12). For a more general version of (4.1),
defined at all levels of resolution or scale, with applications to the representa-
tion and synthesis of textures, see [2].

The polynomial p(x;A) is allowed to have one or more local and/or global
minima. Intuitively, the configurations x = {x;: ¢ € A} with high probability
are those that tend to minimize H{"(x). The first (quadratic) part in (4.1)
induces a cooperation between two interacting pixels { and i + e,
a=1,...,m. That is, the gray-levels x; and x,,, “tend” to have the same
value. This common value is dictated by the minima of p(x; A). Thus, in terms
of images, the minima of p(x;A) represent the dominant gray-levels in an
image. A high probability sample from m,(x) will typically contain “homoge-
neous”’ regions, each consisting of values at, or near, a minimum of p(x;A).
The heights of the local maxima of p(x;A) control how smooth or how sharp
are the transitions from one ‘“homogeneous’ region to another ‘“homoge-
neous’’ region (see [2] for details and image experiments).

, The potentials specified by (4.1) are superstable and regular, and all the
assumptions of the previous sections are satisfied. Therefore all our results
hold.
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A. Experiments with complete data. A is taken to be a 128 X 128 square,
and we use a special case of (4.1), that is,

6
(42) H(x) =3 L BOY (v —x,,,)° + L (Axf — JAx2 + hx,)

a=1 ieA ieA

with A > 0, B0,...,8© > 0 and

e1=(1’0)7 62:(0,1), e3=71§_(171)7

1 :
e4=7_2—(1,—1), es; =(2,0), es = (0,2).

We assume periodic boundary conditions. If A = 0, B = g®@ = g® =g® =g
and B® = g™ = 0, then with B fixed and A%/16A very large, a high probabil-
ity configuration x = {x,: i € A} will have components x; with values near or
at (A/4)1)Y2. Note that (A/4)1)/? is the location of the two wells of the
polynomial Ax* — 27 'Ax2 and A2?/16A is the height (from the global minima)
of its local maximum. In this sense, the model behaves like the binary Ising
model; in fact there is (see [40], Chapter IX) a much deeper relation between
the two models.

First, we simulated the Gibbs distribution associated with (4.2) for six
different sets of values of the parameters A, A, h, B9, ..., B©® (see below for
method of simulation), and estimated the VEs and MPL estimation. Tables
1-6 show the parameter values (simulation) used in the simulation, the
variational estimators (VE) given by (2.24) and the maximum pseudo-likeli-
hood (MPL) estimators. In each experiment, the parameters were estimated
from a single realization. The MPL equations were solved using Newton’s

TABLE 1
Parameters
A A h Bl B2 BS B4 B5 ﬂﬁ
Simulation 50 50 0 10 0.1 0 0 10 0.1
VE 51.146 51.164 0.104 9.920 -0.614 0.0040 0.738 9.071 0.192
MPLE 50.629 50.599 0.0666 9.411 0.192 -0.611 0.541 9.541 0.128
TABLE 2
Parameteré
A A h Bl B2 B3 ﬁ4 B5 BG
Simulation 3.364 3.364 0 5.8 5.8 0 0 0 0
VE 3.453 3.256 —0.0198 5966 6.025 —0.346 —0.125 —0.0579 0.0549

MPLE 3.559 3.428 -0.0134 6.036 5.994 -0.298 -0.155 -—0.0701 0.0347
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TABLE 3
Parameters
N A h B! B2 B® Bt B® Be
Simulation 3.364 3.364 0 20 5.8 0 0 0 0
VE 3.650 3.583 0.0247 20.612 5.059 0.131 0.628 —0.517 0.0491
MPLE 3.730 3.687 0.0050 20.489 5.294 0.0183 0.542 —0.388 0.0525
TaBLE 4
Parameters
A A h Bl B2 ﬁ3 ﬁ4 B5 ﬁﬁ
Simulation 10 10 0 5.8 5.8 0 0 0 0
VE 9.444 9.349 0.0087 6.104 5.874 0.0152 —-0.104 —0.0440 —-0.153
MPLE 9.683 9.660 0.0052 6.069 5906 0.0567 —0.144 —0.049 —0.106
TABLE 5
Parameters
A A h Bl ﬂ2 ﬂs B4 B5 BG
Simulation 100 100 0 10 10 0 0 0 0 7
VE 103.10 102.80 0.0198 10.493 11.259 -—0.545 0.202 0.538 —1.034
MPLE 102.97 102.73 0.0484 10.749 10.900 -—-0.082 —-0.223 0.325 —0.570
TABLE 6
Parameters
N A 3 Bl B2 B® g4 g5 Be
Simulation 100 100 0 10 10 0 0 10 10
VE 99.420 99.572 0.190 10.157 8.701 —-1.799 2472 11.343 9.224
MPLE 98.782 99.035 0.176 10.220 9.674 —1.506 2.257 10.162 9.488

method. The iterations in Newton’s algorithm were terminated when the
Euclidean norm of the vector that results from the difference between the
empirical and the theoretical expectation vectors is smaller than a tolerance
error which was set to 1071, The number of iterations depends, of course, on
the initial “guess”’. The MPL values given in Tables 1-6 were obtained by
using as initial ‘“‘guess’ the variational estimators (VE). With these initial
values, changes in Newton’s algorithm stopped after two iterations for the
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second and third experiments (Tables 2 and 3), and after three iterations in
the other experiments (Tables 1, 4, 5 and 6).

On an IBM 3090, the CPU time used by the VE was of the order of 1.93
seconds. Each iteration in Newton’s algorithm for MPL took about 300
seconds. This shows the computational superiority of the VM over the MPL
method. Tables 1-6 show that the two methods give comparable results.

Next we mention briefly three methods that we have used for simulating
Gibbs distributions with single pixel random variables x; € R: (a) The Langevin
equation [19, 15]; (b) The Metropolis algorithm [21, 30, 13]; and (c) The Gibbs
sampler [13]. Simulation via the Langevin equation is in general slow, but it
has the advantage that it can be implemented easily on parallel (vector)
computer architectures. The Metropolis algorithm is the most suitable for
Gibbs distributions with continuous random variables. The following imple-
mentation makes the Metropolis algorithm especially efficient: Suppose that at
the ¢th sweep (¢ = 1,2,...) we want to update the current value x,(t — 1) at
pixel i (given the values at all other pixels). We draw a sample y from a
Gaussian distribution on R with mean x,(¢ — 1) and variance o(z). Then the
new value x;(¢) is chosen to be y or x;(¢ — 1) according to the Metropolis rule.
The covariance o(¢) is chosen to decrease monotonically with . We have not
characterized the best schedule for o(¢), but in applications the following
schedules perform reasonably well:

S t=1,2
t) = =
o(t) 1+In¢’ >
and
Co
0'(t)=7, t=1,2,

with empirically chosen constants C, and C,.

The Gibbs sampler is more appropriate for Gibbs distributions with discrete
random variables. It can be applied to continuous random variables after
discretization (‘‘quantization”), but it is in general expensive. However the
data used for the estimations in Tables 1-6 were generated via the Gibbs
sampler. The special structure of (4.2) was used to make the Gibbs sampler
computationally efficient and highly accurate (in the sense of generating good
“typical”” samples of the distributions). For example, because of the term Ax},
A > 0, the contribution to the partition function [see (2.15a)]

[R exp| —H,(x;, x(A; )] dx,

from large values of |x,| is small. Thus we chose an interval [—a, a] containing
the minima of Ax; — (A/2)x?"— hx; and subdivided it using a mesh of length
1/32. The samples used in the estimation of Tables 1-6 were generated after
300 sweeps. We also estimated the same parameters using the sample gener-
ated after 1000 sweeps, and the results were approximately the same.
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B. Experiment with noisy data. We tested the accuracy of the VE provided
by (2.35) with a simple experiment: The unobserved process is governed by the
exponential family

m(X) =C(/\,A)exp{—/\X4+ %AXz}, XeR.

We generated 10000 iid samples with A = 10, A = 10. Then we added a
Gaussian noise with mean zero and variance o2 = 0.01. The parameters A and
A were estimated by solving (2.35) via Newton’s method. The estimated
parameters are A = 9.8285 and A = 9.8418. We did also experiments with
smaller and higher noise. As expected, the smaller the noise the better the
estimated parameters. The accuracy of the estimation was unsatisfactory for
large noise variance o2.
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