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A NEW MARTINGALE IN BRANCHING RANDOM WALK!
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Université de Montréal

Dedicated to the memory of Michel Métivier

Martingale methods have played an important role in the theory of
Galton-Watson processes and branching random walks. The (random)
Fourier transform of the position of the particles in the nth generation,
normalized by its mean, is a martingale. Under second moments assump-
tions on the branching this has been very useful to study the asymptotics
of the branching random walk. Using a different normalization, we obtain
a new martingale which is in L? under weak assumptions on the displace-
ment of the particles and strong assumptions on the branching.

1. Introduction. The branching random walk can be described briefly
as follows: We consider the random tree 9 generated by a Galton—-Watson
process and a family of independent identically distributed random variables
X, indexed by the nodes 7 of 7. Let 9, denote the nodes (individuals) of the
nth generation and < denote the partial ordering on the tree (r; < 7, if 7,
is an ancestor of 7,). Then the position of the node 7 will be given by

S, = Y X,.

é<r

The family {S,}, . describes the branching random walk. For more de-
tails, the reader is referred to Joffe and Moncayo [6] or Neveu [10], who
provided a complete description of the probability space of the process with
the notion of marked tree, the marks here being the position of the particles.

Let Z, denote the cardinality of ;. Then the model is completely described
by the law {p,} of the number of children of each individual and the law of
X,. Let m be the mean of the number of children and assume that it is finite.
(In order to avoid conditioning on nonextinction, we will assume that p, is
null and of course p; # 1.) ¢(0) will denote the ¢haracteristic function of X .
The natural filtration is given by Z,, the o-field generated by (X,,7) 7 € 7,
k < n. We are concerned mainly with the study of the asymptotic behaviour
of the random measure

(11) lu'n() = Z SS,(')’
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where 8, is the Dirac measure at the point x. Through the Fourier trans-
form, Theorem 1.3 describes the asymptotics of the positions of the particles
of the nth generation.

Martingale methods have played an important role in the theory of
Galton—Watson processes: Z,/m”"” was seen to be a martingale by Doob and
its limit W has been studied by many authors. The interested reader may
consult Athreya and Ney [1] and Grey [4].

In 1967, S. Watanabe and A. Joffe noticed independently that

1 A
(1.2) W.(0) = e (0) Y e
TEZ

is, for each 6 such that ¢(6) # 0, a martingale. The convergence of this
martingale for fixed 6 has been studied by many authors, but it is much more
useful to establish the preceding results with some uniformity in 6. It was
conjectured in [6] and proved in [7] that such a result holds for W,(6). Under
a second moment assumption on Z; and a Lipschitz condition on ¢(6) (which
is satisfied in particular if X, has second moment), W,(6) converges almost
surely uniformly in some neighborhood of zero. For continuous time models
Uchiyama [13] obtained similar results under different assumptions. Very
recently Biggins [2], [3], for a slightly more general model, showed that such
a result holds under the weaker assumption on Z;: EZ, log Z, < « in dimen-
sion one and EZ]** < o, a > 0 otherwise, and a stronger assumption on X_,
namely, that its Laplace transform exists. Moreover, he obtains the uniform
convergence of W, (6) for 6 belonging to some compact set of the complex
plane. This phenomenon of balancing assumptions between the branching
and the motion has been noticed in [6] in the more general setting of
nonrandom trees. In [2] and [3], Biggins used methods of complex variables
based on the Cauchy integral formula. This explains the assumption about
the existence of the Laplace transform of the X. The method used in Joffe, Le
Cam and Neveu [7] relies on L, techniques applied to martingales taking
values in a Banach space of continuous functions. This explains the assump-
tion on the second moment of Z,. In the present work, we will obtain the
almost sure uniform convergence by introducing a new martingale whose L,
norm will be finite under the existence of the (1 + a) moment of Z,, a > 0.

2. A new martingale . It is easy to see that if in (1.2) one normalizes by
the total population instead of its average, then

1 .
(2.1) Vn(e) = m %ewsf

is still a martingale. Indeed

i0X,

1 Z
V. (0) = 50— Pl ,
A= 5y B 7 B w0

e
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where 7* denotes the set of children of 7 and |7*| denotes its cardinality.
Because X, . ;. I7"| = Z,,, |, we get by symmetry

5 7| 1
Zn+1 n .

Taking conditional expectations first with respect to %, and (I7*]), 7 € 7,
then with respect to Z,, we obtain E“»V, () = V,(6).

The next step is to show that (2.1) is bounded in L2. This follows from
Lemma 1, where the genealogy structure of the Galton—Watson tree plays a
crucial role. We recall from [6] the definition of a(n, k), the number of pairs
of individuals of the nth generation whose first common ancestor is in the
kth generation:

(2.2) a(n,k) =card{(7,7') €9, XT,: TN T EF},

where A denotes the inf. Note that a(n,n) = Z,. Let £, denote a sequence of
ii.d. random variables with distribution p,. Define y, by

Ii¢? 1
=-———, wherey, < —.
(Z16) m

(2.3) Yo

Then Lemma 1 is easy to establish.

LEMMA 1. The following relations hold for k < n — 1:

(2.4) a(n +1,k) = by I 17",
{(r,7)eT,XT,: AT €T}
(2.5) a(n+1,n) = Y I7*l(I7"] - 1),
1€,
(2.6) a(n+1,n+1)=2,,,,
a(n +1,k) 1—-, a(n,k)
2.7 E7n = n k) < ————,
( ) Z3+1 Zn(Zn - 1) a(n, ) = Z,%
a(n+1,n 1
(2.8) EZ% = v, — E%» ,
n+1 n+1
a(n+1,n+1 1
(2.9) E"n ( 5 ) = EZ .
Zn+1 Zn+1

In particular (a(n,k))/Z?2 is, for k fixed, a nonnegative supermartingale
(for n > k + 1) that converges, as n goes to infinity, to a limit denoted by .



1148 A. JOFFE

Let r), be its expectation. Then
a(n,k)

lim E——5—= =r,.

REMARK. The sequence (a(n, k))/m?", k <n — 1, is itself a martingale
under the assumption E(Z?2) < «. This explains why the role of the genealogy
of the tree is not apparent in the study of W,.

The covariance of V,(-) is given by

n a(n,k 6, — 0,) |
(2.10) EV,(6)V,(05) = X (Z2 : [qﬁf;l)(b(—e)z)] .

k=0
To study its asymptotics, we need more information on the behaviour of
E(a(n,k))/Z2. From (2.7), we have E(a(n,k))/Z2 < E(a(k + 1,k))/Z}, |,
but from (2.5) it follows that

a(k + 1,k) e oo &?

Z}3+1 - (ijiogj)Q .

Now if we assume that E¢7 is finite for p > 1, it follows from [9] that Ey,
is O(1/n?1). Therefore the last expression behaves as E(1/Zp~!) for large
k. Also it is shown in [5] that for any £ > 0, E(1/Z?) is O(lmax(p,,1/m?)] +
£)". We can summarize the preceding remarks by the following lemma.

LEMMA 2. If one assumes that EZi*“ is finite for a > 0, then for any
£>0, as n goes to », E(a(n,k))/Z2 is O(c* + &), where c is given by
¢ =max(p,,1/mP™ 1)

3. Limit theorems. From Lemma 2 the following theorem is easily
established.

THEOREM 1. If one assumes that EZ1"* is finite for a > 0, then on the set
D defined by

1
0:c——= <1
{ |®(6)/° }

the limit, as n goes to infinity, of EV,(0,)V,(0,) exists and is given by

= o6, - 6,) 1*
3.1) z rkl¢(el>¢(—o2)] '

k=0

On D the martingale V,(6) converges almost surely, as well as in L%, The
covariance of this limit V is given by (3.1).
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Now one can proceed as in [7] to establish the almost sure uniform
convergence of V, on any compact subset K of D. We summarize the
argument as follows: By Theorem 1, we can find a countable dense subset of
K for which there is almost sure convergence of V, to V. If one assumes a
Lipschitz condition on @' of order B, in particular, if EX'*# is finite,
Theorem 1 yields an expression for E|V(6 + k) — V(0)|® that can be easily
seen to be O(A'*#). Then by Kolmogorov’s criterion there is a version of V
that is almost surely continuous on K and E sup{|V(0)|, 0 € K} is finite (see,
e.g., [12], page 25). On the Banach space of complex valued continuous
functions endowed with the sup norm, the theorem of vectorial martingales
shows that EFV(-) converges almost surely uniformly on K (see, e.g., [11],
page 104). Because V,(-) is continuous on K one must have EFV(-) = V().
This establishes the following theorem:

THEOREM 2. Under the assumptions of Theorem 1, if ®'(-) satisfies a
Lipschitz condition, then the martingale V,(-) converges almost surely uni-
formly on any compact subset K of D to a continuous process V(-) whose
covariance function is given by

¢(6, — 6)
$(0:)d(~ 92)]

EV(91)V(02 Z ’“k[

Of course one gets a similar result for the convergence of W, because
W, = V(Z,/m"). It is well known that the uniform convergence of W, in a
neighbourhood of zero yields (using the Fourier inversion formula and the
Fubini theorem) a proof of a Harris-type theorem (Joffe and Moncayo [6],
Kaplan and Asmussen [8] and Biggins [3]).

THEOREM 3. If EZ{"* <o, a >0, and $(0), with mean 0, is in the
domain of attraction of a stable law of order 1 + B, B > 0, then the sequence
v(B) = (1/Z,)w,(c,B) converges almost surely weakly to that stable law. The
¢, are the normalizing constants for ¢(6).

However, the real challenge is to prove the statement in Theorem 2 under
minimal conditions such as EZ log Z finite. Our limitation is due to the use
of L? techniques.

NoTe. The preceding techniques do not extend to higher dimension d
because the exponent required in the Kolmogorov criterion is d + B. For the
same reason, we cannot work in the complex plane, but of course we can
mimic the foregoing techniques with the Laplace transform in the real
domain.

Acknowledgment. The author wishes to thank the referees for helpful
suggestions and for bringing to his attention several inaccuracies.
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