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ORDERINGS FOR POSITIVE DEPENDENCE ON
MULTIVARIATE EMPIRICAL DISTRIBUTIONS

By MaGpY H. METRY AND ALLAN R. SAMPSON!

University of Northern Colorado and University of Pittsburgh

The study of orderings for positive dependence on bivariate empirical
distributions can be viewed as the study of partial orderings on the set Sy
of all permutations of the integers 1,..., N. This paper extends earlier
bivariate results to multivariate empirical distributions, with focus on
the trivariate case. In terms of a newly defined notion of relative rear-
rangement, characterizations are given of the more positively upper
orthant dependent ordering and related orderings. A new partial ordering
describing concordance on (Sy)™ is also introduced and connected with
the positively upper orthant dependence ordering.

1. Introduction. An ordering for positive dependence allows the com-
parison of two multivariate distributions to determine if one distribution is
more positively dependent in a certain sense than the other distribution,
thereby partially ordering classes of multivariate distributions according to a
degree of positive dependence. Orderings for positive dependence applied to
bivariate distributions have provided approaches for stochastically compar-
ing certain distributions of statistics [e.g., Tchen (1980); Schriever (1985),
(1987a)], evaluating the meaningfulness of parameters in one-parameter
families of fixed marginal distributions [e.g., Kimeldorf and Sampson (1987)],
inducing orderings on permutations via orderings for positive dependence on
bivariate empirical c.d.f:s [e.g., Block, Chhetry, Fang and Sampson (1990);
Metry and Sampson (1993)], providing nonparametric statistical results [e.g.,
Yanagimoto and Okamoto (1969); Hollander, Proschan and Sethuraman
(1977)] and studying the effects of random censoring on information [e.g.,
Hollander, Proschan and Sconing (1990)].

One widely studied ordering on bivariate distributions is the more concor-
dant ordering [Tchen (1980)] that we denote by >_. This ordering has been
extended in several ways to the multivariate case. Let X = (X,,..., X))
and Y = (Y3,...,Y,,) be two m-dimensional random vectors whose one-
dimensional marginal distributions correspondingly agree; that is, X, ~ Y,,
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for all & = , m. The random vector X is said to be more positively upper
orthant dependent (more PUOD) than Y, denoted by X >, Y, if P(N 7 (X, >
a;) > P(N™ (Y, > a;)), for all (a,,...,a,) € R™ [e.g., Block and Sampson
(1983)]. If all > are replaced by < in the preceding definition, then X is
said to be more positively lower orthant dependent (more PLOD) than Y,
denoted by X >; Y. If both X >, Y and X >; Y, then X is said to be more
positively orthant dependent (more POD) than Y, denoted by X >, Y. In the
bivariate case, the four orderings >, >;, >, and >, are equivalent.

An approach, described by Scarsini (1984), Schriever [(1985), Section (4.1)]
and Block, Chhetry, Fang and Sampson (1990), to extending any of these four
orderings that require agreement of one-dimensional marginals to orderings
that do not is as follows. For X = (Xl, ,X,) and Y =(Y,,...,Y,) with
marginals c.d.fs F,,..., F,, and G4, .. respectlvely, define X - Y if and
only if (F(X,),..., F, (X )) - (G (Yl) G (Y,))), where — denotes one of
>, =y, = or >,. "In this way we can compare X and Y if Fi(X,) ~ G(Y)),
for all i =1,..., m. Two cases that allow this comparison are when the
one-dimensional marginals are continuous and when X and Y are random
vectors corresponding to empirical distributions of two samples of the same
size with no ties in each coordinate.

Let x® = (x{®,...,x®), k =1,..., N (m > 2), be a random sample of size
N from an m-dimensional c.d.f. H with continuous one- -dimensional marginals
and let H be the corresponding empirical distribution. Rank order the x{®,

k=1,...,N, as x4, < - <xy4, and let- i) denote the rank among
M., .. }’f{ of the x{/, that correspond to x,., forall k = 1,..., N and all
l=1,...,m — 1. With probability 1, i® = G{,. z(’)) c Sy, the
set of all permutations of 1,..., N. In this case i) is the permutatlon that

gives the order of the observations of the (I + 1)st coordinate relative to
the order of the corresponding observations of the first coordinate. The
m-dimensional rank order is defined as GV, ...,i™ Y) and the empirical
rank distribution, H%, is the c.df of an m-dimensional random vector
(8©, 8 Sm-D) whose probability mass function is given by P(S©® = &,
SO = ig), s, 8D = gmmDy = N°1 for all k=1,...,N. We call
(8®, 8D Sm=D)a random vector related to iV, ...,i™ D),

Using one of >,, >y, >, and >, for companson of two empirical
distributions H and H of the same dimension and same sample size with
no ties in each coordlnate is equivalent to comparing their corresponding
empirical rank distributions HE and HE [see the argument for the bivariate
case in Block, Chhetry, Fang and Sampson (1990)]. This leads us to introduce
these four orderings on the class (Sy)™ ™1 = Sy X -+ X Sy((m — 1) times),
in the sense that for one of these four orderings —, we define (i'V,...,
im= D) 5 GO, ...,j D), whenever (S@, ...,8m-D) 5 (VO ym-D)
where (S@, ..., S™ D) and (V©, ..., V™~D) are two random vectors related
to GO, ...,i™ V) and GD,...,j™ D), respectively.

The ordering >, on Sy has been considered by Schriever (1987a, b) and

Block, Chhetry, Fang and Sampson (1990), but was originally discussed by
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Cayley (1849). Although our framework deals with (Sy)™ ™V, m > 2, we
focus primarily on (S, )?, which corresponds to the trivariate case.

There are two main results in this paper. One result characterizes each of
the orderings >,, >, and >, on (Sy)® using a newly defined notion
of relative rearrangement. The other main result is a new partial order-
ing >z, on (Sy)?, motivated by a geometrical aspect of the ordering >, on
Sy. In Section 2, we introduce some concepts that are useful in establish-
ing our results and briefly review some results for the ordering >, on
Sy. Section 3 gives characterizations of the positive dependence order-
ings >,, >, and >, on (Sy)% In Section 4, the ordering >5 on (Sy)? is
introduced by focusing on the multivariate geometry of moving masses from
discordancy to concordancy. The discussion in Section 5 briefly considers

several possible extensions of our results.

2. Notation, some preliminaries and review of the ordering >, on
Sy. Throughout this paper, whenever we write vectors such as i, j, « and B
we mean that they are elements of Sy. The permutation i is denoted by
i=(,...,iy). The product operation is the composition of permutations.
The identity permutation is denoted by e = (1,..., N) and the inverse of a
permutation i will be denoted by i*. For i € Sy, let i =N+ 1 — iy, ,,
k=1,...,N. The permutation i° = (i§,i5,...,i%) is called [Savage (1957)]
the complement of i; for example, (32514)° = (25143). If i = i°, then i is called
self-complementary.

For i € Sy, and any positive integer & < N, the increasing rearrangement
of iy_pi1siN_p+2s--->in, Which are the last £ elements of i, is denoted by
iy, <igyp < *+ <i, ;. Yanagimoto and Okamoto (1969) use this concept to
characterize the ordering >, on Sy.

THEOREM 2.1 [Yanagimoto and Okamoto (1969)]. For i,j € Sy, i>,j if
and only if i, , 2 j; 4, forall 1 <l <k <N — 1.

Metry and Sampson (1993) additionally show that
(2.1) i>, jifandonlyif i* >, j* if and only if i° >, j°.

DEFINITION 2.2. We say that (i, j) is more PUOD than (a, B), denoted by
G4,j) >y (a,B), if (R, S,T) >, (U,V,W), where (R,S,T) and (U,V,W) are,
respectively, random vectors.related to (i,j) and («, B). The more PLOD and
more POD orderings on (Sy)? are defined similarly.

It is direct to show that the orderings >;, >; and >, on (Sy)? are all
partial orderings.

Let (R, S,T) be related to a given pair of permutations (i,j) € (Sy)% In
order to express P(R>r, S >s, T > t) in terms of i and j, we define the
connector function v; ;(-,-,-) by

(2.2) Yij(r,s,t) = #{(in,Jn):r <m <N;i, 2s;j, >t}
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It is clear that
(2.3) P(R>r,S>s,T>t)=Nly;(r,s,t).

We need to extend the notion of increasing rearrangements to deal with
pairs of permutations. For a pair of permutations (i,j) € (Sy)? and for any
positive integer £ < N, define

(2.4) JB =ji*(i, ), forallm=1,... k.

The k-dimensional vector (j{*),j$®),...,j¥) is called by us the relative
rearrangement of (jy_ k+1,JN k+2,...,jN) with respect to (iy_j. 1,
in-p+g,---,iy). This notion is motivated in part by the fact that ;¥ =
Ja®1*(zmk)—a©zmk=ia and {(G,,j,) m=N+1-kFk,...,N}=

G, 0 J8): m =1,... k). For any positive integer r <k, let J(k) <J(k) <

- < j) denote the increasing rearrangement of j{*), . P o ..., k.
The followmg special cases are of interest:
1. For & = N JM) =j-i*(m), for all 1 <m <N; that is, (i), M), ...,
(N)) = .]

2. For r = £, J( ) =Jm,p, foralll <m <k.

3. Fori=e, j{ —JN wam foralll <m <k, and ji¥ =j, , foralll<i<
r<k.
To illustrate this notation, let i = (16432587) and j = (14327658). Then for

k =5, (l1 521255 13,55 La 55 U5, 5) =1(2,8,5,7,8), (J1 50 J2,50 J3,5 J4,50 J5, 5) = (2,5,
6,7,8) and (P, 9, 9, i, i) = (7,2,6,8,5). Furthermore, j{& =5,
(%, 7% = (5,8), (155)3,155)3,J§5)3) = (5,6,8), (), j$), J$4 JEY) = (2,5,6,8)

and (J1 5,J§5)5,J§5}5.,J515?5,J§5?5 =(2,5,6,7,8) = (11 50 J2, 5,13 5’J4,5,j5,5)- For k =

8, (J(S) J(S) i(8) J‘(‘S) Jés) i(8) J(S) J(S)) = (17236485) = j-
By using the relative rearrangement notation, we have
Yij(N+1-Fk,s,t) =#{(ip,Jn): N+ 1 -k <m<N;i, >s;j, 2t}

= #{(zm B d)im =1, k50, , ZS;jf,f)zt}.

This notation enables us to establish the following result that will be used in
the proof of Theorem 3.3. For any positive integers I, r and % such that
1<l<r<k<N,we have

(2.5) ‘Yi,j(N +1- k’ik+1—r,k7jr(‘l-z+—)1—l,r) =1
This result follows from the equalities
‘Yi,j(N +1- k’ik+1—r,k’jr(‘l-z+—)1—l,r)
= #{(im 2, JP): 1 <m <k;
bk 2 Lps1or s Ju) 201 }
=#{jP:k+1-r<m<k; J(k)>J§k)l L)

=#{JP 1<m<r; jP, =%, .} =1L
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3. Properties of orderings for positive dependence on (S,)% In
this section, we extensively study properties of the three positive dependence
partial orderings >;, >; and >, on (Sy)%.

The next lemma follows directly from the fact that (R, S,T) is related to
(i,j) implies (R, S), (R,T) and (S,T) are, respectively, related to i, j and
j - i*

LEMMA 3.1. A necessary condition for (i,j) >y (a,B) is that i=, a,
>, Bandj-i* >, B a”.

Lemma 3.1 is also true if we replace >; by >; or >,. The following
example shows that the necessary condition of Lemma 3.1 is not sufficient.

ExaMpPLE 3.2. Let i = (1342), j = (1324), a = (4231) and B = (2431). Use
Theorem 2.1 to verify thati >, a,j >, B and j - i* >, B - a*. To show that
(1,J) 2y (o, B) does not hold, let (R, S,T) and (U,V,W) be related to (i,j)
and (a,B), respectively, and note that P(R>3, $§>3,T>3)=0< 3=
PU=3,V>3,W=x>3).

By adding some conditions to those of Lemma 3.1, we obtain the following
theorem, which gives a necessary and sufficient condition for (i,j) >, («, B).
This result can also be viewed as an extension of the result of Theorem 2.1 to
the trivariate case.

THEOREM 3.3. Let i, j, a and B € Sy. For any t € Sy, and any positive
integerk < N, lett, , <t,, < - < tk » denote the increasing rearrangement
Of ty_ps1rty—kss--orty. Let j& =3 i*G,, ,) and B® = B - a*(a,, ,), for
allm=1,...,k, be, respectwely, the relative rearrangements corresponding
to (i,j) and (a B) For any positive integer r < k, let ji*) < j{¥) < - < j®)
and B < Bsk) < - < BR) be, respectively, the increasing rearrangement of
g e L8 and of ﬁ,g’“),ﬂ, BE oy, B, A necessary and suf-
ficient condition that (i,j) >, (a,B) is that the following two conditions are
satisfied:

@iz a,j>,Band j i* >, B o
(b) ﬁr(f_)l l,_]f,fll Lm» for all 1 <1 <r <k <N, where m=m(r,k) =
g1 l=1 ki ipiy = gy, )

PrOOF. Let v, ;(,-, ) and v, g(;, -, ") be the two functions given by (2.2).
By using Definition 2.2 and (2.3) we have that (1,j) >, («, B) if and only if
vi (7, 8,8) = v, (1, s,t), forall (r,s,£) € N X N X N, whereN = {1,..., N},
which holds if and only if
(3.1) Yij(N+1—Fk,s,t) 2v, g(N+1-#k,s,t),

for all (s,t) e N X N and all £ € N.
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The idea of the proof is to fix £ € N and to find a necessary and sufficient
condition for (3.1) to be satisfied for all (s, t) € N X N. The collection of these
necessary and sufficient conditions for all £ = 1,..., N gives a necessary and
sufficient condition for (i, ) >, (a, B).

For fixed £ € N, we show that (3.1) is satisfied for all (s, ¢) € N X N if and
only if it is satisfied for all (s,¢) €{a;,; , ,: r=1,...,k} X N. Fix s €N;
then there are three cases.

CASE 1. s < a; ;. In this case we have
Yo g(N+1—k,s,t) =7, g(N+1—k,a;,;,t)
<vji(N+1-Fk,a,,t)
<v;;(N+1-k,s,t).

CaSE 2. a;, <s <a;,,, for some integer [ =1,...,k — 1. Then we
have

‘YQ,B(N_,_]'_k’S’t)=‘Ya,B(N+1_k7al+1,k’t)
S’Yi,j(N—l— l_k, al+1yk,t)
<v;i;(N+1-k,s,t).

CASE 3. s > a, . This case is obvious, where vy, (N + 1 —k,s,t) =0

By using the same argument we can show that forevery r = 1,..., &, (3.1)
is satisfied for all (s,?) € {q, rir, z} X N if and only if it is satlsﬁed for all
(s,8) €{apyy ) X{BP,_,,: 1=1,...,r}, which is equivalent to the fol-
lowing two conditions [by using (2.5) w1th (a, B) in place of (i, j)]:

(3.2) m(r,k) >r

and

(33) Brff—)l lLr —Jm(r kY+1-1,m(r,k)» forall [ = 1,...,7’
where m(r, k) = #{i}, 1,0 1 = bR i1 = gy )

Thus, (1,j) >y (a,B) if and only 1f conditions (3.2) and (3.3) are satisfied
for all 1 < r < k < N. The result of the theorem follows immediately from the
following facts:

(i) Condition (3.2) holding for all 1 <r <k < N is equivalent to i >, «
where m(r, k) > r is equivalent to iy, ;_, , = @41, 3

(ii) Condition (3.3) holding for all1 <r <k =N i 1s equivalent to j - i* >,
B - a*, where m(r,N)=r, (B™,...,B%) =B a* and (GV),..., (N))—
jo-it

(ii1) Conditions (3.2) and (3.3) holding for all 1 < r = k < N are equivalent
to j >, B, where m(k, k) = &, Blgli)l—l,k = Bjr+1-1,, and J ik = The1-th
foralll <l <k. O
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For the simple case where i = a = e, we readily have that (e,j) >, (e, B) if
and only if j >, B. To see how j >, B implies condition b of Theorem 3.3,
observe that m(r, k) = r, ji*) =, and B* =p, , forall<l<r<k<N.

An analogue of Theorem 3.3 for the orderings >; and >, follows as a
corollary, using the next lemma.

LemmA 34. (1,)) =y (e, B) if and only if (¢,j°) =; (af, BO).

ProoF. The result follows directly from Definition 2.2 and the result that
(R,S,T) is related to (i,j) ifand onlyif (N+ 1 -R, N+1-S, N+1-T)
is related to (i%,j°). O

For general random vectors, it is known that the orderings more PUOD
and more PLOD are different. However, as we now demonstrate, even on
(Sp)? these two orderings differ.

EXaMPLE 3.5. Let i = (3124), j = (1324), o = (4231) and B = (4213).
We show (i,j) >, («,B) and (1,j) #.(a,B). We use Theorem 3.3 to show
that (1,j) >, (e, B). Condition (a) of Theorem 3.3 follows directly using
Theorem 2.1. The following direct calculations demonstrate that condition b
of Theorem 3.3 is satisfied: m(1,2) = 1 and B =1 <4 =;¢; m1,3) =1
and B3 =1<4=,%; m2,3) =2 and 3(3)—1<2 =i, BPy=2<4=
7). From Lemma 3.4, showing that (i,j) #,(a,B) is equivalent to showmg
that (1R J"’) #uv (af, BC) which is demonstrated in Example 3.2, where i¢ =
(1342), jc = (1324) o = (4231) and B° = (2431).

4. Another partial ordering on (S,)2. In this section another partial
ordering for positive dependence is defined on (S, )?. This new ordering is
motivated from a geometric aspect of the ordering >, on Sy. Tchen (1980)
noted that the ordering >, on S, can be expressed as “moving masses” from
discordancy to concordancy. For i,j € Sy, i is obtained from j by correcting
an inversion, denoted by i —, j, or equivalently j <, i, if there exist two
positive integers ! and m,l <m < N, such that i, =j,, <j, =1, and i, =,
for all & # [, m. Based on this notion of correcting an inversion, another
charactenzatlon of the ordering >, on Sy is given by i >, jifi = j or there
exist elements iV,...,i'?» € S, satisfying i —», iV -, -+ —>_ i) =j; that
is, i >, jifi =j or i is obtained from j in a number of steps each of which
consists of correcting an inversion.

Focusing on the multivariate geometry of moving masses from discor-
dancy to concordancy, we are led to a new positive dependence partial
ordering, >j, on (Sy)?, that is based on a suitable notion of “correcting
multivariate inversions.”

DEFINITION 4.1. We say that (i, j) is obtained from (a, B) by correcting an
inversion, denoted by (i,j) =5 (a, B), or equivalently (a, B) <5 (i,j), if there
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exist two positive integers [ and m,l < m < N, such that the following three
conditions are satisfied:

(4.1) at least one of («,, — ;) and ( B,, — B;) is negative;
(4.2) i, =min{ea,, a,}, i, =max{ae;,a,}, i,=0q,

forall 2 # I, m;
(4.3) Ji = min{ B;, B,}, Jm = max{ B, B}, Je = B>

forall k # I, m.

DEFINITION 4.2. We say that (i,j) is multivariate better ordered than
(e, B), denoted by (i,j) >5 (a,B), if (i,j) = (o, B) or there exist elements
GAD,§D), (D, §@),...,(P,jP) in (Sy)? satisfying (1,j) =5 GD,jP) -5 -
—g (i(p),j(p)) = (a, B)-

For example, ((213456), (124356)) >, ((253146), (134265)) because
((253146), (134265) <5 ((253146), (134256)) « 5 ((243156), (134256)) «4
((213456),(124356)), where the choices of [, m for each of the three steps
with <5 arel =5, m=6;1=2, m=>5;and [l = 2, m = 4, respectively.

From Definition 4.2, one can show that the ordering > on (Sy)? is
reflexive and transitive. Antisymmetry will follow immediately from Theorem
4.5.

To study the implications among the orderings > and >, on (Sy)?, we
need the following lemma.

LEmMA 4.3. (i,j) =5 (a,B) if and only if (i%,j°) —5 (af, B°).

Proor. Let (i,j) =5 (a, B). By definition there exist two positive integers
Il < m < N, such that conditions (4.1), (4.2) and (4.3) are satisfied. Let 1* =
N+1—-—m and m*=N+1 -1, so that [* <m* <N, and the following
three conditions are satisfied:

(1) At least one of (oS — af.) and ( B%. — Bf) is negative.
(i) if. = min{af, af.), i, = max{af, a5} and if, = af, for all & # I*, m*.
(i) jf. = min{ Bf, BS), JS,« = max{ Bf, BS.} and j§ = Bf, for all & # 1*, m*.

Hence, (i%j) -5 (a¢, B°). The converse is obvious. O
REMARK 4.4. (i,j) >3 (a,B) if and only if (i%j°) > («, BO).
This remark follows directly from Definition 4.2 and Lemma 4.3.

Because we can often verify more easily the ordering >z than the
ordering >,, the following theorem is useful.

THEOREM 4.5. For (i,j) and (a,B) € (Sy)?, G,j) =5 (a,B) = (1,j) =,
(o, B).
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Proor. By transitivity of the ordering >, and Lemmas 3.4 and 4.3, it
suffices to show (i,j) =3 (a,B) = (1,j) >y (a, B).-This latter implication is
equivalent to showing (i,j) —p (a,B) = v; {(r,s,8) = v, z(r, s,¢), for all 1 <
r,s,t <N, where v, ;(,-,-) and v, g(;,-,") are given by (2.2). It is direct to
observe that (i,j) —»5 (a,B) implies that, for all 1 <r,s,t <N, either
¥ij(r,8,8) = v, a(r,s, t)or v; (r,s,8) =v, g(r,s,t) + 1. O

The following example shows that the implication of Theorem 4.5 is strict.

ExaMPLE 4.6. Let i = (1324), j = (2143), a = (3142) and B = (3412). We
show (i,j) >, («,B) and (i,j) #z(a, B). Because i, j, a and B are all self-com-
plementary permutations, to show (i,j) >, («,B), by Lemma 3.4 we need
only show that (i,j) >, («, B). This can be proved using Theorem 3.3, where
condition (b) of Theorem 3.3 is satisfied because of the calculations m(1,2) = 1
and B =1<3=7#; m1,3)=1and B =1<3=jf; m2,3) =3 and
BE ~ 1<3 - j@, B -2 < 4- ),

To show that (i,j) #z (e, B), begin by letting I' = {(y, d): (v,8) —5 (a,B)}.
It can be shown computationally that I' = {((3124), (3412)),((2143),(2413)),
((1342), (3412)), ((3142), (3214)), ((3142), (3142)), ((3142), (1432))}. From
Definition 4.2, observe that (i,j) #z (e, B), if and only if (i,j) #5(y,d), for
some (y,8) € I'. Thus, (1,j) #3 (e, B), if and only if (i,j) #5 (v, d), for all
(v,8) e T'. Hence, by Theorem 4.5, to show that (i,j) #z («, B), it suffices to
show (i,j) #; (v,8), for all (y,8) € I'. The direct calculations in Table 4.1
show that (1,j) #, (v, d), for all (y,8) € T, where (R, S,T) and (U,V,W) are
random vectors related to (i,j) and (v, 8), respectively.

In the following theorem, we summarize the implications among the four
partial orderings >g, >,, >; and >; on (Sy)%

THEOREM 4.7. For >z, >,, =; and >, on (Sy)?, the following are
true:

(a) The ordering >y implies >, which implies both >; and >.
(b) The ordering > neither implies nor is implied by the ordering >p,
and all the implications in (a) are strict.

TABLE 4.1
Calculations for Example 4.6
(v,3) (a,b,c) P(R>a,S>b,T>c) PU>a,V=>b,W=>c¢)
((3124),(3412)) (1,3,2) 1/4 1/2
((2143), (2413)) (3,3,1) 1/4 1/2
((1342), (3412)) 2,3,4) 0 1/4
((3142),(3214)) (4,2,4) 0 1/4
((3142),(3142)) 3,4,4) 0 1/4

((3142),(1432)) 2,1,2) 1/2 3/4
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Proor. Part (a) follows from Definition 2.2 and Theorem 4.5. Part (b)
follows from Examples 3.5 and 4.6 and Lemma 3.4. O

For >, on Sy, (2.1) gives the self-duality results with respect to comple-
mentation and inverses. The duality of >; and >;, and self-duality of >,
and >z, with respect to complementation follow from Lemma 3.4 and
Remark 4.4. The following example shows that there are no duality results

with respect to inverses among the four orderings >;, >;, >, and >p.

ExaMpLE 4.8. Let i =(4231), j =(2341), a =(4321) and B = (2431),
so that i* = (4231), j* = (4123), a* =(4321) and B* = (4132). To show
that (1,j) >y (a,B) and (*,j*) % (a*,B*), where >y denotes one of the
orderings >, >;, =, or =>p, it suffices to show by Theorem 4.7 that
G4,)) 25 (a, B), (%% #y(a*,B*) and @G*j*) #.(a* B*). It is obvious
that (1,j) >z (e, B). To show that (i*,j*) ¥, (a*, B*) and (i*,j*) #.(a*, %),
let (R,S,T) and (U,V,W) be two random vectors related to (i*,j*) and
(a*, B*), respectively. Then note that P(R >3, S>2, T>3)=0<1/4 =
PU=23,V>2, W>3)and P(R<4,S<1,T<2)=0<1/4=PU <4,
V<1, W<2.

5. Discussion. We note that the ordering > on (Sy)* can be directly
extended to (Sy)™, m > 2. In fact, all of the results of Sections 3 and 4
(except Theorem 3.3) can also be extended in the obvious fashion to deal with
partial orderings on (Sy)™.

The ordering >, on Sy can also be extended to RY and (R¥)™. Metry and
Sampson (1993) considered a simple extension of the ordering >, from Sy
to RY. For x,y € R¥, x is said to be more concordant than y (x >, y) if
(R,S) >, (U,V), where (R, S) and (U, V) are, respectively, bivariate random
variables related to x and y. They show that for x,y € R", x >_ y if and only
if one of the following two equivalent conditions is satisfied:

1. y is a permutation of x and x; , >y, ,;,forall1 <l <k <N — 1.
2. X =y or X can be obtained from y in a number of steps each of which
consists of correcting an inversion.

The ordering >, on R, used by Marshall and Olkin [(1979), page 160] to
define arrangement increasing functions, can be directly extended to
an ordering on (RV)™. For (x,,...,%,,),(y,,...,¥,,) € RM)™, define (x4,...,
x,) >, (yy,...,y,) if x,>_y, for all I =1,..., m. This ordering is used
implicitly by Boland and Proschan (1988) to define the multivariate arrange-
ment increasing functions. We point out that the ordering > can also be

directly extended to (RV)™ and is stronger than the preceding ordering >,
on (RV)™.
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