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Technion—Israel Institute of Technology

Let {X(¢), t = 0} be a harmonisable, symmetric, a-stable stochastic
process and let C,(T') be the number of times that X crosses the level u
during the time interval [0, T']. Our main result is the precise numerical
value of C = lim,, _, ,u“EC,(T). By way of examples, including an explicit
evaluation of EC, for a stationary process and a combination of analytic
and Monte Carlo techniques for some others, we show that the asymptotic
approximation EC, ~ Cu~* is remarkably accurate, even for quite low
values of the level u. This formula therefore serves, for all practical
purposes, as a “Rice formula” for harmonisable stable processes, and
should be as important in the applications of harmonisable stable pro-
cesses as the original Rice formula was for their Gaussian counterparts.

We also have upper and lower bounds for EC, that hold for all u and
that, unlike previous results in the area, also hold for all « and are of the
correct order of magnitude for large u.

1. Introduction. We shall be interested in stationary, harmonisable,
symmetric, a-stable (SaS) stochastic processes {X(¢), ¢t > 0}. These processes
have generated considerable interest over the past few years, primarily as a
family of structurally Gaussian-like processes that provide good models for
long-tailed processes. A good introduction to these processes is the review
article by Weron (1984), with a more comprehensive and up-to-date treat-
ment [Samorodnitsky and Taqqu (1992)] currently in preparation.

Let C,(¢) denote the number of crossings of the level u by such a process in
the time interval [0, T']. [For a formal definition of level crossings see, for
example, Cramér and Leadbetter (1967). We are implicitly assuming that X
is regular enough for C,(T') to be well defined.] Our primary interest lies in
calculating EC,(T).

Since X is assumed stationary, it is immediate that EC,(T) = TEC (1),
and so from now on we shall only study C, = C,(1).

The problem of having good information about EC, is of major importance
in terms of applying SaS processes in real life problems. There is probably
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no result as fundamental to the application of Gaussian processes as the
famous Rice formula,

_pn 1/2 .2
w2 ol

«~ 7\ "R(0) 2R(0)

[Rice (1945); see Cramér and Leadbetter (1967) for its final version and
history] which gives an explicit form for EC, when X is a mean zero,
stationary, Gaussian process with covariance function R(#). Without an
analogous result for stable processes, many modelling applications of these
processes cannot even begin.

In light of the fact that, with rare exceptions, the explicit form of stable
densities is unknown, it seems extremely unlikely that it will be possible to
find a closed form expression for EC,. Thus bounds and approximations are
the order of the day.

A first step in this direction was taken in Marcus (1989), and since his
methodology is also the starting point of our own calculations, we shall now
describe his approach and results in some detail. We need to start with some
definitions.

A real-valued stochastic process {X(¢), ¢ > 0} is stationary, harmonisable
and SaS iff it has the integral representation

(1.1) X(¢) =Re{f ei“Z(dA)},
where Z is a complex, SaS random measure on (), %) with a finite control
measure F: that is, if A,,..., A, are n disjoint sets in R and 6,,..., 6, are

complex numbers, then

E exp {i i GkZ(Ak)}
(1.2) kot

~e ([ [

where S, is the unit circle. We shall call F the spectral distribution function
of X.

Details on (1.2) can be found, for example, in Cambanis (1983). Although
the spectral representation (1.1) will have only a minor role to play in the rest
of the paper, it is useful for setting up and justifying our terminology, all of
which becomes standard in the case a = 2, when the preceding description is
of a mean zero, stationary, Gaussian process.

What is more important for us is that stationary, harmonisable SaS
processes can also be represented via the infinite sum

a

F(d)) ds} ,

T (suRe(8) + 8 Tm(6,)) 1Y)

(1.3) X(2) = (C.b; )" X Ty V*(GP cos(¢A,) + G sin(tA,)).
k=1

The {GY"},, i = 1,2, are independent sequences of ii.d. standard normal
variables. {I';}, is a sequence of arrival times of a unit rate Poisson process,
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so that {I',,; — I}, is a sequence of i.i.d. standard exponentials. {A,}, is a
sequence of i.i.d. random variables with distribution function F(A)/A,, where
Ay == F(). The four sequences are independent of one another. Finally, the
constants are given by

- -1
C = (fo x_“sinxdx)

[e3

(1.4) _ [ = a)(T(2 - a)cos(ma/2)) !, ifa+1,
2/m, ' ifa=1,
(1.5) b, = 22T (1 + a/2).

This representation is due, initially, to LePage (1980) and LePage,
Woodroofe and Zinn (1981), with extensions and fine tuning due, among
others, to Marcus and Pisier (1981). [Note that while (1.2) and (1.3) are
consistent, and (1.2) is consistent with the corresponding representation in
Marcus (1989), this is not true of (1.3) and its analogue in Marcus’ paper,
where the two representations differ by a multiplicative factor. This does not
affect Marcus’ results, since these are all stated in terms of nonexplicit
constants. It is important for us, however.]

The representation (1.3) is crucial for the study of EC,. Note that if we
condition on the {T',} and {A,} sequences, then what remains is a mean zero,
stationary, Gaussian process with covariance function

R(¢) = (ACo/b,)"" X Ty % cos(tAy).
k=1

Rice’s formula gives us the precise form of the level crossing rate for the
conditional Gaussian process as

16) E(CILL),(A)]) = & [l v —u?
( . ) { u{ k}’{ k}}_ T 0}:=1I‘k—2/a exp 27a2A(2)/aZ°Z=lrk_2/a ’

where v, :== (C,/b,)" *.

There does not seem to be any way of explicitly evaluating the remaining
expectation in (1.6). There are, however, a number of paths that lead to
useful results.

The first obvious path, which seems at first one of desperation, is to look at
the behaviour of EC, as u — «. Given that more is known about the tails of
stable random variables than about the central parts of their distributions, it
is natural to hope that something can be done for this case. In the following
section we shall show that, for all « € (0, 2),

Alca
(1.7) lim u*EC, = ,

u—>® a
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where, in general, the spectral moments Ags B = 0, are given by
1.8 A= [ ABF(dN).
(1.8) o= [ APF(dN)

Because of the explicit form of the right-hand side of (1.7), this asymptotic
formula is the main result of this paper.

In Sections 3 and 4 we shall show, by way of an example, that (1.7) is of far
more than theoretical interest. Section 3 will consider a very special case of a
sub-Gaussian process for which it is actually possible to calculate EC,
explicitly, and en passant, will establish a similar asymptotic formula for a
class of nonharmonisable stable processes. The example we consider, which is
the only one for which EC, is known exactly for all u, will show that the
asymptotic formula inherent in (1.6), namely,

/\1 Ca

T

—a

u -,

EC, ~

provides a remarkably good approximation to EC, once u is of the order of
magnitude of the highest quartile of the distribution of X(¢).

This theme is continued in Section 4, where we note that although in other
cases we cannot explicitly calculate EC,, it is easy to evaluate numerically
via simulation over the random variables in (1.6). We shall collect a number
of typical such evaluations that reinforce the example of Section 3, to show
that, in general, the asymptotic result gives a very good approximation at
surprisingly low levels u. It is this fact, far more than the intrinsically
interesting theoretical nature of (1.7), that makes this result so important.

Forerunners to (1.7) can be found in Marcus (1989), who studied necessary
and sufficient conditions for the finiteness of EC, by deriving upper and
lower bounds of the form Ku®. However, from our point of view, Marcus’
results are incomplete, for the exponents 8 appearing in the upper and lower
bounds do not always agree. Neither do his results provide both upper and
lower bounds to EC, for all values of the stable index «. We shall remedy
this situation in Section 5, where simple extensions of the arguments used to
derive (1.7) are used to provide exact bounds for EC, for all u and all a. It
should be noted, however, that with one exception the constants in both our
bounds and Marcus’ bounds are not given explicitly. (The exception is in our
general lower bound.)

Finally, in Section 6 we look at the problem of evaluating numerical
bounds for EC,, and present some results, but without proofs. The results
here are rather disappointing because the gap between the upper and lower
bounds is large. Nevertheless, as will be seen from the graphs of Sections 3
and 4, the disappointment is more than made up for by the fact than the
asymptotic approximation inherent in (1.7) is surprisingly good for surpris-
‘ingly small values of u.

2. The asymptotic formula. Throughout the remainder of this paper
we shall assume that EC, is finite for all u. The following result, which
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places conditions on the spectral moments that guarantee this finiteness, is
part of Theorem 1 of Marcus (1989):

2.1. PROPOSITION. The following conditions on the spectral moments are
necessary and sufficient for the finiteness of EC, for all u:

M <o, ifa<l,
(Alog A)s <o, ifa=1,
A, <o, ifa>1,

where
w A

(2.1) (Mogh), = [ /\log(—)F(d/\)
s é

and 8 is the unique solution of

(2.2) 5(24 — F(5)) = [ AF(d))

B
when Ay < . When A, = ©, we set (Alog A); = .
The following is the main result of this section:

2.2. THEOREM. Assume EC, < «. Then

. /\lca
lim u*EC, = .
u—® o
PROOF. Set
;e \V2 —u?
Si: 0 -2/a exp 232/ a g -2/a[?
k=10% 7 Y D] I
o 2 p-2/a \1/2 .2
g2 [Zr2Ml 7T u .
¢ P P 2920y Ly Iy %

Then, by (1.6), and noting that all the random variables appearing there are
positive,

ES} E(S} + S2).
<EC, < —* 7,
a a

The proof of the Theorem will now follow from Lemmas 2.3 and 2.4. O

2.3. LEMMA. Assume EC, < «, and let S} be as defined before. Then
lim u“ES} = A,C,.

u—
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2.4. LEMMA. Assume EC, < «, and let S2 be as defined before. Then
lim u*ES?2 =

u-— o

We shall prove both of these results in a moment, but first we need to
know something about the distribution of Y5_,;A%ZT; 2/ It is well known
le.g., LePage (1980)] that Y;_,A%T, %/* converges with probability 1 iff
EA® < . For later use, we note that in the case of convergence, the limit
variable, S say, has a so-called S, ,(o,1,0) stable distribution with scaling
parameter o given by o /%2 = ) /()t0 v /2) that is, the distribution of the
random variable S has Laplace transform

—6°/2,
/2 COS(Ta/4)

(2.3) Ee % = exp {AOC

The other fact that we need to start the proofs of Lemmas 2.3 and 2.4 is
contained in the following result.

2.5. LEMMA . Let X be a positive, a/2 strictly stable random variable with

scale parameter o, so that it has Laplace transform E exp{—0X} =
exp(— o */%0%/2 /cos(wa/4)). Then

(2:4) lim u*Efexp(~u®/X)} = ¢/2C, ,I(1 + }a),
where C, is defined by (1.4).

PrOOF. Note that

lim u*Efexp(—u?/X )} = lim u* [*Plexp(~u?/X) > A} dA
u— u— 0

(2.5) lim u?* ["P(X > 2 V)exp( —xu?) da
0

u— o

= lim z'**/2 fwP(X > x~Yexp(—xu) dx,
0

u—> 0

where the last two lines follow from simple changes of variable.
We now use a Tauberian theorem. In particular, we turn to the x —» 0
version of Theorem XIII.5.4 of Feller (1971). Using the fact that

u(x) =P{X >x7'} ~0?/2C, px°/?,
as x — 0 [e.g., Feller (1971)], (2.5) and the Tauberian theorem give us that
l}i_r}l;u"‘E{exp(—ﬁ/X)} =0°/?C, ;T (1 + 3a),
aé required. O

We can now turn to the proof of Lemma 2.3.
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PrOOF OF LEMMA 2.3. Note that by the definition of S, we have

—u?
2.6 ES! < E|A|E e .
(2.6) u IA4] {Xp{27a2Ag/aZ°Z=1F{2/“}}

On the other hand,
2

—Uu
ES! = E|A|E
(2 7) u | II {exp{2ya2A(2)/aE°Z=lr];2/a}}

r]__l/a —u2
— EIAIE (|1 - °xp el e
1 (Z:=1r{2/a)1/2 {2'ya2)t(2)/“2k=1rk 2/ }

By the triangle inequality, the second term here is bounded, in absolute

value, by
w0 —2/a\1/2
(ﬁ)E (Cioate )| —u
Ao ( °Ij=1l_‘k_2/m)l/2 2ya2Ag/an}:=1Fk_2/a

By Lemma 2.4 (which, admittedly, we have still to prove), with A,=1, this
expression is o(z %) as u — . Thus, combining (2.6) and (2.7), we have that

A —u?
: @ 1 _ _1 : a
l}l_l)lgou ESu = (/\O)Z}I_I)I;u E{eXp{2')’“2/\(2)/“20}:=1I‘k_2/a}} .
The distribution of X := X;_;I[},>/* is, by (2.3), that of a positive, a/2
strictly stable random variable with scale parameter o = C;/Qz/ . Thus we can

apply Lemma 2.5 to show that
—u?
eXPi e t-2/a
3P P

= ,\l(ﬁya)a lim u“E{exp(—u?/X)}

A a
lim u“ES} = (—l )(1/576, AY®) lim u°E
A u— o

u— o 0

= Al(@ya)“C;/lZCa/QI‘(l + a/2)
= Alca ’

on applying the definition of 7,. This completes the proof, modulo proving
Lemma 2.4. O

Before we turn to the proof of the remaining Lemma 2.4, we need the
following two lemmas. In the bound of Lemma 2.6, and in all that follows, we
shall let C denote a generic constant that may change from line to line.

2.6. LEMMA. Let X be a positive, a/2 strictly stable random variable.
" Then there exists a finite (a-dependent) constant C such that

E{X P/ exp(—u?/X )} < Cu~(**P

for all positive u.
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PROOF. Since X is a «/2 stable random variable, its density can be
bounded by Cx~®*%/? for some C. Thus we can bound the expectation in the
statement of the lemma as

E{X #/% exp(—u®/X)} < wax'ﬁ/z exp(—u?/x)x”AT*/D dx
0
= Cfmx_("‘““'”z)/2 exp(—u?/x) dx
0
= Cu“"’*’”fmy‘(‘””’*2)/2 exp(—1/y) dy,
0

where the last line follows from a simple change of variable.
Since the integral here is clearly finite, the proof is complete. O

2.7. LEMMA. Assume that Ay, < ©. Then
E( Y AT Ve — kl/“l) <
k=K

holds for all K > 2 and all a < 1.

PROOF. An application of the triangle inequality gives

B £ salryve - wovel)

Aoy &
< 22 Y Ry Ve — Ve,
Ao r-k

It now clearly suffices to show that, for each % large enough, E|I;1/* —
k~1/2|* is bounded by the term of a summable series.
To this end, note that

Elrk—l/a _ k—l/ala

< CE{(IFk — R|(Ty 02/ + k‘(“z/a)))“/z}

<C(EIL, - klz)“/4(E(r,;<1+2/a> + k—(1+2/a>)2a/<4—a))(4‘“)/4

/4 _ _ (4 _ 4—a)/4
sC(Ele _k|2)"‘ (EFk @+2a)/(d-a) 4 p-@+2a)/¢4 a))( a)/;

the last two lines follow from the Cauchy—Schwarz and triangle inequalities,
respectively.

Now use the fact that I', has a gamma distribution, to check that E|T, —
k> =k and ET;¢*+20/¢-a) = Q(p~¢+22)/@-0) for large k. Substituting
these bounds in the preceding inequality completes the proof. O
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PRrROOF OF LEMMA 2.4. We shall have to divide the proof into three sepa-
rate cases, « < 1, a = 1 and a > 1. Throughout the proof we shall write X
for the sum T} _,I; 2/ Recall that X is an a/2 stable random variable, and
note that from the definition of S2 and the triangle inequality we have that,
for any K > 2 (with the first sum taken identically zero if K = 2),

K-1
ES? < Y E{A,T;Y/*X /% exp(—u’®/AX))}
E=2
(2.8) - 12
+E{( Y AZka'Q/"‘) X~ 1/% exp(—u?/AX)) ,
k=K

where A = 223/

CASE 1: a> 1. From (2.8) and two separate applications of Hélder’s
inequality we have that

A _ K-1
ES,f < C_Xl(E{X—ﬁ/%ﬁ—l) exp(_uQ/AX)})(B 1)/8 Z (E{l'*k—B/a})l/B
0 k=2

—+

o a/2 1/«
[ 5wy ]

(2.9)

X [E(X“"/Z(“'l) exp( —uz/AX))](a_ /e

o 1/2
+E| Y Azkk'z/“) E(X '/?exp(—u®/AX)),
k=K

where, for ease of writing, we have set 3a/2 = B.
Now fix £ > 0. By Lemma 2.6, the first term in (2.9) can be bounded by a
constant factor times

(2.10) Ku-(a+B/(B=DXB-1/B — [y ~(atl-a/B),

As regards the second term, recall that, by Lemma 2.7, £;_xAj T, 2/ —
k~2/%| has a finite moment of order a/2, so that by monotone convergence we
can make E(X%_gA3|T;%/* — k?/%|)*/2 less than ¢ for large enough K.
Applying Lemma 2.6 once again, we therefore obtain that the second term is,
for large enough K, less than a constant multiple of

(2.11) gu~(eta/lamDXe-/e — gy=e,
Finally, the last term is bounded by a constant factor times

(2.12) Ku~(«+D,
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Combining (2.9)—(2.12), recalling that 8/a = 3/2 > 1 and going to the limit
proves the lemma for this case.

CASE 2: a < 1. We start, as before, with (2.8). To bound the summation
from 2 to K, it will clearly suffice to show that

(2.13) E(T; VX 1% exp(—u?/X)} = o(u™%).

To see this, choose p € (k71, 1) and break up the expectation according to the
events I 1/* < XP/2 or I';}/* > X?/2, In the first case we have

E{Fk—l/aX—1/2e—u2/xlrk_l/a'SXP/z} < E{X~(-p)/2gu?/X)

< Cu—(a+1—p)
=o(u™?),

where the second line follows from Lemma 2.6.
In the second case, recall that I}, 1/* < (Z3_ T, 2/ *)/2 = X/2 to see that

E{Fk—l/aX—l/ze—uz/Xlrk_l/a>XP/Z} sE{exp(—uzrkz/p“)}
1 o
= —l"(k) ](‘) x* texp(—(x + u?x?/Pe))

O —1+kpay2,—yPe/t _y?
=C/ y 14 e Yy e ydy,
0

where the second line uses the fact that I, has a gamma distribution with %

degrees of freedom.

Appealing again to the Tauberian theorem [Theorem XIII.5.4 of Feller
(1971)], it is straightforward to check that the preceding expression is
O(—uP**) = o(u%), which completes the proof of (2.13).

We now turn to the expectation in (2.9) involving the summation over
k > K. By the triangle inequality, it will suffice to show that there exists a K
large enough so that

(2.14) E{ > rk-l/ax-1/2e—“2/x} =o(u%).
k=K
Taking our lead from the previous case, fix p € (a,1) and split the
integration into the regions X} _ I, ¥/* < (Z5_,T; #*)?/2 and ©5_, T, V/* >
(EO}:= IFk_ 2/a)p/2'
The same argument as before easily gives that the first term is o(u ).
The second term can be bounded by

B DI P —u?
exp
(03790 vz R VO vl v
" e g11/B
E( S bt )

(TpoaTi2/e)"?

' (2.15)

E exp

—,Bu2 (B-1)/B
(ZOI:=K1"k—1/a)2/P ):| s

where g8 > 1.
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Consider the exponential term here. For ease of writing, set V =
w_xIl, /% Since @ <1, it is easy to check that, for large enough K,
EV < «, and so P{V > v} = o(v™!) as v — . Since

E(e™/V*") = [(P(e™/V"" > v} dv
0

= u2f°°P{V > wP/?)e "% dw
0

< Cuszwp/ze_w“zdw =C,u?.
0

By choosing B large enough so that p(8 — 1)/B8 > a [cf. (2.15)], we shall

have completed the proof of (2.14), once we can show that, at least for large

enough K,
B
°°= F_l/ a
£ kr=k1lp | <.

(ST ¥/7)
Apply the Cauchy-Schwarz inequality to the ratio to see that all we need
show is that E(X,_xT, '/*)? is finite for large enough K. Since we can
always take 2 8 to be integral, we do so, and then expand the sum. Using the
fact that ET, Y = O(k~7) for large k& then establishes the required finiteness.
This completes this part of the proof.

CASE 3: « = 1. This case is particularly easy. Start as before with (2.8).
The first term there can be handled exactly as in the case a > 1, since the
first part of the argument will also work for a = 1. Thus, we need only show
that for given ¢ > 0 we can chose K large enough so that

o 1/2
2.16 E A:T, 2/« X 1/%exp(—u?/X)) < eCu '
ik "

The proof of this hinges on the elementary fact that there exists a u-indepen-
dent constant C such that
(2.17) supx /% %*/* = Cy~ .

x>0

It follows from this that (2.16) can be bounded above by

w 1/2

CE( > AzkI‘k‘z) .
k=K

But Lemma 3 of Marcus (1989) and monotone convergence make the expecta-

tion as small as we like for large enough K, so we are done. O

3. A sub-Gaussian example. In this section we shall look at sub-Gaus-
sian SaS processes, with a twofold aim. First, we shall consider a very
specific example in which the process is also harmonisable and in which we
shall actually be able to derive an explicit expression for EC,. Beyond the
intrinsic interest of such a result will be the fact that it will give us an idea of
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how good the asymptotics of the previous section are, as well as providing a
good test case against which to check the simulations of the following section.
Second, we shall show that for general sub-Gaussian processes, which,
with the exception of the once case just mentioned, are never harmonisable,
an asymptotic formula for EC, akin to that of the previous section can be
derived. .
Recall that a SaS process is called sub-Gaussian if it can be written in the
form
(3.1) X(¢) = AV2G(t),

where G is a Gaussian process and A is a positive stable random variable
independent of G. We shall assume that it has a S, ,((cos(7a/4))*/*,1,0)
distribution with Laplace transform Ee %4 = exp(—6%/2).

[One should note that, somewhat unfortunately, the term “sub-Gaussian”
has been used in closely related literature with two quite distinct meanings.
Aside from the definition we have just given, the term has also been used to
describe processes whose increments have a moment generating function that
is dominated by that of a Gaussian process with identical incremental
variance function; cf., Jain and Marcus (1978). Both uses of the term seem too
well entrenched to change.]

Now suppose that G is stationary, with zero mean and covariance function
R;(¢) = EG(¢ + s)G(s). Then, obviously, X is also stationary. If we denote
the distribution function of A by F, ,, then it is immediate from (3.1) and
Rice’s formula that for a stationary sub-Gaussian process of the preceding
form,

1[A0\? .
(3.2) EC, = po (A_ﬁ) /0 exp( —u2/2Aga)Fa/2(da) ,
where A§ = R;(0) and A§ = —R%(0) are, respectively, the variance and

second spectral moments of G.

Since F, ,, is not in general known, (3.2) will not in general enable us to
obtain an explicit formula for EC,. However, there is one special case of
interest in which it is known: @ = 1. In this case, F) , has the density

e—1/4a

(3.3) fie(@) = o7

Substituting this into (3.2) and performing the integration leads us to a
proposition.

3.1. PROPOSITION. Let X be a stationary, 1-stable, sub-Gaussian process
with the representation (3.1), where A has the density (3.3). Then, in the

preceding notation,
VS

3.4 EC, = —F————.
(34 'n"/)\g + 2u?
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In order to use this result for comparison purposes, we need to ensure that
X is also harmonisable. There is only one choice of Gaussian process G that
will guarantee this, and it is given by
(3.5) G(t) = 0(G, cos wt + G, sin wt),
where G, and G, are independent standard normal variables. Since R(¢) =
o? cos wt, we have A = 02, A§ = 0%0?, and so a simple calculation, using
the explicit form of the 1-stable (Cauchy) density, gives us

w
3.6 EC, = .
(36) /1 + 2u?/a?
Comparing (3.5) with the “spectral representation” (1.1) it is not hard to

see that the SaS process X has a spectral distribution function given by
T

(3.7) F(d)) = %56‘0(&\),

where §, is the measure putting unit mass at the point .
Since it follows from this that, in the notation of the previous section,
A = wom/2%?% and C, = ¢, = 2/, it follows from Theorem 2.2 that

3.8 tim umc, = 2% _ 7
which is, of course, exactly what one expects from (3.6).

To use (3.6) to see how well the asymptotic formula of the previous section
approximates the truth, consider the graphs of Figure 1. The full line in the
left-hand box of this figure is (3.6). The dash-dot-dash line is the approxima-
tion indicated by the asymptotic (3.8); that is, the function z~'Cw/ V2 7. The
fit is remarkable. The dashed line is the result of a Monte Carlo evaluation of
EC, of the kind described in the following section.

In the right-hand box of Figure 1 we have plotted the ratio of the
asymptotic to true formulae for EC,. What is interesting is not that the ratio
converges to unity, but that it does so very quickly.

We now turn to the problem of deriving an asymptotic formula for EC, for
general sub-Gaussian SaS processes. We shall prove the following theorem.

3.2. THEOREM. For a general sub-Gaussian SaS process of the form (3.1)

we have

2/2T(1 + a/2)(A§)"”

1-a)/2’

(3.9) lim u®EC, =
u—o aT(1 - a/2)(A§)

where A§ = o2 and A§ are the total mass and second spectral moment of the
Gaussian process G of (3.1).

Proor. We start with (3.2). To evaluate this, note first the standard
result that for the S;aS random variable A,

(3.10) lim a*/2P{A > a} = lim a®/?(1 = F, 5(a)) = (T(1 — a/2)) .
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Fic. 1. EC, for the stationary, harmonisable S1S process. Upper graphs: exact graph of EC,
(full line); asymptotic approximation (dash-dot-dash); Monte Carlo evaluation C3°°%2%° (broken
line). Lower graph: ratio of asymptotic to exact formulae.
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It therefore follows that

% —v
lim v*/2 (—)F da) = limv*/2E(e /4
im v j;exp , w/2(da) im v (e )

v— 00 Vo

= lim v /2 fwP{e_”/A > x} dx
0

v

= lim [0*/?P(A > v/t}e " dt

vo o/

“ lim v*/2P{A > v/t}e ' dt

0 vow
1
@ 2
T(1- a/2)f e
'l + a/2)
r(1-a/2)’

“tdt

where the interchange of limit and integration is justified by dominated
convergence in view of the fact that v*/2P{A > v /t} is bounded by ct*/? for
some finite c.

Substituting the preceding equation into (3.2) now proves the theorem. O

4. Monte Carlo evaluation of EC,. Consider once again the basic
conditional expectation of the number of level crossings that has been behind
all we have done so far, namely,

2 -2/a 2
M)l/zexp{ v
P Ve 292N L I e

Despite the complicated form of this expression, it is particularly simple to
evaluate via Monte Carlo methods. While the variables I', are dependent, the
fact that I, can be written as E; + - +E,, where E,, E,, ... is a sequence of
independent, parameter 1, exponential variables, and that these are indepen-
dent of the i.i.d. A;, means that the following expression should give a good
estimate of EC, for large N; and N,:

}.

(4.1) E{CKT.}L{AN = —(

1 ZNZ 2 k2/a /2 —u?
4.2) CNuN: = é ,
(42 G, Nymw i=Zl [( DAL It P 29Ny “Xy2 T2

where {A;,};_1 .~ k-1, n, is a double sequence of i.i.d. random variables

- with distribution functlon F(\M)/MA,, and T, = E;; + - +E;,, where
{E;1}i—1,... Nyk-1,...,n, i8 a double sequence of ii.d. exponential variables
with parameter 1.

In Figure 2(a)—(c) are the results of three such Monte Carlo evaluations.

The stable parameter @ ranges from 0.5 to 1.5, and the spectral distribution
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Fic. 2. (@) a=0.5; (b) a=1.0; (¢) a= 1.5. Upper graphs: 20 Monte Carlo evaluations
C3000.200 or BC. (full lines) and asymptotic formula (broken line). Lower graphs: ratio of Monte
Carlo and asymptotic formulae.
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F is taken uniform on [0, 1] (i.e., the process is narrow band). The simulation
parameters are N; = 5000 and N, = 200. Each graph shows the results of 20
evaluations of C%°°02%0 g0 as to give an idea of the error of simulation at
N, = 5000. Increasing the value of N, beyond 200 made no visible change to
the results. Each set of evaluations took about 5 min on an IBM RS6000
RISC station, with no attempt made to write optimal Fortran.

The graphs compare the approximation inherent in Theorem 2.2, namely,
C, ~u \C,/7 to C30°0:200 The left-hand graphs show the functions them-
selves; the right-hand graphs show their ratio. The horizontal axes are
different in each case because for smaller a the univariate distribution of the
process has a heavier tail. Note that throughout the Monte Carlo evaluations
start from the same point, since neither (4.1) nor (4.2) depends on & when
u = 0. What is, of course, most impressive is how quickly the asymptotic
expression for EC, becomes accurate.

5. General bounds on EC,. Our aim in this section is to prove the
following result, in which the notation is identical to that of the previous
sections.

5.1. THEOREM. Let ¢ denote a generic constant, dependent only on «, that
may change from line to line. Then
ehfum + Ag ey, if0<a<l,
c(A + (Alog A)5)u™t, ifa=1,
c(A +A)u™®

+e( ANV + MY )um D, ifl<a<2.

(5.1) Ec, <

Let X have Laplace transform exp(—0%/%). Fix d > 0 and set

(5.2) de/? =2*2T(1 — a/2)y2,
Ky(a) = glf; xa/2(1 - Fa/2(x))
(5.3) = inf x*/2P{X > x},
x>1
(5.4) Ky(a,d) = [*x*/%* dx.
0

Then for each d > 0 and for all u > d/*\/d A, we have
Ky(a)Ky(a,d) ) la
AuT e

™

(5.5) EC, > (

Note that we cannot expect a result like (5.5) to be true for all u > 0, since
the right-hand side diverges as u — 0. We could, of course, replace it by a
function of the form cA, /(1 + ©~*), which would then hold for all «, given an
appropriate choice of c.
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Note also that while the constants appearing in the lower bound (5.5) are
explicit [modulo the fact that both K(«) and K,(a, d) require some compu-
tational effort to be calculated numerically], this is not the case for the upper
bounds, in which the constants are not explicitly known. We shall return to
this issue in the following section.

PrOOF. We start with the lower bound (5.5). In the notation of the proof of
Theorem 2.2 we have that, for all z > 0,

A
(5.6) EC, > —Efexp(—u?/Z)},
Ay
where Z is a positive stable random variable with Laplace transform Ee %%
= exp(— 0%/% */2), and where
o /%= 2%2T(1 — a/2)y,
=d 3/2,\0

[cf. (1.4) and (2.3)].
Choose now d > 0 and consider the expectation in (5.6). With X as defined
in the statement of the theorem and o as before, we have

E(exp(-u?/Z)) = /:OP{Z > u?/x}e™* dx
u?/o 2 -x
> [0 P{Z > u®/x}e * dx

= uZ/”P{X > ulol/xle * dx
0

2
> Ky(a)u c/? fu /7x/2 % dy
0

d
> Ky(a)u c/? [ x*/%e™* dx
0

=Ky(a)K(a,d)u"%*/?,

where the second to the last line relies on the assumption that u > dyd, A, .
Substituting into (5.6) establishes the required inequality (5.5).
We now turn to the proof of the upper bounds (5.1) and commence as in the
proof of Theorem 2.2 by noting that
ES! . ES? ,
T T

" where the S: are defined there. Note that

EC, <

A
ES! < A—IE{exp(—uz/Z)},
0
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with Z as before. Lemma 2.6, with B = 0, then gives that ES! < cAu"¢,
which is the common first term in all of the upper bounds of (5.1). The second
terms come from differing bounds for ESZ, which we obtain with three
somewhat different arguments.

CASE 1: 0 < < 1. Given «, choose m, such that E{Z°,Z=mal‘,;1/“} < o,
Use (2.8) with K = m_, and the argument just used to bound ES to see that

ES? <cm,Mu™* + E{W'/2X"1/2 exp(—u?/2 AX)},

where A = 2y2Ay/%, X = L;_,I;%/* and W = ;_,, 5T, 1/“
To bound the expectation, use the fact that sup,, ,x /% exp(—1/x) is
finite to obtain the bound c(A;/Ag)AY *u~?, as required.

CASE 2:1 < a < 2. We start with (2.9) and set K = 2 there. This gives us

- a/2 1/
ESZ < A, E( Y A%|ry 2/ — k‘2/“|) ]

X [E(Y_“/z(“_l) exp( —u2/Y))](a_1)/a

o 1/2
+E( ) A%,k-z/a) E(X V2 ' /AX),
k=2

where Y is a S3aS whose distribution is independent of the spectral
parameters A;,. By Lemmas 2.6 and 2.7 the first term here is bounded above
by cA,u"% while the second term is bounded by c(AZ/A;"Y* +
MAY 9u~(** D, Putting all the parts together completes the proof for this
case.

CASE 3: @ = 1. This time we start with (2.8), with K = 2, and apply (2.17)
to see that

I 1/2
ES? < c)tou‘lE( Y A%Jﬁ) .
k=2

But

) 1/2 © 1/2
E( y A%J‘,;Z) < E(A,T3) +E( Z‘Airk-Z)
k=2 k=3

"Ny cg(Alog M)
< +
Ao Ao

2

the factor of (Alog A); coming from Lemma 3 of Marcus (1989). Collecting
terms completes the proof. O
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6. Some numerical bounds on EC,. In this final section we shall
present some results that give numerical bounds for EC,. This was actually
the starting point of our research, but the results that we have been able to
obtain have been rather disappointing, and so we present them without their
(rather lengthy) proofs. The problem is that the gaps between the upper and
lower bounds are generally quite large.

Here is our result, that covers the zero level. The proofs involve basically
the same techniques used by Marcus (1989) to get his bounds, with much
more care taken to keep track of the constants. Details of the arguments
involved can be found in Gadrich (1991).

6.1. THEOREM. Let X be a stationary harmonisable SaS process satisfying
the usual conditions. The following expressions provide lower bounds for EC,,.

a<l:

M “r(l ~ (1 -1)/at)) ]”“‘”

- sup
ATV 4(1 = @/2) 1,a1a9<i<1 || T(1+ ((2 - 1)/2¢))

1
“TTEDI (- 1)/a))} !
(Alog M), {KW—D(t/(t — 1))Ie=D((3 - t)/2)}
1<t<2 ’

/\Oew3/2 r/e=-n2 —t)

where
1 © 1k=1exp{—kA}(EA™®)"
= — A.
K(s) foexp{ iz - ax;
L e P(1- (¢ = 1)/a0)) 747"
a>1: —— su
'77’\% * 1<t<11)+a F(l - ((t - 1)/2t))

X[ r(L- (e -1/2) 17"
F(1-((z - 1)/a)) ‘

Upper bounds are as follows:

a<l:

A Eo;= n—l/a 1

A min {(RVe+T(1+ 1/a)e¥e[2+ ¥ ma T[>

AT k>2/a nop (an —1)2
2A 4e(Alog A o 1
a=1: ! + ( - g )8 + Z =1 E—11(°
. A A, i_g (B —1)2
. A )\1/"1"(1 +1/a)T(1 - 1/a)T (1 - a/2)

a>1:

)lo'ﬂ' 3/2)t1/a
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Given the complicated form of the results, we presume it is clear why we
do not wish to include the derivations.

Nevertheless, the results are of interest insofar as they are the only way
we know of to provide general numerical bounds for EC,. What is somewhat
disappointing, however, is the gap between the upper and lower bounds for
specific examples.

For example, if we take the example used in the Monte Carlo studies in
Section 3 of this the paper, that is, the process with uniform spectral density
on [0, 1], then what we obtain from the preceding bounds is that

0.1421 < EC, < 14.608, if o =0.5,
0.0116 < EC, < 4.293, ifa=1.0,
0.1728 < EC, < 0.721, if o =1.5.

Given, from the Monte Carlo evaluation of Section 4, that the true value of
EC, is around 0.175, these bounds, while correct, are not particularly encour-

aging.
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