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QUADRATURE ROUTINES FOR LADDER VARIABLES!

By RoBERT W. KEENER
University of Michigan

Let T=infln > 1: S, > 0} and H = S; be ladder variables for a
random walk {S,}, . ; with nonnegative drift. Integral formulas for gener-
ating functions and moments of T, H and related quantities are devel-
oped. These formulas are suitable for numerical quadrature and should be
easier to implement than formulas based on Spitzer’s identity when the
distribution of S, is complicated. The approach used makes key use of the
Hilbert transform and the main regularity assumption is that some power
of the characteristic function for steps of the random walk is integrable.

1. Introduction. In recent years there has been great progress in the
science of approximating expectations and probabilities associated with
boundary crossing problems. These approximations typically depend on char-
acteristics of the distribution of ladder variables for a random walk. In
practice these characteristics can rarely be calculated analytically, and this
paper will be concerned with formulas and methods for numerical calculation
of these quantities.

Let X, X,,X,,... be iid. with common characteristic function ¢ and
mean u > 0. Let S, = L7X; and define

T=inf{n>1:8,>0} and H=S8,.

The computation of moments and generating functions for 7 and H and
related quantities will be addressed.

The approach used makes essential use of the Hilbert transform, and a key
assumption is that ¢ €., that is, [|¢(¢)|? dt < », for some g € [1, ). This
assumption implies that X is continuous and absolutely continuous if ¢ < 2.
Examples of singular continuous distributions with ¢ €27 and q > 2 have
been given by Wiener and Wintner (1936, 1938) [see Theorem 13.4.2 of
Kawata (1972)]. There are absolutely continuous X with ¢ &.%? [see exam-
ples (a) and (b), pages 516 and 517 of Feller (1971)], but these variables never
seem to arise in practice.

One alternative to calculating some of these quantities is to use Spitzer’s
identity or related formulas. These tend to involve terms like E[exp{itS,};
S, < 0], where E[Y; A] = E[Y1,]. When the distribution of S, is readily
available (as in the normal case), these identities are often practical. In many
other cases the distribution of S, is complicated and the methods presented
here will be more practical.

Received January 1993; revised September 1993.

! Research supported by NSF grant DMS-89-02188.

AMS 1991 subject classifications. Primary 60J15; secondary 60E10.

Key words and phrases. Random walks, Hilbert transform, nonlinear renewal theory.

570

P /)
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [Pz

The Annals of Applied Probability . STOR IS
WWWw.jstor.org



LADDER VARIABLES 571

Section 2 presents background material on the Hilbert transform and
passing limits and derivatives inside bounded operators. Section 3 contains
the main results about the first two moments of ladder variables for random
walks with positive drift. Higher order moments are discussed in Section 4. In
Section 5 variables that arise in the study of boundary crossing problems are
studied. These variables include M = inf{S,: n > 0} and a variable R with
Lebesgue density P(H > r)/EH for r > 0. Quadrature formulae for the
mean and moment generating function of R have been given by Woodroofe
(1979, 1982). The approach used in this paper seems to generalize more easily
to higher moments, but the regularity conditions imposed are slightly more
stringent. In Section 6 random walks without drift are considered. Formulae
for the first three ladder height moments are derived. Formulae for the first
two moments are given by Siegmund (1985). Again, the regularity conditions
needed here are slightly more stringent, but extension to higher moments is
more direct. In Section 7, numerical examples are presented.

2. The Hilbert transform and .#? differentiation. The Hilbert trans-
form of a function f is defined by

() —tim~ [ =Y 4
el0 T/y|>e y
If fe2? for some g € [1,®), the limit exists for a.e. ¢ and % is a bounded
linear operator from #? — %7 for g > 1. Stein (1970) has a nice discussion of
singular operators like /# including proofs of these assertions. When f is
differentiable at ¢,

2.1) () = %f:ﬂt - ) -y-f(t +) dy.

This form is convenient for numerical quadrature since no limit need be
taken. Of course this equation holds under weaker conditions than differen-
tiability—by dominated convergence, (2.1) holds whenever the integrand is
absolutely integrable.

Many identities derived later using .#? theory will only be assured of
holding for a.e. t. Often, our primary interest will be for specific values of ¢.
The concern that these values may include some of the almost nowhere points
where the identities may fail can often be alleviated by continuity using the
following standard lemma, which can be proved by a dominated convergence
argument.

LEMMA 2.1. If f €27 for some q € [1,°) and f is continuously differen-
tiable in some neighborhood of t (locally Lipschitz near t would also be
sufficient), then #f is continuous at t.

In later results, Lemma 2.1 will provide continuity except at ¢ = 0. Lemma
2.3 is specialized to the situations of interest and is more powerful than



572 R. W. KEENER

Lemma 2.1 in the proper context. As a preliminary, we need the following
standard result (called the adjoint relationship for the Hilbert transform).

LEMMA 2.2. Assume f €27 for some q € [1,%) and that f is bounded. Let
w be continuously differentiable with compact support C. If f is continuously
differentiable on an open set S containing C, then

Jw(®)#1(2) di = [F(3)7w(~y) dy.

LEMMA 2.3. Suppose f €27 for some q € [1,»), f is bounded and f is
continuously differentiable except at zero. If #f(t) has a limit as t — 0 and if
(f(y) = f(=y))/y is locally integrable at zero, then #f(t) is continuous at
zero.

The proof of this result is given in the Appendix.

For g €[1,), the #? norm of a function f is defined as |fll, =
[/1f(®)|? dt]*/9. Convergence in this norm will be called convergence in %7,
so f, = fin Z? as h — 0 if lim, , (llf, — fll, = 0. A function f is called
differentiable in 7 if

f(+e)=f()
£
in 7 as £ - 0 for some function g €27 called the #? derivative of f.

LEMMA 2.4. Assume q € [1,%) and that @: 7 > %7 is a bounded opera-
tor. If f, = fin Z% as n — «, then &f, > &fas n — «. If fis differentiable in
27 with Z%-derivative g, then @f is differentiable in 9 with <9-derivative
ag.

Proor. The first assertion says that & is continuous, and boundedness
and continuity are equivalent for linear operators [see Theorem 44 of Bochner
and Chandrasekharan (1949)]. The second assertion follows using the first
assertion to pass difference quotient limits inside the operator. O

The following lemma gives a simple sufficient condition for a function f to
be differentiable in .#?. See Bochner and Chandrasekharan (1949) for a proof
(they take g = 2, but their method of proof works easily for any g > 1).

LEMMA 25. If q € [1,%), f€Z? is absolutely continuous and f €9,
then f is differentiable in ¢ with #-derivative f'.

The final lemma of this section gives conditions which allow differentiation
with respect to s of expressions #f(t, s) to be performed inside the bounded
operator &. Here and later, for notational convenience, all functions to be
transformed will be considered as functions of ¢ and we will abuse notation
writing @f(t, s) instead of Zf(-, sXt).
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LEMMA 2.6. Let q €[1,») and let ¢: %! -7 be a bounded linear
operator. Assume that a.e. t € R the functions f(t,-) are absolutely continu-
ous on (s, — 8, so] with derivative h(t,-). If K(¢, s)) = lim, . h(t,s) for a.e.
t € R and if sup,c(,,—s,s, |RC; 8)l €27, then

f(580) = F(, 80 — ¢)

e = h(", )
in Z? as £ | 0. Consequently,
af(*, o) ‘ff("so —£) ~ Oh(-, 50)
in 7 as ¢ 0.
PrOOF.
j-‘f(t’so) _i(t’so - £) ~ h(¢, 5) th

q

dt

~ J| [Tt 50 = 03 = bt )] ay

< ! |h(t,s, — ey) — h(t,sy)l? dtdy.
0
0

Since sup,c(,,-s, 5,110 $)l €27, the inner integral goes to zero as ¢ 10 by
dominated convergence and the lemma follows. O

3. Ladder variables. Let
B(t,s) = EsTeH

for |s| < 1 and ¢ € R. Our starting point is the following theorem that relates
B to the Hilbert transform.

THEOREM 3.1. If 0 < u=EX < » and ¢ €7 for some q € [1,%), then

(3.1) B(t,s) =1—+1—s¢(t) exp{%;?log(l - s¢(t))}
for all (t,s) € R x[0,1], (¢, s) # (0, ).

This result appears as Lemma 2.5 of Keener (1987). Since this article is not
very accessible and the result plays a major role in this paper, a proof has
been included in the Appendix.

The expression for 8 given in Theorem 3.1 is inconvenient for numerical
work due to the pole at ¢ = 0, s = 1 [the Hilbert transform in (3.1) is infinite
there]. Let

1

1—itu’

$(t) =
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the characteristic function for an exponential variable with mean . Also, let
o = (i7-5)/2,

where .7 is the identity operator. In the sequel, functions which have a limit
as ¢ — 0 but are undefined when ¢ = 0 will be extended by continuity. In
particular, [1 — B(¢, s)]/[1 — s¢(¢)] equals EH/u = ET at (¢,s) = (0,1) and

[1—s¢0)]
og| ———=——
1-s4(2)
is zero at (¢, s) = (0, 1).

THEOREM 3.2. If ¢ €7 for some q € [1,) and if u € (0, ®), then

def |1—pB(2,8)| 1 —-s¢(t)
A(t,s) =1o [ 1= 56(7) —.Mlog[ - s$(t)]

for all (t,s) € R x [0,1]. Taking (t,s) = (0, 1),

1 e [1- d
(3.2) I«JT=exp{—7—Tf0 arg —M;@]—yy—}

where arg returns the argument of a complex number-.

Proor. When X is positive, (T', H) = (1, X,) ana Theorem 3.1 for random
walks with ¢ = d) gives /

i7log(1 — s$(t)) = log(1 - s<f>(t))

From this, the formula for A must hold for all (¢, s) € R x [0, 1], (¢, s) # (0, 1).
Since A(t,1) is continuous at ¢ = 0 (by convention), the proof will be com-
pleted by showing that

M1(1-¢ur
%1400

is continuous at ¢ = 0. Since the contribution from the identity operator is
continuous, it is sufficient to show that

/‘*/log-l_—({)(il-
|1 - ¢(2) |

is continuous at ¢ = 0. Since A(¢,1) is continuous at ¢ = 0, this will follow
from Lemma 2.3 provided

&%F_¢”)—m4l'“_””1
9 1-¢(y) | 1- ¢(-y)
' _ b4 -] | 1=
1-3(y) 1-3(y)
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is locally integrable at zero (here ¢ and $ are the complex conjugates of ¢
and ¢). Define R(y) by

¢(y) =1+ iny +yR(y).
Since ¢ is differentiable, R(y) — 0 as y — 0. Then
1 - é(y) i R(y) + R(y)
log| ————| = -—— - — du.
1-¢(y) wlo (1 - wwR(y)/m)(1 + iuR(y)/n)

Since the denominator approaches 1 as y — 0, uniformly in u, for some
positive constant K,

1-s¢(y) 5
log[— T sa(n) ” <KIR(y) + R(y)| = 2KIR{R(y)}I
for |y| < &. Since R{Pp(y)} = 1 + yR{R(»)},
IR{R()} = .%( - _;”(y)) 2t "yd’(y)}.

Since R{1 — ¢(y)}/y? is locally integrable at zero [this is a standard result
used proving the renewal theorem—see Lemma A.1 of Woodroofe (1982)],

1 [ 1-é(y)
_log - = _

y 1-¢(y)

is locally integrable at zero. Using this and the corresponding result with ¢
changed to ¢, (3.3) is locally integrable at zero, completing the proof. O

In the next two theorems, the formula for A in Theorem 3.2 will be
differentiated to obtain higher moments of T' and H. In the sequel we assume
throughout ¢ € R and s € (0,1]. Then |itpu + s — 1| > min{ u, 1}II(¢, s — DI,
where ||-|| is the Euclidean norm on R2?. If EX2 <o and u > 0, then
EH? < « and ET? < «. By Taylor expansion,

1 - B(t,s) = (—itp —s + 1)ET + 3t?EH? — it(s — 1)ETH
— (s - D’E[T(T - 1)] +o(ll(¢, s — DII?)
and
1-sd(t) = —itw— (s — 1) + 3t2EX? — it(s — L)p + o(l(¢, s — 1)II?)
as (¢, s) — (0, 1). A straightforward (but lengthy) caléulation, in which Wald’s
second identity that E(H — MT)z = ¢ 2ET plays an important role, gives
1-B(t,s)
1-sd(t)

s —

5 lE[T(T - 1)]

it
ET + 5—(EH’ - ETEX”) +
o

+ o(ll(¢, s — D))
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as (¢, s) — (0,1). Taking logarithms, the expansion for (1 — 8)/(1 — s¢) im-
plies

it
2uET
+o(ll(¢, s — D))

as (¢, s) —» 0. Hence the partial derivatives of A with respect to ¢ and s at
(¢,8) =(0,1) are

s—1
A(t,s) =log ET + (EH2 - ETEXz) + m—E[T(T— 1)]

i

4 2 - 2
(3.4) 2MET(EH ETEX?)
and

1
(3-5) sarElT(T - 1],
respectively.

THEOREM 3.3. If ¢ €Z? for some q € [1,) and if EX? < © and u > 0,
then

o) d)

1—sp(t) 1-—sd(t)

for all (t,s) € R X (0,1]. [The derivative when s =1 is defined as

lim, | o(A(2,s) — A(Z,1 - ¢))/¢.] Taking (¢,s) = (0, 1),

(0 + u?)ET  2ET oo[ { 1 } 1
2 u? T '/;) 1-4¢(y) ny

(3.6) a—asA(t,s) - o

dy

3.7) ET?= :
(8.7) 5

Proor. Using Lemma 2.6 to differentiate the identity in Theorem 3.2, for
any s € (0,1], (8.6) will hold for a.e. t € R. Since the argument of & is
continuously differentiable in ¢ for all s, unless ¢ = 0 and s = 1, by Lemma
2.1, (3.6) holds for all (¢, s) # (0,1). To show that (3.6) holds at (¢, s) = (0,1)
we will use Lemma 2.3. Let

OGN TO g 10
1-¢(t) 1-¢(t) (1 - ¢(8))(1 - ¢(2))

By Taylor expansion, the numerator of this expression is asymptotic to
%(d)"(o) _ (I;N(O))tz — ___;_(0_2 — M2)t2

as ¢ — 0 and the denominator is asymptotic to — u2¢% as ¢ — 0. If we define

M(t) = -

o? — u?

(3.8) M(0) = = 55—
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then M is continuous at zero. Since JA(¢, s)/ds with s = 1 is a continuous
function of ¢, by Lemma 2.3, (3.6) will hold at (¢, s) = (0, 1) provided

(3.9) M(y) -M(-y) _ 2| 3{¢(»)}  3{é(»)
' y y L= 1-éy)*

is locally integrable at y = 0. By Fubini’s theorem,

© d © d
fo [3{d()} -uyly—z =f0 | E[sin( yX) —yX]IfE,\i

[o2] d
(3.10) < E[[sin(yX) - yXl%
© dy
= 2 i - —_—
EX fo |sin( y) y|y3
< oo,
After some algebra, (3.9) can be written as the sum of three expressions:
C2i[3{¢(») —my  3{é(») -
y| L-o(y)P L~ ()
o IR - (N - [R{1 - )]’
11— ¢(y)P11 — ()

2

and

” S{p(y) + d(»)}
11— $()I*1 = $(y)I?

Since [1 — ¢()® ~ y2u? and R(1 — $(y)} ~ y2EX2/2 (and similar asymp-
totic relations hold with ¢ changed to ¢), using (8.10) each of these expres-
sions is locally integrable at zero. O

S[(3{6(9)) = ) = ()} - wy)]-

THEOREM 3.4. If ¢ €Z7 and ¢' €.Z? for some q € [1,%) and if EX? < »
and p > 0, then

9 s¢'(t) sd'(¢)
(3.11) —; A 8) = [1 —sp(t) 1 —s$(t)}

for all (¢,s) € R X (0,1]. Taking (¢, s) = (0, 1),
ET( 02 + 3u2)

2EH ¢'(y) 1 dy
— [ {1—¢(y)} +y(1+u2y2)]7‘

EH? =
(3.12)
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ProOF. Using Lemma 2.5, logl(1 — s¢)/(1 — s$)] is differentiable in .7
and using Lemma 2.4 to differentiate the identity in Theorem 3.2, for any
s €(0,1], (3.11) will hold for a.e. + € R. By Lemma 2.1, (3.11) holds for all
(¢, s) # (0, 1) since the argument of « is then continuously differentiable. To
show that (3.11) holds when (¢, s) = (0, 1) we will use Lemma 2.3. By Fubini’s
theorem, since 3{¢'(y)} = E[ X cos(yX)],

f°°‘|3{¢’(y)} - ul dy SEwaXcOS(yX) - X| ”

0 y2 2

0 Yy

(3.13) _ Ef Icos(y) - 1] os(y) — 11

< o,
Since JdA(¢,1)/dt is continuous at ¢ = 0, by Lemma 2.3, (3.11) will hold at
(t,s) = (0, 1) provided
L CONN A €) N ) B A G DN
1-o¢(y) 1-¢(y) 1-¢(-y) 1-¢(-y)
is locally integrable at zero. Since ¢(—y) = ¢(y) and ¢'(—y) = —¢'(y), this
expression can be written as the sum of

(3.14) [d"(y) —in  #() tin|l 2R{((¢'(») - iM)(lz— $(y))},
o(y)  1-¢(y) Yl = ¢()l
(3.15) _ |G —iw $'(y)_A+ in|l
1-¢(y)  1-4(3)
and
(3.16) - M) - M(-)].

Local integrability of (3.16) was demonstrated in the proof of Theorem 3.3.
The numerator of (3.14) is

2R{¢'(v) —im} {1 - &(»)} — 23{¢'(¥) — in}3{1 - &(»)}.

Using this, local integrability of (3.14) follows from (3.13) and the asymptotic
relations

R(¢'(y) —in} ~ —yEX?, Rl - $()} ~ 2y°EX?,
{1 - d(»)} ~ym, - ¢(y)° ~ y%u?

as y — 0. Local integrability- of (3.15) follows by changing ¢ to ¢ in this
argument, so (3.11) holds at (¢,s) = (0,1). O

4. Higher order moments. Repeated differentiation of the identity in
Theorem 3.2 gives higher moments of 7' and H. In this section, some of the
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algebra needed to obtain third moments will be detailed. Higher order
moments can be obtained similarly, but the effort required will be substan-
tial. Define
my =E(X - M)3
and
i+j

A, . =———A(t,s .
b gtt 9s/ ( )(t,s)=(0,1)

Keeping one extra term, the arguments leading to (3.4) and (3.5) give expres-
sions relating A; ; for i + j < 3 to moments of T' and H of degree 3 or less.
The simplification necessary to divide the two Taylor expansions now uses
the identity

E(H — uT)® = 302ET(H — uT) + myET.
Straightforward algebra then gives the following formulae:
5 ET® (ET?)® ET?
12~ 2ET  4(ET) @ SET’

A0,2 =

" uw ETHET? ET?H w(ET?) uET®
[ Jpe— + — —_
1= T 2(ET)* 2ET 4(ET)* 6ET

and
o? u® (ETH)® ETH?> o2ET?
’ 2 12 (ET) ET 2ET
wETHET? uET®H u2(ET?)?  2ET®
- + + - .
(ET)* ET 4(ET)? 3ET
Let

hi,j(t7s) 9t 957 0g 1—8([;(t) ’

so hy, and h,, are the arguments of & in Theorems 3.3 and 3.4. If
E|X|® < », then hy 1, s) and A, (-, s) are bounded for all s € (0, 1] and are
continuously differentiable except perhaps at zero when s = 1. If ¢ and ¢’
are in .27 for some q € [1), then A, ,(:, s) €27 and if ¢, ¢' and ¢” are in
27 for some g € [1,%), then A, (,s) €27 By Lemma 2.5, h, (-, s) and
hy o(, s) are differentiable in #? and using Lemma 2.4 to differentiate the
identities in Theorems 3.3 and 3.4,

2

gt . [1—s¢(t)

~and
a2
(4.2) —SA(t,8) = —sthy o(t, )

Jt?
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for any s € (0, 1], for a.e. £ € R. By Lemma 2.1, these equations can fail only
at (£,s) = (0,1). If EX* < o, then &, 4(¢,1) and h, ¢(t,1) are also differen-
tiable at ¢ = 0, so (4.1) and (4 2) will also hold at (¢, s) = (, 1) We conjecture
that (4.1) and (4 2) hold under the weaker condition that E|X|® < «, and that
this can be proved verifying the local integrability condition in Lemma 23.A
formal proof may be rather delicate. Setting (¢, s) = (0, 1) in (4.1) and (4.2)
gives

-2 +ut+30* 1 = ' d
43) ik, = —tMatu *0 1 egl ) |y
24p ™o (1= ()
and

dpumg — 11u* + 6u%2 — 304

Ago= 2447
(4:4) 1 s P, (P 2yu dy
1-6(y) " (1-¢()?]| @+u2y?f ]|y

Differentiating the identity in Theorem 3.3 with respect to s is
delicate—# 4(-,1) is not locally integrable at zero, so direct application of
Lemma 2.6 must fail. By Taylor expansion, &, (¢, s) = g(¢, s) — (2u?)~1(u?
—0?) +0(1) as (¢, s) - (0,1), where

(M2 _ 02)t2 u? - o?
. 2 + 2
2(1 —s —ipt) 2w

g(t,s) =

Direct computations show that «/g(¢, s) = 0 so, defining A} (¢, s) = ho 1(t,s)
— g(¢, s), Theorem 3.3 gives

J
(4.5) —A(t,s) = ~wh} \(t, 5)

for all (¢,s) € R X (0,1]. If E|X|> < and ¢ €27, then k%, satisfies the
conditions of Lemma 2.5, so differentiating (4.5) with respect to s gives

02

(4.6) —zA(t,8) = ~wh} o(t, ).

, for s €(0,1], for ae. ¢ €R, where A} ,(t,s) = dh} ,(¢,s)/ds. The function
h§ 5(2, s) is differentiable in ¢ unless (t 's) = (0, 1), so by Lemma 2.1, (4.6) can
fail only at (¢,s) = (0,1). If | X|* < », then h§ »(t,1) is also differentiable at
t = 0 and (4.6) holds for all (¢,s) IR X (0,1]. Again we suspect the weaker
condition E|X|® < « is sufficient and that this can be established verifying
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local integrability necessary to apply Lemma 2.3. Setting (¢, s) = (0,1) in (4.6)
gives
—4pumg + 5ut — 6u%r? + 90t
24t

__lfws ¢2(y) _0'2_M2 ﬂ

mJo (1 - é(y))° wy |y

5. Limiting excess and the minimum. Let R be a random variable
with Lebesgue density P(H >r)/EH for r > 0. This variable plays an
important role in many boundary crossing problems. For instance, if 7, =

inf{n > 1: S, > a}, then if the random walk is nonlattice,
S. —a=R

Ta

Ao,z =
(4.6)

as a — «. Similar convergence results arise when a random walk crosses a
nonlinear boundary or when a perturbed random walk crosses a linear
boundary. See Woodroofe (1982) for numerous examples in sequential analy-
sis. After integration by parts, .

. EH?
(5.1) 2EH
poier - B — 1
itEH

Hence the mean and characteristic function for R can be computed directly
from the results in Section 3. The quantity Ee ® is important in large
deviation approximations in boundary crossing problems [see Theorem 3.1 of
Woodroofe (1982) for a simple example with linear boundaries, or later
chapters for nonlinear examples]. In these applications there is the following
extra structure: {S,}, ., is a random walk under two probability measures, P
and P*, and the likelihood ratio for the restrictions of P and P* to
o(X,,...,X,)is

dap*

dP
By Wald’s fundamental identity [Theorem 1.1 of Woodroofe (1982)],

O-(Xl""’Xn) = e_S".

Ee ™ ® = Ee 5t = P¥(T < =1- —,

e e ( ) BT
where the last equality follows from a duality argument [see Corollary 2.4 of
Woodroofe (1982)]. Integration by parts gives
E[1-¢7H] 1

EH  E*[T]EH’
Here E*[T] can be found numerically by applying Theorem 3.2 to the random
walk {—8,}, ., with probability measure P*.

(5.2) Ee R =
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- The rahdom variable- - - - - -
M= inf§,

nx=0

(where S, = 0) is important in queuing theory. Since M is the sum of a
geometric number of descending ladder heights,

P(T = =)

itM _
Be 1—E[exp(itI?);T<0°] ’

By Wiener—Hopf factorization [see Corollary 2.3 of Woodroofe (1982)],
{1- Bt )1 - E[exp(itH); T < =} = 1 — sg(2),
and since P(T = ©) = 1/ET the formula for the characteristic function of M
simplifies to
1 1-p(t,1) €D

EeitM — — .
® TET 1-4(t) ET

Differentiating this expression at ¢ = 0 and using (3.4),

EH? — ETEX?
2uET

EM =

Hence the mean and characteristic function of M can be computed from the
results in Section 3.

6. Walks with p = 0. When u =0, ET = «, so moments of H are the
primary concern. Quadrature formulas for the first two moments of H in this
case have been given by Siegmund (1985). Accordingly, this section will be
brief and is designed to show how the methods presented here lead directly to
similar formulas for the first two moments of H and to formulas for higher
order moments. Assume o2 = EX? < , so EH < © and let

- 1
v =T

the characterlstlc function for a symmetric double exponential distribution
with variance 2. When ¢ = ¢, H has an exponential distribution with
mean o/ V2. Theorem 4.1 with s = 1 gives

1 . 3 —it.a'/\/g
_2_(f+ zﬁ/)log(l - ¢(t)) = log(—l——it(r/—\/f)

' for a.e. ¢ € R. The same theorem then gives

' 1-B(t,1 1 1- V2
(6.1) log(—fgtt—)) = —2—(f+ i;?)log(l—_%) - log(—it + —)
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for a.e. t € R. Using Lemmas 2.1 and 2.3, this identity can be established for
all ¢ € R. Setting ¢ = 0 gives

~arg(1 - ¢(y))
EH = -—‘/g—exp{ ﬂj{; 5 }

This result appears in Section 10.4 of Siegmund (1985). Under suitable
regularity, differentiating (6.1) gives

d* 1-B(¢t,1 1 d* — ¢(¢
a8 ( fft ))__(jerdt’“ ( —gt;)
d* V2
g log(—zt + -—0—)
At t = 0, the left-hand side of this equation is
i EH?
2 EH

when £ = 1 and
1 EH® L1 (EH?)*
3 EH 4 (EH)?

when k& = 2. Straightforward algebra then gives

myEH
=V20EH + ——
30

+§gf[{¢'(y)}_ 2

1-¢(y)| y(1+02y2/2) |y’
6.2
(6.2) ppgs _ MWEH _ miEH 3(EH?)
= - +
452 604 4EH
3EH

= [ ¢"(y) (¢(»)" |y
- fog 1-¢(y) " (1—¢(y))2}

where mg = EX® and m, = EX*. Section 10.4 of Siegmund has a formula for
EH? equivalent to (6.2) after integration by parts. In Siegmund’s work, the
only smoothness condition imposed is that ¢ is the characteristic function for
a continuous distribution, which is weaker than the standing assumption
here that ¢ €.#7 for some g € [0, ). In his proof [taken from Hogan (1984)],
the result is first established when ¢ €.#'. The more general case is then
handled by a limiting argument. It may be possible to similarly relax the
assumption that ¢ €7 in some of the results in this paper.

7. Numerical examples. The formulas developed in the previous sec-
tions will be illustrated in six examples. In five of the examples there were no
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numerical problems. At zero, all integrands were either continuous or had
integrable algebraic singularities, and at infinity the integrands decay expo-
nentially or algebraically. Also, none of the integrands was highly oscillatory.
Any good adaptive integration routine should have no trouble handling
integrands this regular. In several of these examples, exact analytic answers
are available and in other examples certain moments have been computed
numerically by other authors. In all of these cases, there is near exact
agreement with the answers computed numerically using the formulas devel-
oped in this paper.

The first example was chosen because exact answers are available for
comparison. In this example, X has density

3, —«x
e *, forx >0,

fX(x) = 3 3x

ze°*, for x <O0.

Then u =2/3, 02 =10/9, my = 52/27 and

3
$(1) = (1-it)(3+it)’

which is the characteristic function for the convolution of two exponential
distributions concentrated on the two half-axes. By example (c), page 608 of
Feller (1971),

2 — V4 —3s
B(t,s) = ———-1——-_-—1;——

From this, T and H are independent. Taking s =1, H has a standard
exponential distribution and so EH" = n!. Taking ¢ = 0,

EsT=2— 4 —3s.

Differentiating this generating function at s = 1 gives ET = 3/2, ET? =
15/4 and ET?® = 147/8. By the independence of T and H, ET?H = 15/4
and ETH? = 3. Table 1 shows a computer session in which ET, EH, ET?,
EH? ET3, ET?H, ETH? and EH? are computed by numerical quadrature
using formulas from Sections 3 and 4. These numerical calculations were
done in Mathematica, but the code should be fairly transparent to someone
not familiar with this package. As a default, the numerical integration
routine in Mathematica strives for accuracy to six significant digits after the
‘decimal. In this example, the numerical answers from the program agree
completely with the exact answers given above. The numerical values for
moments in this and later examples are given in Table 2.

The next example was chosen to see if there are numerical difficulties
when higher order moments of X are infinite. The example was chosen
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TABLE 1

n[l]=phily_1=3/((1—-TIy) (3+Iy));
n(2] =mu=2/3; '
In[3] =var=10/9;

In(4] = fl=Arg[(l—phily]l)/ (muy—-1I)]/y:

In([5] == ET = Exp[NIntegrate[£fl, {y, 0, Infinity}] /Pi]l / /N

Out[5]=1.5

n[6] == EH=mu ET

Oout([6]=1.

In[7] =f2=(Im[1/ (1 —phily])] — (1/mu y))) /y;

In([8] == ETT= (var+mu ~ 2)ET/ (2mu ~ 2) — 2ET NIntegrate
[f2, {y, 0, Infinity}]/Pi/ /N
Oout (8] =3.75
In[9] = £3=(Re[phi [yl /(1 —phily])]+1/(y(l+mu"2 y"~2)))/y;
In(10] == EHH=ET(var+3mu "~ 2) /2 +mu ET NIntegrate
[£3, {y, 0, Infinity}]/Pi/ /N
out [10] =
In[1l1l] =m3=52/27;
In[12] == ETH= (EHH+mu "~ 2 ETT — var ET) / (2 mu) ;

In[13] =den=1 —phily];

In[14] == f4 =Re[phi '[y] /den" 2] /y;

In[15] = i4 =NIntegrate[f4, {y, 0, Infinity}]/Pi/ /N;

In(16] =ilamll=(—2 mu m3+mu”"4+3 var”~2) /(24 mu " 3) — i4d;
In(17] = £5= (Im[phi ' ‘[y] /den+phi ’[y] ~ 2 /den " 2]

—2ymu"3/(l+mu"2y"2)7°2)/y;
In[18] = i5 =NIntegrate[f5, {y, 0, Infinity}]/Pi/ /N;

n(l19] =lam20= (4 mu m3 — 11 mu"~4+6 mu*2 var—3 var*2)/ (24 mu"~2) — i5;
In[20] = f6=(Im[phi(y]~2/den"2] — (var—mu"2) / (mu"3 y))/y:
In[21] == i6 =NIntegrate[f6, {y, 0, Infinity}]/Pi/ /N;
In[22] == lam02= ( — 4mu m3 + 5mu ~ 4 — 6mu * 2var + 9var ~ 2) / (24mu " 4) — i6;

In(23] == ETTT=3 ET(lam02 — 5/ 12+ ETT/ (2ET) + ETT "~ 2/ (4ET " 2))
Out [23]=18.375
In[24]) = ETTH=2ET( — ilamll +mu /12 + ETH ETT / (2ET ~ 2) —
mu ETT "2/ (4ET ~ 2) +mu ETTT / (6ET))
Out [24]=3.75
In[25] == ETHH=ET(var /2+mu"~2/12+ETH"~ 2 /ET " 2 +var ETT/ (2ET)
—mu ETH ETT/ET " 2 +mu ETTH/ET+mu ~ 2ETT ~ 2 / (4ET " 2)
—mu ~ 2ETTT / (3ET) — lam20)
Out [25] =3.
In[26] = EHHH = 3mu ETHH — 3mu * 2ETTH+mu * 3ETTT + 3var ETH — 3mu var ETT +m3 ET
Out [26] =6.

working backward so that certain moments would be known exactly. Specifi-
cally, H has a Pareto distribution with density

5
2(1 +x)"?
for x > 0 and H (the descending ladder height) has density

1 x
3€
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TABLE 2
Example

1 2 3 4 5 6
ET 1.5 2. 1.8892 1.46646
EH 1. 0.666667 0.944599 1.46646 0.707107 1.
ET? 3.75 20.3016 8.65726 4.59492
EH? 2. 2.66668 1.35633 3.90984 0.823917 2.
ET3 18.375 98.0304
ET2H 3.75 6.73664
ETH? 3. 2.21671
EH?3 6. 2.43483 1.25035 6.

for x < 0. Integrating the Pareto density, EH = 2/3, EH? = 8 /3 and EH?%/?
=E|X|%? = . Also,

— 1
Eexp(itH) = o éit

and
. 5 . 5
Ee'? = — —t5/2e‘”\/—_il“(— =, —it],
2 2
where I' is the incomplete gamma function defined by
INa,x) = fwy“_le'y dy.
x

By Wiener—Hopf factorization, 1 — ¢(¢) = (1 — Ee?®®)(1 — Ee'*f), which gives

; 2 — 5(1 + 2it)t¥2%e " —il(-5/2, —it)
é(t) = 4 + 4it '

Differentiating ¢, EX = 1/3 and o2 = 17/9. Initial attempts to compute
ET, EH, ET? and EH? numerically using lines 4-10 in Table 1 failed. The
integrands are fairly well behaved: the integrand in the formula for ET is
differentiable at zero and the integrands in the formulas for ET? and EH?
have square root singularities near zero. All three integrands decay alge-
braically near infinity. Plots of the integrand in the formula for ET for very
small values of y illustrate the real problem: for y above 0.0006, the
numerical values for the integrand behave smoothly, but for y below 0.0006,
the values are exceptionally erratic. This problem arises because the routine
which computes the incomplete gamma function is not highly accurate, and
, small errors can lead to large relative errors when ¢ is subtracted from 1.
Perhaps the most natural way to proceed would be to use Taylor expansion to
evaluate the integral over some small neighborhood of the origin and use the
numerical integration routine on the complement of this neighborhood. This
did not seem very convenient (in Mathematica), so instead, two changes were
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made: The integrals were rewritten using the transformation [5f(y)dy =
2/cf(y?)ydy and Mathematica was asked to only seek accuracy to four
significant digits. The transformation removes the singularities and makes
the integrands behave more like polynomials near zero. Both changes should
help the routine estimate the integral using a coarser grid of points, a grid
that does not sample from regions where the function is erratic. The numeri-
cal values obtained for ET, EH, ET? and EH? are given in Table 2. Once
again there is excellent agreement with the exact values ET' = 2, EH = 2/3
and EH? = 8/3.

In the third example, X ~ N(1/2, 1). In this case, X is the log likelihood
ratio between N(1/2,1) and N(—1/2,1). Numerical values for ER and Ee %
obtained from equations derived from Spitzer’s identity are reported in Table
3.1 of Woodroofe (1982). In this example, the code in Table 1 works fine
without modification (only lines 1-3 and 11 were changed to give the correct
characteristic function and moments). The computed values for the moments
are given in Table 2. Using these values and identities (5.1) and (5.2),

EH? 1.35633

= 2EH = 2 x 0944599 ~ 0717940

ER

and
1 1 1

“ E*TEH ETEH 18892 x 0.944599

These values agree with the values obtained by Woodroofe.
In the final example with positive drift, X — 1 ~ #;,so u =1, 0% = 8 and
E|X|?® = . The characteristic function for the ¢ distribution on n degrees of

freedom is
9 np* " Kn/2(Vnp2)
4 [(n/2) °

where K is a modified Bessel function. This characteristic function simplifies
when 7 is odd and some algebra gives

o(t) =(1+ @)exp(it - \/@)

Once again the code in Table 1 works find giving values for ET, EH, ET*
and EH? reported in Table 2. Since convolutions of ¢ distributions are not
pleasant, computing these moments using formulas based on Spitzer’s iden-
tity would be rather difficult.

For the final two examples, u = 0. In the first of these examples (Example
5), X ~ N(0,1). The first three moments for H were computed numerically
using formulas from Section 6. The Mathematica statements for these compu-
‘tations are given in Table 3 and the numerical values for the moments are in
Table 2. Due to the symmetry of the normal distribution, the integrands for
EH and EH? vanish. This simplification in symmetric cases is natural
considering a theorem by Spitzer (1964) giving EH = o/ V2 for symmetric

Ee R =~ 0.560370.
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TABLE 3
In[l] =phily_] =Exp[—y"2/2]
In[2] ==var=1;
In(3] = fl=Arg[(1 —phily])/yl/y:
In[4] == EH=Sqgrt[var/ 2] Exp[NIntegrate[fl, {y, 0, Infinity}]1/Pi]l/ /N

Oout[4]1=0.707107

In[5] =m3=0;

In(6] = f2 = (Re[phi '[y] / (1 —philyl])]1+2/ (y(l+var y"~2/2))) /y:
In[7] = EHH=Sqrt[2 var] EH+EH m3 / (3 var) +

2 EH NIntegrate[f2, {y, 0, Infinity}]/Pi/ /N

out[7]1=0.823917

In(8] =md =3;

In[9] = £3 =Im[phi ' ‘[y] / (1 — phily]) + (phi ‘[y] / (1 —phily])) ~ 2] /y:
In[10] ==EHHH=EH m4/ (4 var) —EH m3 "~ 2/ (6 var~2) +3 EHH”~ 2/ (4 EH) +
3 EH NIntegrate[f3, {y, 0, Infinity}]/Pi/ /N

Oout [10] =1.25035

walks [see Theorem XVIIL5.1 of Feller (1971)]. The ratio EH?/(2 EH) plays
an important role in corrected diffusion approximations [see Chernoff (1965)
or Chapter 10 of Siegmund (1985)]. Chernoff gives EH?/(2EH) =
—¢(1/2)/ V27 = 0.582597, which agrees (to six digits) with the value com-
puted using the numerical values in Table 2.

In the final example,

3 +¢2+ 208
3(1 +¢2)°

the characteristic function for a mixture of a standard exponential distribu-
tion and a negative gamma distribution. Since X has an exponential right
tail, H has a standard exponential distribution and EH" = n!. The code in
Table 3 (with the obvious modifications) works without modification, and the
numerical values (given in Table 2) agree with the exact values.

é(2) =

APPENDIX

Proor oF LEMMA 2.3. Let w be a symmetric function with a bounded
derivative, integrating to one, with support [—2, —1] U [1,2]. Let w;(¢) =
w(t/8)/8. Note that since w; is symmetric, Zw, is antisymmetric. Since
Zf(t) has a limit as ¢t — 0,

lim#f(¢) = lim [a0,(£)2f(t) dt

(A1) lim [ (y)#w5(~y) dy

»f(-y) —f(y)
f 7 A7

0 Yy

lim [y#7w;(y)] dy.

8.0
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Since w has compact support, when ¢ is large enough, no limit need be taken
defining #w(t), and by dominated convergence

1 t 1
A. lim t#Zw(t) = lim — —dy = —.
(A2) Jim 7w (t) = lim 7wa(y)t_ydy -
By Lemma 2.1, Zw is continuous and hence
(A3) sup [tZw(t)| < oo,
—o <t ™
Since
1 w é
el0 The—y> 8(t — y)
1 w(y)
= lim — —d
10 SW'I;;t/a)_ypg/a(t/a) -y Y
1){’ t
B “’(3) ’

using (A.2), if y # 0, yZws(y) = 1/7 as & | 0. Hence, by dominated conver-
gence [using (A.3) to bound the integrand] (A.1) converges to
1 =f(-y) —f(y)
LD 2D 4y ),
770 y

proving the lemma. O

PrROOF OF THEOREM 3.1. By Lemma 2.1 it is sufficient to show that for
fixed s € [0, 1], (8.1) holds for a.e. t € R. Suppose @ is a probability measure
with characteristic function y €' (so @ is absolutely continuous). By
Theorem 3, Chapter 2 Stein (1970),

f:eitx dQ(x) = £ [e*[1 + sgn(x)] dQ(x)
=3[ x(¢) +iwx(2)]

for a.e. t € R. Suppose ¢ €.Z". In this case, the characteristic function for the
distribution of S, is ¢" €., so

E[exp(itS;); S, > 0] = 3[6*(¢) + iz ()]

for a.e. ¢ € R. Using this in Spitzer’s identity [Theorem 2.5 of Woodroofe
(1982)], for s € (0, 1), '

It

1
log[1 — B(¢,8)] = — X zskE[exp(itSk); S, > 0]
k=1
1

st[g*(2) + it (1)]
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forae. teR.If s €(0,1),
n

1
Y st - log(1 — s¢)

Py

in #% as n - », so (3.1) holds for a.e. £ € R since .# is linear and is a
bounded operator from #? to #2. Since log(1 — s¢) — log(1 — ¢) in #? as
s 11 and since % is a bounded operator, it is easy to show that (3.1) also holds
for a.e. t € R when s = 1. For the general case where ¢ €.27 but may not lie
in #', apply the theorem for a random walk with characteristic function
¢()e~*"" and take 7 limits as £ | 0. O
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