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PRODUCTS OF 2 X 2 RANDOM MATRICES

By Davib MANNION

Royal Holloway College, University of London

The notion of the shape of a triangle can be used to define the shape
of a 2 X 2 real matrix; we find that the shape of a matrix retains just the
right amount of information required for determining the main features of
the asymptotic behaviour, as n — «, of G, G, _; *** Gy, where the G; are
ii.d. copies of a 2 X 2 random matrix G. An alternative formula to the
Furstenberg formula is proposed for the upper Lyapounov exponent
of the probability distribution of G. We find that in some cases, using
our formula, the Lyapounov exponent is more susceptible to explicit
calculation.

1. Introduction. Let £ = GI(2, R) be the set of 2 X 2 real, invertible
matrices, let u be the probability measure of a random matrix G € & and let

Hn = G'n(}n—l Gl’

where the G; are i.i.d. copies of G.

Let  be the set of directions in R%, where z, and z, € R? are said to have
the same direction if there exists real A such that z, = Az,. We say that the
probability measure v on g is u-invariant if for every bounded Borel function

fongp
[f(w)v(du) = [[F(@2)n(dg)v(du),

where z € R? is a vector with direction u and gz is the direction of gz.

Furstenberg’s theorem states that if det(G) = +1 a.s. and conditions (2.3)
and (2.4) of Section 2 hold, then there exists v > 0 such that for each z # 0,
z € R?,

1
(1.1) ;log(lanl) — vy a.s.asn > ©,

Moreover there is a unique p-invariant probability measure » on g, and »
is continuous. vy is given by the formula

(12) y= fflog(%)u(dgwwu),

where z is a vector with direction u. vy is called the wupper Lyapounov
exponent of .
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Note that what we have called Furstenberg’s theorem is really an amalga-
mation of several results that appear in Furstenberg [5] (Theorems 8.5 and
8.6). See also Bougerol and Lacroix [2] (Chapter 2, Theorems 4.1 and 4.4, and
Chapter 3, Theorem 6.3).

Lyapounov exponents are difficult to calculate: Many of the examples that
appear in the literature have, in some sense, been designed for simple
calculation (see [2]). There are also some calculations of Lyapounov exponents
to be found in Key [12], though he makes no explicit use of (1.2). In the
calculation of a Lyapounov exponent, finding the u-invariant probability
measure v is the difficult part. We shall derive an alternative formula for vy
[formulae (1.4) and (1.5)] that, like (1.2), is also the integral of a function with
respect to an invariant probability measure . In some cases i is easier to
find than ».

Let a, b, ¢, d be real-valued random variables such that ab # bc with
probability 1. Let G be the 2 X 2 real matrix:

=[]

Then G € & with probability 1. Let ¢ be a constant and let ¢, be the

random variable
at+ b

T ct+d
and let @ be the probability distribution of ¢;:
Q(t,B) = Pr[t, € B],

21

where B is a Borel subset of R. If condition (2.5) holds, there exists a unique
probability distribution ¥ on R such that

(1.3) ¥(B) = [¢(dt)Q(¢, B).
For real numbers u,, u,, ..., u,, we define their range:
range(uy, Ug,...,u,) = max(uy, ug,...,u,) — min(u,, uy,...,u,).

For constant ¢, let

h(t) = log(range(0,¢,1)),
H(t) = E[log(range(0, at + b,ct + d))].

We shall derive the following alternative formulae for y:
(1.4) y= [H(t)w(dt) - [h(t)w(dt)

(1.5) = [E[log(lct +d)]w(dt).
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Important in our derivation of (1.4) and (1.5) is the notion of the shape of a
triangle where, according to the definition of D. G. Kendall, [8], [9], [11]:

The shape of a geometrical object is what is left after
attributes of its size, orientation and location have been
filtered out.

To this definition we add the extra requirement that an object and its
reflection in a hyperplane shall have the same shape.

The notion of the shape of a triangle (we shall give its precise definition in
Section 2) can be used to define the shape of a 2 X 2 real matrix. Let

Z- [xl Y 1].
X9 Y2

The shape of Z is defined to be the shape of the triangle I' whose vertices
are the origin and the points with coordinates (x, y;) and (x5, y,). The shape
of T' is determined by a pair of real coordinates (s, w). Thus, because for our
purposes it is the shape of Z that matters, the four dimensions (x,, ¥, x5, )
of Z can be reduced to the two dimensions of its shape (s, w). Notice that only
invertible matrices give triangles whose vertices are not collinear.

We know from Theorem 4.6 of [7] that if (2.5) holds, then the directions of
the vectors formed by the rows of H, converge in probability as n — « to a
common limit. See also [2] (Chapter 3, Theorem 4.3). In shape terms, this
translates as follows. Let (s,, w,) be the shape of Z, = H,Z,, where Z, is an
arbitrary real, invertible, non-random matrix. Then there exists a random
variable 7*, 0 < 7* < 1, such that

w, > 0a.s. and s, — 7*in probability as n — .

Thus, the four dimensions of Z, are replaced by the two dimensions of
(s,,w,); in the long run, these are replaced by the one dimension of 7*.

There are difficulties in a direct study of the shape process (s,,w,) since
this is not a Markov process, (in Section 9.2 we define a shape process that is
Markov and has the same asymptotic behaviour as (s,,w,)). Our preferred
approach is by way of a sequence Zn, normalised versions of the Z,, which is
Markov and which is very close in information content to the sequence
(s,, w,).

We also discover that y measures the rate at which w, — 0:

—log(w,) » —2y a.s.asn —> x
n

and we shall see in Section 9 that there is a simple relation between the
invariant probability measure ¢ of (1.3) and the probability distribution
of 7*,

In Sections 6—-8 we demonstrate our approach in three examples, for each
of which we calculate both ¢ and vy. In Section 6, the two rows of G are i.i.d.
from a bivariate normal distribution, N(0, 3). We discover that y is a simple
function of tr(3) and det(3). Cohen and Newman [4] have examined the case
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where the entries of G, a matrix of arbitrary dimension, are ii.d. from a
standard symmetric stable distribution. In Section 7, G has a form that arises
in the theory of Brocot sequences:

0 1
=[x/

where X is a nonnegative random variable with a continuous distribution.
Such G have been studied by Chassaing, Letac and Mora [3], and we extend
some of their results. In Section 8, we describe a triangles within triangles
problem, a detailed discussion of which appears in Mannion [13]-[15]. Of the
three examples, the calculations involved here proved to be the most difficult.

We are currently looking at the possibility of using the shape approach
to extend our results to higher dimensions. Formally, the setup is entirely
similar to the two-dimensional case.

Let G be a random p X p real invertible matrix, let w be the probability
measure of G and let G{,G,,...,G,,... be iid. copies of G. For real con-

s Ty

stants ¢, let t, = (¢,,¢,,...,¢,_,). Let G; =[g;;] and let
U; =8ty +8ipla + " T8, 1tp-1 T 8ip> t=1,2,...,p.

Define

v, =u;/u,, i=12,...,p -1,
and let t; = (v;,v,,...,v,_,). We iterate this prescription in the obvious way
to generate the sequence t,,t;,...,t,,.... Thus, to generate t,, use the

preceding prescription replacing t, by t,_, and G; by G,, n = 2,3,....

If u is contracting, then there exists a (p — 1)-dimensional random vari-
able 7 such that t, — 7 in probability as n — . Let ¢ be the probability
measure of 7 and for a constant t, let

h(t) = log(range(0, ¢, ¢,,...,¢,_1,1)),
H(t) = E[log(range(O, Uiy Ugyenns up))] .
We hope to prove the higher dimensional analogue of (1.4):

y=[H(®)¢(dt) — [h(t)y(dt)

= [E[tog(lu, )] #(dt).

It should be noted that in two dimensions it is a weak requirement that u
should be contracting; in higher dimensions it is a stronger requirement.

2. Triangle shapes and 2 X 2 matrices. Points in the Euclidean plane
R? are identified by Cartesian coordinates (x, y), relative to a pair of (x, y)
axes. To define the shape of a triangle A whose vertices are noncollinear we
need first of all to label its vertices. If there is a unique longest side of A, we
label its end points A, and A, and label the third vertex of the triangle A,
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where the labelling is such that A, is to the left of the directed line from A,
to A,. If there is more than one “longest” side, we choose one of them, label
its end points as A, and A, and proceed as before. Whatever choice is made
will lead to the same shape.

Let the coordinates of M, the midpoint of A,A,, be (a, B) and let 6 be the
angle the directed line A,A, makes with the x-axis. Thus A,4,=
| Ay A,l(cos(8),sin(0))'. New coordinate axes are set up by first translating the
(x, y) axes so that the origin moves to M and then rotating the axes so
obtained about M, through the angle 6 in the positive sense, to get the final
pair of axes—the (x', y') axes, say. By this construction the x'-axis lies along
A, A,. A point with coordinates (a, b) relative to the original axes now has
coordinates (a’, b') relative to the (x’, y') axes, where

(1) = | onte) oo |(525)

Let (ay, B,) be the coordinates of A, relative to the (x, y) axes and let (S, W)
be the coordinates of A, relative to the (x’, y') axes (see Figure 1). Then

(S) | cos(8) sin(6)|[a; — «
W) | —sin(8) cos(8)|\B1—B)
Let L be the length of A,A,. We define the shape o(A) of A by

a(4) = (s,w),
where
s = 2|S|/L, w=2W/L.

s and w are called the shape coordinates of A.

This definition differs from that of Kendall [9]. He has s = 2S /L, so that
according to his definition, a triangle and its reflection in a line have different
shapes. The strict Kendall definition is not best suited to this study: it retains

Fic. 1. The(x’',y’) coordinate axes.
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information about the shape of a triangle that is not needed for tracking the
evolution of the size of a sequence of products of ii.d. random matrices. It
would also make our argument very much more complicated. Under our
definition, there is a small additional bonus in that there is no uncertainty in
the assignment of a shape to an isosceles triangle for which the two equal
sides are also the longest.
We see that (s, w) satisfies the inequalities
s =0, w =0, (1+s)2+w2s4.

Accordingly we define S, the shape space of triangles, as (see Figure 2)
(2.1) SE{(s,w):sZO;w20;(1+s)2+w254}.

Let Z be an arbitrary 2 X 2 real, invertible matrix

_|*¥1 N
z= [xz y 2]
and let T' = I'(Z) be the triangle with vertices (0, 0), (x,, y,), (x5, ¥5). We will
say that I' is the triangle of Z and we define the shape of Z by
shape(Z) = o (T').

An observation that will be useful in the proof of Theorem 2.1 is the
following: If L is the length of the longest side of I and o (I') = (s, w), then
(2.2) |det(Z)| = 2 X area of ['(Z) = LW = {Lw.

We define £ to be the set of 2 X 2 real invertible matrices. Let G € £ be a
random matrix and let u be the probability measure of G. Let H, be the
product of i.i.d. copies of G:

H =GG, , G,

Fi1c. 2. The shape space.
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We define Z, = H,Z,, where Z, is an arbitrary (nonrandom) matrix in £,
and let T, denote the triangle of Z,,. We let o, denote the shape and (s,,w,)
the shape coordinates of I,:

o, =0(l,) =(s,,w,).

We define &, to be the smallest closed subgroup of & that contains the
support of u and we define ? to be the smallest closed semigroup of £ that
contains the support of pu.

A subset & of & is defined as strongly irreducible if, for any g €.7, there

do not exist proper linear subspaces of R?, V,,V,,...,V, such that
g Uv)- U
1<j<k 1<j<k

A subset & of ¥ is said to be contracting if there exists a sequence {M,,,
n=1,2,...}in & such that M, /|M, || converges to a matrix of rank 1, Where
llgll is the usual norm of g:

llgll = suplgzl, z=(x,y) €R?

lz]< 1

and |z| = /(x? + y?).
We state four conditions that we may require of a particular u:

(2.3) JNog(ligh| u(dg) < ;
(2.4) Z, is strongly irreducible and is not a compact subset of &;
(2.5) .?;# is strongly irreducible and contracting;
(2.6) forsome @ >0, [lgl%(dg) <o and JllgMIu(dg) < .
The upper Lyapounov exponent of u is y defined by
1
(2.7) y= lim ;E[log(lIHnII)].
n—o
The sequence {E[log(|H,|); » = 1,2,...} is subadditive. Thus, if condition
(2.3) holds, the limit (2.7) exists. Furstenberg’s theorem states that if det

(G®) = £1 a.s. and conditions (2.3) and (2.4) hold, then there exists y > 0 such
that for each z # 0,

1
(2.8) —log(IanI) -y as.asn —> o,

The condition det(G) = +1 is not very restrictive. If G is invertible, we
may consider G = G/ / Vldet(G)l, where G’ is the transpose of G. Let
denote the probability measure of G. Note that for Furstenberg’s theorem, it
is sufficient that in (2.3) the range of the integral is restricted to {g: |ig|| > 1}.
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THEOREM 2.1. If i satisfies (2.3) and (2.4) and if v is the upper Lyapounov
exponent of [, then y > 0 and, provided w, > 0,

—log(w,) > =2y a.s.asn — «.
n

Proor. Let L, be the length of the longest side of I, the triangle of
Z,=H,Z, Let v; =(1,0) and v, = (0,1)". Then the lengths of the sides of
I, are

Zo vy, ZGHL,), [ ZgH, (v, — vy) |
and
L, = max{Z Hv,|, [Z,Hv,|, |Z,H,,(v, — v;)|}.
Let
K,=L,/\|det(H,)|, J,=H,/y/|det(H,)].
Then

K, = max{|ZJ,v,|, [Zod, v, |Zyd, (v, — vi)|}.
Recalling (2.2), we see that
w, = 2(L,)"|det(Z,)|
and so
w, = 2(K,) "|det(Z,)|.
With v any one of v;,v,,v; — v,, let u, = J,v/lJ,v|. Then
log(1Z,J,v|) = log(|Zyu,l) + log(lJ,vl).

By Furstenberg’s theorem and, in particular, (2.8),
1
—log(W,vl) » ¥ as.asn — .
n
Because w, > 0, it follows that det(Z,) # 0 and inf), _,/Z;u| > 0. Thus

1
;log(IZQ)unl) -0 as.asn—>®

and hence

%log(IZ’OJnVI) - ¥y as.asn — o,
Thus

;log(Kn) -y as.asn —>®
and

—log(w,) - —2y a.s.asn — «,
n

as required. O
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COROLLARY 2.1.

w, >0 as.asn —> »,

PrROOF. Because y > 0, the corollary is an immediate consequence of
Theorem 2.1. O

COROLLARY 2.2. If condition (2.3) holds and E[log(ldet(G))] is finite, then
v and y are related by

(2.9) ¥ = v — 3E[log(ldet(G)))].

ProOF.

1 1 1
—’;log(llJnll) —’;log(HHnll) - —2—n—log(|det(Hn)|)

1 1
—log(/HLl) ~ 5-1log(|det(G,G, 1~ Gy)|)

1 1z
“log(IHL,l) — — Y1 G)|).
nlog(II o) 5 igl og(|det(G,)|)

Thus

1 1 1
(210)  —E[log(1,)] = —E[log(1H, )] - 5 E[log(|det(G)])].
(2.9) follows directly from (2.7) and (2.10). O

3. The sequence of normalized matrices Z,. Recall that Z, =
G,G,_; - G,Z,, where Z, is nonrandom. Because the random matrices
G, are mutually independent, {Z,,Z,,...,Z,,...} is a Markov process with
starting point Z,. We shall see that all that is required for the calculation
of the upper Lyapounov exponent of u is a knowledge of the asymptotic
behaviour of the shape process o, = shape(Z,). Without some appropriate
additional construction, it is not the case that the sequence of shapes o;
themselves form a Markov process. We have seen how to assign a shape to a
matrix. To construct a Markov process of shapes we need to be able to assign
a matrix to a shape. This is not such an entirely straightforward thing
to do because, for a given shape o, there are many choices of Z such that
shape(Z) = o.

In Section 9 we show that it is possible to construct a shape process {3,
n =0,1,...} that has the Markov property and is such that the asymptotic
behaviour of #(g,) is the same as that of #(shape(Z,)), n — . Under the
conditions of Theorem 9.2, much more is true. Namely,

Z(6y,61,...,0,) =Z(shape(Z,), shape(Z,), ..., shape(Z,)),

n =12 ..., where & stands for “the probability measure of.”
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However, we can make progress without resorting to this construction. We
define a sequence of random matrices Z , where each Z is a simple transfor-
mation of Z,, where the sequence {Z =0,1,...} is a Markov process and

where the Z retain just the right amount of 1nformat10n we require: Zn
contains less 1nformat10n than Z,, and only a little more than o,.
Let M be the 2 X 2 real invertible matrix

M = [xl yl]
X9 Yo

and let x, = r cos(8) and y, = r sin(6). Because M is invertible, r > 0.
We define the orthogonal matrix U, a rotation about the origin through an
angle 6 in the clockwise sense:

U= cos(0) sin(6)
| —sin(8) cos(6) |
We denote by M the normalized version of M given by
9:M > M=r"'MU'.
We define x and y by
(3.1) x = (%125 +y1y5)7r %, ¥y = (=%, +y,2)r?
Then
~ x y
M= .
i

Note that the transformation M — M involves only a rotation and a scaling,
)

shape(M) = shape(M).

LEMMA 3.1. For a given invertible matrix M, if, for r; > 0 and orthogonal
matrices, U;,

roiMU = | Y0 Y] =12,
1 0

then r; = ry and U; = U,.

PrOOF. The lemma follows easily from the orthogonality of the U, and

X X
M=r1[ 3 %1]U1=r2[12 ﬂUZ. 0

COROLLARY 3.1.

(3.2) Z,=9(G
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PrOOF. Let
Zn = rrzlann = r;IGnZn—lUn; Zn,—l = rr:llzn—IUn—l'

Then (3.2) follows from Lemma 3.1 and the observation

~

Zn =rn—1r;1GnZn—lUn—1Ur/L' o

[A relation similar to (3.2) appears in Goodall [6] in his cut/grow
construction.]
We define x, and y, by

(3.3) Z, = [x y"].

THEOREM 3.1. The sequence of 2 X 2 random matrices {Zn, n=0,1,...}
is a Markov process.

PROOF. It is enough to note from (3.2) that Z, = 9(G,Z,_,) = 9(G,Z,_)),
n=12....0

THEOREM 3.2. If (2.5) holds, then there exists a random variable T such
that

(x,,%,) = (7,0) in probability asn — .
If, in addition, (2.6) holds, then

(x,,%,) = (7,0) a.s.asn — =,
ProOOF. Let

An Bn
GnGn—l "'Gl = [ ].

¢, D,

From (3.1), we see that x, and y, are given by the expressions
2, = {(A,x + B,)(C,xo + D,) + A,C,y3}R;?,
¥» ={(A,D, - B,C,)yo}R,?,

where R2 = (C,x, + D,)? + (C,y,)%.
We define

tnl Elqn/cn’ tn2 = Bn/Dn7 tn3 = Bn/An7 tn4 = Dn/Cn7

Ry =(x, + tn4)2 + (yo)z'
Then

(34) %, = tyf(xg + t,3) (%o +t,) + YIRS,
(3~5) Yn = (tnl - tn2)tn4y0R;g‘
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Let u' be the probability measure of G’ and let (3.6) be the condition
(3.6) ?M, is strongly irreducible and contracting.

It is easy to show that if (2.5) holds, then so does (3.6).

From [7] (Theorem 4.6) and [2] (Chapter 3, Theorem 4.3) we know, using
y/x for the direction of a vector (x, y)', that if condition (2.5) holds, there
exists a random variable 7 with a continuous distribution (and hence 7 is
finite, with probability 1) such that

(3.7 t,3 > 7, t,, — T in probability as n — .

Because (2.5) implies (3.6) we can further assert that there exists a random
variable 7 with a continuous distribution (and hence 7 is finite, with proba-
bility 1) such that

(3.8) byy = 7T, t,, = 7 in probability as n — o,
It follows from (3.4)—(3.8) that
(3.9) (x,,5,) = (7,0) in probability as n — .

If, in addition to (2.5), condition (2.6) also holds, then in probability in
(3.7), (3.8) and (3.9) may be replaced by a.s. See [7] (Theorem 5.18) and [2]
(Chapter 4, Theorem 3.1). O

4. The sequence of random matrices T,. Because y, —» 0 as. as
n — o, we should expect that what determines the asymptotic behaviour of
the size of Z,—and hence y—is the asymptotic behaviour of x,,.
We define a sequence of random matrices T, as follows. For an arbitrary
real constant ¢, let
T, = [to 0]

1 0
and
T, = 3G,T,_,), n=12,....

With

G = a, bn

" - cn dn ’
we define
(4.1) t,=(a,t,_;+0b,)/(c,t,.1+4d,), n=12,....
THEOREM 4.1.

If condition (2.5) holds, then
t, = 7 in probabilityasn — o.
If, in addition to (2.5), (2.6) also holds, then

t,—> 7 a.s.asn — ©,
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ProoF. The first part follows directly from the definition T, = 9(G,T,_,).
Notice that, with x, = ¢,, and y, = 0, then ¢, = x, and, from (3.3),

-1
n = tnl(tO + tn3)(t0 + tn4) N
The probability distribution of 7 is continuous, hence

Prlt,s — t,4l > 8ltg + t,u]] >0 asn —> o  for s> 0;

t

thus
(to + t,5) (¢ + tn4)71 — 1 in probability as n — .
From (3.8), we now have
t, — 7 in probability as n — .
If (2.6) holds and if also ¢, + 7 # 0, then

t, > 7 as.asn —> o, O

Let (dt) be the probability measure of = and let z, = (x,, y,). 2,,24, ...,
Z,,... is a Markov process with starting point z,. Let P,(z,, B) denote the
probability measure of z, and let P,(z,, B) be the average

_ 1 n-1
Pn(ZO’B) = ; Z Pm(ZO’B)’
m=0

THEOREM 4.2. Let ¢ be a bounded, measurable, real-valued function on
R? and let q(¢) = §((t,0)) be a continuous function on R. Then, if (2.5) holds,

lim [§(2) ,(2o,dz) = [q()¥(dt).

PrOOF. Let B be an arbitrary Borel subset of the plane, and let
B=Bn{z:z=(x,0), —© <x <x}.
We define the probability measure ¢ on R? by
¥ (B) = ¢(B).

Because z, — (7,0) in probability as n — », the probability distribution
P,(z,, ) converges weakly to the measure y(-). Thus

lim [§(2) P,(z,dz) = [a()¥(dr).
That it is only g that is required to be continuous is a consequence of a weak
convergence theorem, for which see Billingsley [1] (Theorem 25.7) or Pollard

[16] (Chapter 4, Section 2, Continuous Mapping Theorem). O

Let

c d
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and let ¢, = (at + b)/(ct + d), where ¢ is a real constant. Let
Q(t,B) = Pr[tl < B]’

where B is a Borel subset of the real line.

THEOREM 4.3. If (2.5) holds, then s, the probability measure of T, is the
unique (up to scaling) solution of the integral equation

(42) ¥(B) = [¢(dt)Q(t, B).

Proor. That ¢ satisfies (4.2) follows from (4.1) and Theorem 4.1. That ¢
is unique follows from [7] (Theorem 4.6). O

5. The Lyapounov exponent. In Section 1 we defined, for constant ¢,
h(t) = log(range(0,¢,1)),
H(t) = E[log(range(0, at + b, ct + d))].

THEOREM 5.1. If w, the probability measure of the 2 X 2 real invertible

random matrix G, satisfies (2.3) and (2.4) and if El[|log(|[det(G))I] is finite,
then the upper Lyapounov exponent of w is y given by

y= [H()y(dt) — [h(t)w(de)
= fE[log(lct + dl)]y(dt).

Proor. We suppose that w, > 0. Because det(G) # 0 a.s., w, > 0 a.s. for
each n =1,2,... and so we may define @, = w,/w,_;. Thus @, > 0 as.
for each n = 1,2,... . Clearly

w, = QnQn—l Q1w07

S0
1 12 1
(51) -log(wn) = Z log(Qm) + _log(wO)
n n,— n
Let &, = 0(Zy,Z,,...,Z,) be the sigma-field of events generated by Z,,
Z,,...,Z,. The sequence of random matrices {Z,, n = 0,1,...} is a Markov
process, so

E[log(Q,)\%, ,] = E[log(Q,)|Z, ,].
Let

MZ,-,) = E[log(Q,)Z,_,].
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Then, from (5.1) we have

nil

m=0

(52) - Elog(w,)2,] = E[AZ,)2Z,] + —log(wy).

From (2.10), we know that w, = 2(L,) 2|det(Z,)| and hence
Qu = w, /W,y = (Lp/Ly—y) | det(Z,) /det(Z, )]
= (Ly/Ly 1) "|det(G,,).
Thus
log(@,) = —2log(L,/L,_;) + log(|det(G,)|).
It follows that
(5.3) A(Z,) = —2E[log(L,/L,)|Z,] + E[log(|det(G)|)].

Let EO be the length of the longest side of f‘o, the triangle of ZO, and let ﬁl
be the length of the longest side of I';, the triangle of G;Z,. Then

L,/L, = i’l/f‘O‘
We define A(z) by
(5.4) Mz) = E[log(ﬁl/io)lzo = z].
From (5.2), (5.3) and (5.4) we have

n-1

~E[log(w,)Z] = ~ > T E[A(z,),]
0

(5.5) m= )
+ E[log(|det(G) )] + ;log(wo).

Let y be the Lyapounov exponent of u and let ¥y be the Lyapounov
exponent of . Then, from Theorems 2.1 and 2.2,

1
y=9y+ EE[log(ldet(G)l)]

1 1
= lim — o—log(w,) + 5 E[log(|det(G)|)].

Combining this with (5.5) we get
1 n-1
y= lim — 3 E[X(z,,)z]
L R
1 rn-1
= lim — ¥ [A(2)P,(20,d2)
noe o

= lim fA(z) P,(z,,dz).
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(2.3) guarantees that A(z) is bounded, so we may apply Theorem 4.2 to get

y= [e(t)u(de),
where {(t) = M(¢,0)). When we put z, = (¢,0), we get

IA,I = range(0,at + b,ct + d), L, = range(0,¢,1),
from which it follows that

{(¢) = H(t) —h(2).
Thus

y= [H(t)w(dt) — [h(2)w(de).

Now
JH(#)w(dt) = [E[log(range(0, at + b, ct + d))] ¢ (dt)
= fE[log(range(O,(at + b)/lct +dl,
(ct +d)/lct + dl))]y(dt)

+[E[1og(|ct + d)]y(dt)

and

fE[log(range(o,(at +b)/let + dl, (ct + d)/lct + dl))]w(dt)
= [Ey;.q. ollog(range(0, (at + b)/(ct + d), 1)) ] (dt)
+ [Eq,vq<ollog(range(0, —(at + b)/(ct + d), —1))]¥(d?)
= [Eq\.a ollog(range(0, (at + b) /(ct + d),1))]w(dt)

+ [ ollog(range(0, (at + b) /(ct + d), 1))]w(de)

[because range(0, —x, —1) = range(0, x,1), for all x]

= fE[log(range(O,(at +b)/(ct +d),1))]w(de)
= fd;(dt)fQ(t, ds)log(range(0, s,1))

= [log(range(0,¢,1)) y(dt) = [R(t)p(dr).
Thus
y= [H(t)v(dt) = [h(t)d(de) = [Ellog(let + dD]w(dt),

as required. O
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6. Example 1. Perhaps the hardest part in the task of determining a
Lyapounov exponent is that of calculating the invariant distribution ¢(d¢), a
solution of (4.2). However, it can happen that @(¢, B) is independent of ¢, in
which case

y(B) = Q(t,B), forall:.

Our first example is an instance of this.

THEOREM 6.1. With

we suppose that (a, b) and (c,d) are i.i.d. N(0, ) random variables. Then
the invariant probability measure that satisfies (4.2) is y(dt) = g(¢) dt, where

t) = —————— —o0 < ¢ < oo,
8(t) m(1 +t%)’ * *

The upper Lyapounov exponent of G is vy given by
y=—39+ 3log(3 tr(3) + y/det(%) ),

where y is Euler’s constant:

+ o0
9=~ Tlog(x)e™*dx = 0.577215669... .
0

PrOOF. It is easy to check that u, the probability measure of G, satisfies
conditions (2.3)-(2.5), required for Theorems 4.3 and 5.1.

For constant ¢, let o2(¢) = var[at + b] = var[ct + d] = (¢,1)2(¢,1)". Let
u=(at +b)/c(t) and v= (ct + d)/o(¢). Then u,v are ii.d. N(0, 1) random
variables. Thus #; = (at + b)/(ct + d) = u/v is the quotient of i.i.d. N(0, 1)
random variables, and hence has the standard Cauchy distribution. Thus
Q(t, B), the probability measure of ¢,, is given by @(¢, ds) = ¢/(ds) = g(s) ds,
where

e — —®w <g <o,
8(s) (1 +s%)’ $

Recall (1.5), the formula for vy:

y = [Ellog(lct + d)]w(dt)
= [Ellog(let + di/a (£))]w(dt) + [log(a (¢))(dr)

- Ellog(lw)] + [ log( (1)) &(2) dt,
where
(i) E[log(lvl)] = —31og(2) — +9 = —0.635181422. ..
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and

(ii) [rlog(a(t)) g(t) dt = }log(2) + }log(3 tr(2) + ydet(3) ).
Thus
y= —3%+ 2 log(3tr(3) + det(3) ),

as required.

(i) follows from the observation that, because v is standard normal, we can
write |v| = V2Zcos(®)|, where Z and © are independent random variables, Z
being negative-exponentially distributed with mean 1 and ® being uniformly
distributed on [0, 277]. Thus

E[log(lv))] = E[log(V2Z |cos(©)])]

%log(2) + %E[log(Z)] + E[log(| cos(0)])]

1 1 4w ~, 1 2
=§1og(2)+§[0 log(z)e dz+§;f0 log(|cos(6)|) d6

1 1 2 /2
—log(2) — =%+ ——f log(cos(80)) d6
70

2 2

11 9 1 2 77'1 9 11 9 lA
= — — =5+ ——-= = —— — —4,

5 log(2) e w( 5 log( )) log(2) — 5%

Let 7, n, be the eigenvalues of %, n; > n, > 0. Then (ii) follows from
+ o
| log(o(2))g(t) dt

- f_+:log((t,1)§l(t,1)’)-——27T(1 &

1

4o
= f..oo log(n1t2 + 1’2)——277(1 n t2) dt

1 w/2 2
= é;'[_#/2log(nlt +m,)do
1

w/2 .
= ?Z;f_ /2log(n1 sin®(9) + m, cos®(0)) d6

1 w/2
—~f log(cos(0)) d6
T —m/2

_ ifﬂ/z log(my sin®(6) + 1, cos?(0)) d6 + log(2)
2 —-7/2
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1

/2 1 1
- 5;f_mlog 5 (L F 1) + 5 (my = m)cos(20) | d6 + log(2)

1 1
Elog(g(m +my) + Vnmz) + log(2)

S1o8( 55(3) + D) | + log(2). -

7. Example 2. In our second example we look at the form that G takes
in the study of Brocot sequences by Chassaing, Letac and Mora [3] (see also

[2D:
o-[1 3]

where T' is a nonnegative random variable. The authors calculate ¢ and v in
the case when T has the negative exponential distribution. We shall show
that for fairly general T, there is a simple and interesting equation for ¢ and
a simple formula for y. We calculate ¢ and y explicitly in the case when T
has a gamma distribution.

We suppose that 7' has a probability density f. For constant s, let
t; =1/(s + X) and let g(s,t) be the probability density of ¢,. Then

1 1 1
g(s,t)=t—2f(; —s), 0 <t < — (= 0 otherwise).
s
The invariant probability measure ¢ of (4.2) has a density g, given by
ty= [ t) d e A2 d £>0
g(t) = [ g(s)g(s,0)ds = [ g(s) ;51| — 5| ds, :
Thus

1 (1 ;
(7.1) —z—g(—) = [a(s)f(t —s)ds, t>0.
t t 0
We show that the Lyapounov exponent vy is given by
-+
(7.2) y= —[0 log(t)g(t) dt.

We have from (1.5),

v= [ Bllog(t + T))e(r) at
= [ [ von(t + 5)f()g(0) dsde = [ log(1) dt['f(s)g(t - 5) ds

= /()Jroolog(t)tlzg(;) dt = —_[()+wlog(t)g(t) dt.

THEOREM 7.1. If T has the gamma distribution, Z(«, B), with probability
density f,

f(t) = aexp(—at)(at)®’ ' /T(B), t>0,
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then

1 1
(73) g(t) = ;mexp(—a(t+ 't—) /2KB(20{), t>0,
where K;(2a) is the modified Bessel function defined by
+ o0
Kz(2a) = j(‘) cosh( Bt)exp(—2a cosh(¢)) dt.
The upper Lyapounov exponent y = v, gz is given by

(7.4) Yo 5 = [Kp(2a)] i f0+oot sinh( Bt)exp( —2a cosh(?)) dt.

Proor. It is easy to check that g, given by (7.3), is a solution of (7.1).
Moreover it is the only solution because, under condition (2.5) (satisfied here),
there is only one invariant probability measure that satisfies (4.2). From (7.2),

1 it 1 1
Yeus = ~[2K5(20)] " [ log(t) pperexs _a(H?) g

~[2K,(20)] " [o+°°t exp( — Bt)exp( —2a cosh(¢)) dt

= [KB(2a)] ! f+oot sinh( Bt)exp( —2a cosh(t)) dt,
0
as required. O

Notice that when B = 1, after an integration by parts, we get
-1
Yo,1 = Ko(20)[20K,(2a)] .

There is a mistake in the calculations of Chassaing, Letac and Mora [3],
who looked at this case. For their calculation of vy, they have K (2a)
[aK,(2a)] . The mistake is repeated in Bougerol and Lacroix [2].

When B is a positive integer we may express y in terms of Bessel func-
tions. Let B = n, a positive integer, n > 2.

COROLLARY 7.1.

Yan = —[Ku(20)] " Loe, K (20),
r=0

where the coefficientsc, =c, ,, r =0,1,..., n, are given by
— _ _ -1
acy + ¢, — 2acy, =0, ¢, =0, C,_1= —a -,
ac,,, +re,—ac,_, =0, 2<r<n-1.

In particular,

Yoo = [Ks(20)] ' [3072K (2a) + oK (2a)],
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Yos = [Ky(2e)] [(Ga + 0 ) Ko(2@) + 20 7K (2a) + o 'Ky(2a)],
Yoo = [Ky(20)] (2272 + Ba ) Ky(2a) + (a ' + 6a ) K (2a)
+8a 2K, (2a) + a K4(2a)].
PrOOF. Let
I(t) = fotsinh( Bs)exp( —2a cosh(s)) ds.
Then
Yop = —[Kp(2e)] " [O+°°1(t)dt.

The remaining part of the proof follows on noting that, for the given c,,

I(t) = iocr cosh(rt)exp( —2a cosh(?)). O

We notice from the formula

v=-f log(t)g(t) dt

that if g(¢) =e !, t > 0, then the Lyapounov exponent is Euler’s constant.
The question is then: What is the corresponding f(¢)? (7.1) provides the
answer:

d
(1) =™ —(t7%7 ) = (-0’ e !, t>0.

Similarly, if g(¢) = ae *(at)* " 1/(n — 1), a > 0, t > 0, then

d
f(t) — e*atﬁ(ea(tfl/t)tfnfl)/(n _ 1)1’ t>0.

8. Example 3. Our last example, the topic of a series of articles by
Mannion [13]-[15], arises from a problem proposed to us by David Kendall
when he and his colleague Hui-Lin Le were investigating the shape distribu-
tion of a triangle whose vertices are three points chosen at random in the
interior of a convex polygon (Kendall and Le [10]).

Three points are chosen at random in the interior of a parent triangle A,
these points to be the vertices of the daughter triangle A;. A, now serves
as the new parent triangle for a new daughter triangle A,, created by choos-
ing three points at random in the interior of A,. Repeating this prescription,
with A, being the daughter of parent A, _,, gives rise to a chain of nested
triangles {A,, n = 0,1,...}.

We suppose that the vertices of A, are noncollinear. Let them be labelled
Py, Py, Py, and let their coordinates be (x;, yo;), j = 0,1,2. Let # be the
triangle in R3,

Z={wrug+u +u,=1;u,>0,;=0,1,2}

J
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and let n(du) be a probability measure on /# such that each of the probability
laws A(u;,u) =A(uy, uy), i #j. Now let u; = (w9, u;;,u;5), i =0,1,2, be
three independently n-chosen points in Z.

The vertices Py, Py;, P, of A are the points with coordinates (x;, y;;),
J = 0,1,2, respectively, where

Xyj = UjgXgo + Uz Xy + UjpXgg, i=0,1,2,
Y1j = UioYoo T UinYor T Ui2Yo2>» 1=0,1,2.
Let
7 = Xo1 ~ %00 Yo1 — Yoo
O [%o2 = %00 Yoz ~ Yoo’
7. = X11 — %10 Y11 ~ V1o
1= — _
| X12 = %10 Y12 " V10’
G = Ujp —Upr  Urg — Upg
| o1 ~ Uor  Ugs — Upg
Then

Z, - GZ,.

Let G, G,,...,G, beiid. copies of G,let Z, = G,G,_; - G;Z, and let T,
be the triangle of Z,, n = 0,1,... . Then for each n, I, is a transformation of
A, obtained by translating one of the vertices of A, to the origin. Typically,
depending on n(duw), the areas of the A, will converge rapidly to zero,
as n — ». But what of the limiting probability distribution of the shapes
of the A,? We discover what this is in the case when n(dw) is the uniform
distribution.

Let ¢; = (uy; — ug;, Uy; —uy,)', 1=1,2, and let ¢, = —¢; — ¢,. Then
c,,C;,C, are pairwise exchangeable. Accordingly, from Theorem 9.1, the
shapes o(T,), and hence also the shapes o(A),), form a Markov process.

For a constant ¢, let

v, =ut+u, 1=0,1,2.
Then
t; = (8118 + 812) /(8215 + 892) = (v1 — vy) /(vy — V),

where g, = u;; —uy;, i,j = 1,2

We suppose that the v, have a probability density p(s,v). Then the
probability measure Q(s, B) of ¢, has a density g(s, ¢): g(s,t) dt = Q(s, dt).
If0<s<1l,then0 <t <1and

g(s,t) = [

O<x<y<

16(y —x)p(s,x)p(s,x+t(y —x))p(s,y)dxdy,

0<s,t<1.
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Moreover, there is an invariant density g(¢) for g(s, ¢) and

gm=fwwmnw

Because of the exchangeability of the ¢;, it follows that p(s,v) = p(1 — s,
1 — v), and hence that g(1 —s,1 — ) = g(s,¢) and that g(1 — ¢) = g(¢).
In the case when n(du) is the uniform distribution on .# we find

p(s,v)=min(%,2(1;__si)-), 0<s,v<1.
Let
2
a(s) =1+ s?, Bi(t) = §(2 —t),
2
ay(s) =538 —5)(1—s)"%,  By(t) = — —lg(t‘z -3+ 2t),
2
ay(s) =s*(1-s)72%, By(t) = E(t‘?’ — 4 + 3t).

The transition probability density g(s, ¢) is given by

g(s,t) = ay(s)Ba(£) + ay(s) Ba(t) + as(s)Bs(t), O<s<t<l,
g(s,t) = ay(1 = 8)By(1 — ) + ay(1 —5)By(1 — ¢)
+a3(1 —s)Bs(1 —1t), 0<t<s<l.

The hard part of our calculations was to find the invariant density g(¢):

g(t) = ;3—2(1 +o(t) +w(l-t¢t)), 0<tx<]l,

where
11 ,
w(t) = ol 2—t3(2 +3t+2t2)(1—¢t)" log(l—¢t), 0<t=<l,
0) = 11
(1)( ) = E
We also find
H(t) = f log(z —x)6p(t, x)p(¢,y)p(¢t,2)dxdydz
O<x<y<l
1 | 3¢% log(¢t 3(1 —¢)%log(1 — ¢
_ 1[sun) | sa-ntle-n s
15| (1-1t) t t(1—¢t)
107

60
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Notice that

folh(t)g(t) dt =0
so that, from (1.4), we get

7
vy=[HDgt)dt = 5

ldet(G)| is the area of a triangle whose vertices are chosen uniformly at
random in the interior of another triangle of unit area. We discover that

2 7
Eflog(|det(G)])] = =7* - 3,

from which we get ¥, the upper Lyapounov exponent of i, the probability
measure of G = G’/ /|det(G)|:
7 1

L TR

2

9. The shape process. The relation between Z, and o, = shape(Z,) is
particularly simple. To see this we define the partition of the plane {S\,
i=1,2,...,12):

S(l)—{(x,y):sz;yZO;(1+x)2+y2$4 ’
S® ={(x,):020y<0;(L+x)"+y2<4

b

S(3)—{(x,y):x<0;y20;(1—x)2+y254}
SW = {(x,y):x<O;y<0;(1—x)2+y234},
S® ={(x,y):x>0;y>0;4<(1+x)*+y% <16},

b

S® = {(x,y):sz;y<O;4<(1+x)2+y2s16},
Sm—{(x,y):x<0;y20;4<(1—x)2+y2516}

S® ={(x,y):x<0;y<0;4<(1-x)"+y%< 16},
S© E{(x,y):sz;y20;16<(1+x)2+y2},
§10) E{(x,y):sz;y<O;16<(1+x)2+y2},
S(“)E{(x,y):x<0;y20;16<(1—x)2+y2},

)

S = {(x,y):x<0;y<0;16 < (1 —x) +y2}.

Recall S, the shape space, defined in (2.1). For a given o = (s,w) € S, let
A be a triangle with shape o, and let A,, A, A, be its vertices, where A,
has coordinates (0,0) and A, has coordinates (1, 0). There are just 12 points
in R? for the position of the third vertex A, so that A has the given shape o.
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Let (xY(o), y9Aa)), j = 1,2,...,12 be their coordinates. With x) = xU)(q),
¥y = yU)(g), we see that

(x®, y¥) = 1(1 +5) lw)
’ 2 ) 2 )
1 1
(x®, y®) = §(1+s),—§w),
1 1
mm) = (Bt - 0. ).
1 1
(x(4)’y(4)) = 5(1—8),—510),
(50, 5®) = 21+s) 2w |
(1+8)+w?’ (1+5) +w?
(x(ﬁ), y("')) _ 2(1 +s) ’ —2w ’
(1+.<3)2+w2 (1+s)2+w2
(2D, y®) = [1 - 2(1 +s) ’ 2w ’
(1+s) +w? (1+5)° +w?
(x®, y®) = [1 - 2(1+s) ’ —2w ’
(1+s)2+w2 (1+s)2+w2
(x(9)’ y(9)) = 2(1 ~ 8) ’ 2w )
(1-38)+w? (1 -5)"+w?
(200 y(10)) _ 2(1 -s) —2w
’ (1-s)+w? (1-s)"+w?)
(20D, yavy = [1 - 2(1-s) 2w
’ (1-s)+w? (1-s)°+w?)
(x(12) y(12)) = _ 2(1-s) 2w .
’ (1-s)+w?’ (1-35)"+w?

To check the following lemmas is straightforward.
LEMMA 9.1.

(2x2Y) — 1,2y0) € SV, Jj=1,2,...,12.

In Figure 3 we see the regions SV); for o = (s,w) = (3, %), the twelve
points (2x) — 1,2yY), are also included in the figure.
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W

Fic. 3. The 12 points corresponding to the shape (3, 2).

LEmma 9.2. If
S~ x y
M =
3o
o = shape(M) and 2x — 1,2y) € 8V, then

(2,5) = (x9(0), y9(0)).

7 = [xn yn]
n 1 ol
o, = shape(Z,) and (2x, — 1,2y,) € SV, then
(9.1) (20, 9,) = (29(0,), ().
We define a random variable &, as &, =j if 2x, — 1,2y,) € SV,

Thus, if

THEOREM 9.1. There is a one-to-one correspondence between Z, and

(0, &,).

PROOF. o0, and &, determine Zn through (9.1). Conversely, o, = shape(Z,)
and &, =j if 2x, — 1,2y,) € SY. O
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9.1. The “exchangeable” case. There are some cases where a knowledge of
0,_, = shape(Z, _,) alone is sufficient to calculate the probability measure
of o, = shape(Z,). Let

_|la b
e-[¢ 2]
and let ¢; =(a,c), ¢, =(b,d) and ¢, = —c¢; — ¢,. We say ¢,,¢,,¢c, are
pairwise exchangeable if
(9.2) Z(c;,¢c;) =Z(cy,¢,), i,j=0,1,2,7+j,

where we recall that .# denotes “the probability measure of.”

THEOREM 9.2. If ¢,,c,, €, are pairwise exchangeable and if
shape(M;) = shape(M,),
then
(9.3) Z(shape(GM,)) =.%(shape(GM,)).

ProoF. It is enough to fix a shape o = (s,w) and to demonstrate the
theorem for M; and M, given by

(CORRNCH

1 0
(@) ()]
M, = xl yO ], for some j = 2,3,...,12.

We prove (9.3) for j = 7; the other cases are entirely similar. Let x = (1 + s),
= 1w and %2 =x? + y% Then

ax+b ay
GM, = cx +d cy]’
a(l—xr?)+b ayr?
GM, = Ly L
c(l—xr~?)y+d cyr
and, with
UE[_""_i yl]
—yr xr
we see that
, | —(e+bd)x+a —(a+bd)y
rGM,U _[—(c+d)x+c —(c+d)y|

The transformation GM, — rGM,U’ involves only a scaling and a rotation,
)
shape(rGM,U’) = shape(GM,).
Under the exchangeability condition,
Z(rGM,U") =2(GM,).
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Accordingly,
Z(shape(GM,;)) =.#(shape(GM,)),

as required. O

If the pairwise exchangeability condition (9.2) holds, the process of shapes
{0,, n = 0,1,...} has the Markov property, as the following construction of a
single transition shows. If ¢,_; = (s,w) € S, then

o, = shape(G,M),
where

M = [%(1 + s) %w]
1 0

9.2. The general case. Even when the exchangeability condition (9.2) is
not assumed, we can still define a Markovian shape process {,, n = 0,1,...}
for which the asymptotic behaviour of #(g,) is the same as that of .# (shape
(Z,)), n - ». To avoid a lengthy discussion, some of the formal details are
omitted.

The method is to define a transition between shapes o, — o, that includes
the following intermediate steps:

oy > Zy > GZy - oy,

where Z,, is a matrix with shape o, and where shape(G,Z,) = o,. The last
two steps Z, - G,Z, and G,Z, — o, are well defined. The first step is not:
there are many Z, (with the given shape o) to choose from. We can restrict
the choice of Z, to the 12 matrices:

_ . ) )
Z(J)E[xl yO ], j=1,2,...,12,

where
(29, ) = (29D(ay), y9(03)).

The obvious thing to do is to define a random variable J that takes values in
{1,2,...,12}, where Pr[J =j] = P(ao) depends only on o, and then choose
70 with probability P(o,). We show that P, (o) can be chosen so that

(94) lim #(¢6,) = lim.#(shape(Z,)).
n— o n— o
In general, however, it is not the case that
Z(6y,64,...,6,) =Z(shape(Z,), shape(Z,), ...,shape(Z,)), foreach n.
Recall the definition (3.3):

z E[xn yn].
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We know that if condition (2.5) holds, then (Theorem 3.2) x,, — 7 in probabil-
ity and y, — 0 a.s. as n — . A triangle whose vertices are collinear with
coordinates (0, 0), (v, 0) and (1, 0) has shape (7*, 0), where

[(1+7)|/(1—-1), ifr<0O,
T ={ 27— 1|, ifo<7r<1,
(2 - 1)/, if 7> 1.

Because o, = (s,,w,) = shape(Z,) = shape(Z,), it follows that s, » 7* in

probability and w, — 0 a.s. Recall that ¢ is the probability measure of v and

let ¢* be the probability measure of 7*. ¢* is a probability measure on the

unit interval, the space of shapes of triangles whose vertices are collinear.
For0 <s <1,let

1+s 1-s
xl(s) = 2 ’ xz(s) = P) ’ x3(s) = 1+S,
1-s 2 1+s
x‘l(s)E _1+s’ xf’)(s)E 1_8’ ',X:G(S)E - 1_8'

For § > 0,1let N = (s — §,s + 8) be a neighborhood of s and let N, = x;,(N)
be the image of N under x;. We suppose that the following limits exist:

pi(s) = imy(N)/9*(N),  i=1,2,...6.

If 0 < s < 1 and if § is small enough to ensure that N is included in the unit
interval, then

6
Y*(N) = L v(N).
i=1
It follows that

6
Y pi(s) =1
i=1
We suppose that the limits lim, , P{(o) exist, where o = (s,w), and we

choose
lim P,;_,(0) =p;(s), j=12,...,6,
w0

lin(l)sz(a)=pj(s), j=1,2,...,6.
wl

Let B be a Borel subset of the unit interval and let @*(s, B) be the
probability measure of the shape of the triangle whose vertices are collinear
and whose coordinates are (0,0), (as + b,0) and (cs + d,0). We define

6
Q(S’B) = Vglpi(s)Q*(st)»

where s; = x,(s). We choose Q(s, B) as the transition probability measure for
the “collinear” shape process. [Under exchangeability, @*(s;, B) = Q*(s;, B),
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i=2,3,...,6]. It is easily checked that * is the unique probability measure
that satisfies

(9.5) v(B) = [ "y*(ds)Q(s, B).

(9.4) follows from (9.5).
Under exchangeability, the formula for the Lyapounov exponent vy, written
in terms of *, becomes

= CH(t)y(dt).
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