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ON THE RATE OF CONVERGENCE OF THE METROPOLIS
ALGORITHM AND GIBBS SAMPLER BY GEOMETRIC
BOUNDS!

BY SALVATORE INGRASSIA

Universita di Catania

In this paper we obtain bounds on the spectral gap of the transition
probability matrix of Markov chains associated with the Metropolis algo-
rithm and with the Gibbs sampler. In both cases we prove that, for small
values of T, the spectral gap is equal to 1 — A,, where A, is the second
largest eigenvalue of P. In the case of the Metropolis algorithm we give
also two examples in which the spectral gap is equal to 1 — A.;,, where
Amin is the smallest eigenvalue of P. Furthermore we prove that random
updating dynamics on sites based on the Metropolis algorithm and on the
Gibbs sampler have the same rate of convergence at low temperatures.
The obtained bounds are discussed and compared with those obtained
with a different approach.

1. Introduction. The Metropolis algorithm and the Gibbs sampler are
Monte Carlo methods for the generation of samples from a finite set () (with
|Q| = N) with a given probability distribution 7 which charges every point of
Q [Metropolis, Rosenbluth, Rosenbluth, Teller and Teller (1953), Hastings
(1970) and Geman and Geman (1984)]. They have many applications in
pattern analysis and synthesis, image restoration and the implementation of
simulated annealing. Both algorithms use an aperiodic and irreducible
Markov chain P reversible with respect to the distribution = [i.e,
w(x)P(x, y) = w(y)P(y, x)]. These hypotheses imply that 7 is the unique
stationary distribution for P and that its spectrum {A;};_;  y is real with
1=A > Ay > =+ > Ay > —1; for simplicity we shall write )\mm rather than
Ay- Let p(P) = max{A,, I)tmml} be the second largest eigenvalue in absolute
value of P; it is well known that p(P) gives bounds on the rate of conver-
gence of P toward its stationary distribution. Often the eigenvalue A, is not
considered and only A, is studied. In fact a slower Markov chain with
transition probability matrix (I + P) rather than P is considered, where I
is the N X N identity matrix; that is, one considers the random walk in
which there is introduced extra holding probability of 3 in each state.
Obviously all the eigenvalues of this matrix are nonnegative and hence
pl3(I + P)] = (1 + A,)/2. However, the main problem remains, because even
if we know p[4(I + P)], it would be interesting to know more information
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about p(P). Hanlon (1992) gives some Metropolis chains which can be
explicitly diagonalized and for which p(P) is equal to A, in some cases and
equal to A, in other cases.

In this paper we develop upper bounds on A, and lower bounds on A;,
and hence on the spectral gap 1 — p(P) for the transition probability matri-
ces associated with the two algorithms. These bounds depend on some
geometric quantities of the underlying graph G(P) of the Markov chain with
transition matrix P. Related ideas were used by Chiang and Chow (1988) and
Desai (1992). We show that in both the algorithms p(P) is equal to A, for
small values of T'. Furthermore, we prove that the random updating dynam-
ics on sites based on the Metropolis algorithm and on the Gibbs sampler have
the same rate of convergence at low temperatures.

The paper is organized as follows. In Section 2 we introduce notation and
definitions that we shall use throughout this paper and, moreover, we recall
some recent results of Diaconis and Stroock (1991) which constitute the basis
of our main results. In Section 3 we give some preliminary results; in
Sections 4 and 5, bounds on A, and A_;, and, hence, on p(P) are proved,
respectively, for the Metropolis algorithm and for the Gibbs sampler. The
bounds for A, relative to the Metropolis algorithm are not completely new; in
fact, we find similar results in Holley and Stroock [(1988), Theorem 2.1]. The
other bounds, as far as we know, are new. In Section 6 we discuss the results:
We compare our bounds with those of Desai (1992) and give some examples of
applications both in cases in which A, and A_;, are known and other cases of
interest. Finally, we discuss the rates of convergence of the Metropolis
algorithm and of the Gibbs sampler in random updating dynamics.

2. Geometric bounds for eigenvalues of reversible chains. In this
section we introduce some basic notation and definitions and recall some
recent results proved by Diaconis and Stroock (1991) in a quite general
context: P is the transition probability matrix of an aperiodic and irreducible
Markov chain on a state space (), and it is reversible with respect to a
probability distribution 7. Recently many authors [Sinclair and Jerrum
(1989), Diaconis and Stroock (1991) and Sinclair (1991)], following a func-
tional approach, have proved bounds on the eigenvalues A, and A_;, of P
depending on certain geometric quantities of the graph underlying the transi-
tion matrix P. We show that Diaconis and Stroock’s (1991) results in our case
lead to the tightest bounds.

Let P be an aperiodic, irreducible transition probability matrix which is
reversible with respect to its stationary distribution 7. Throughout this paper
we assume these hypotheses on P and we shall not repeat them in the
propositions and theorems. ’

We define the underlying graph G(P) = [Q, E] of the Markov chain with
transition probability matrix P as the graph with set of vertices () and set of
edges E given by the pairs {x, y} € QO X Q such that P(x, y) > 0 and x # y.
The hypothesis of irreducibility of P implies that the graph G(P) is con-
nected.
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We state that x, y € Q are adjacent or neighbours if P(x,y) > 0 (i.e., if

{x, y} € E). Furthermore, let N(x) be the set of the vertices adjacent to x
N(x) ={y € Q:{x,y} €E},
and let d(x) = |[N(x)| be the degree of the vertex x.

Given any two vertices x, y € () we denote by v,, a path from x to y:
Yey = (x = %4, %;,..., xg =y) such that P(x,_;,x,)>0, for each &k =
1,2,..., K; furthermore, we say that z € y,, if z is an element of the
sequence (x,),_, . g- Finally, we denote by I' ={y,,: x,y € Q} a set of
paths which join pairs of vertices of () (in such a way that I" contains exactly
one path for each pair of vertices).

Let @ be the matrix defined, for each x, y € Q, by Q(x, y) = m(x)P(x, y);
the detailed balance condition implies that the matrix @ is symmetric and
that @(x, y) = 0 if and only if P(x, y) = 0. The @-length of a path y,, €T is

defined by
yle= L (Qe) 7,

eevxy

where the sum is extended over the set of the edges which constitute the path
Y.y- Often it is better to use unit weights [see Diaconis and Stroock (1991),
Proposition 1].

NotE 2.1. In the following we shall consider also directed edges; in this
case we shall write e = (e”,e”) when the edge e is directed from the vertex
e~ to the vertex e*. The set of directed edges is denoted E.

Let a fixed set of paths I' on G(P) be given. The first quantity of interest is
the parameter k, which is related to the set I' as follows:
(1) k=max Y |y,lo7m(x)7(y),

e€E y 3e

where the maximum is over directed edges in the graph and the sum is over
all the paths which travel a certain edge e. We note immediately that «
increases both with the number of paths which cross the same edge e (the
sum is over all the paths which travel the edge e) and with the length of each
of them (k is a sum of lengths of paths).

Analogously let 3 = {o,} be a collection of cycles with an odd number of
edges (2 contains only one cycle for each vertex), and let us define the
Q®-length of a cycle o, € 3 by

lodo= ¥ (Q(e) .

eco,
and hence the parameter ¢,
() v = max ¥ lalqm(x),
ecE o,5e

where the maximum is over directed edges in the graph and the sum is over
all the cycles which travel a certain edge e.
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By an application of the Cauchy—Schwarz inequality, Diaconis and Stroock
(1991) have proved the following bounds on A, and A in terms of the
parameters k and .

min

PROPOSITION 2.1. The eigenvalues A, and A, of P satisfy

1
3 Ay <1 ——,
® ys1-

2
(4) Amm— 1+_

[3

with « and . defined, respectively, in (1) and (2).

The bound (3) is a discrete version of the Poincaré inequality. The next
proposition gives a lower bound for A,. Let W be a proper subset of () and
define

QWxW) = Y @Q=xy)= Y w(x)P(x,y).

xeW,yeW°* xeW,yeWe

Then [e.g., Diaconis and Stroock (1991)].

PROPOSITION 2.2. Let W be a proper subset of Q. Then we have
QWX We
(5) Ag > 1 — (——)
T(W)m(W°)
In the next section, with regard to the problem under examination, we
shall give a choice of the sets I and 3, and we shall prove some preliminary
results.

3. Preliminary results: A choice of paths and cycles. Let H be a
real-valued function defined on ) and, without loss of generality, assume
that H is a nonconstant function with min, . , H(x) = 0. Let x and y be two
states of the set (). We shall say that x and y are equivalent if there exists a
path of constant energy from x to y, that is, if there exists a path Yay
(%4)—0,... k» With xy = x and xK ¥, such that H(x,) = H(x,_,), for each
k =1,..., K. Let us denote by T, the set of all paths from x to y. We shall
say that x is a point of local minimum for the function H either if the set
{y € Q|H(y) < H(x)} is empty (in such a case x is a point of absolute
mlmmum) or if, for each y € O with H(y) < H(x) and for each path vy, €

[, there exists z € v,, such that H(z) > H(x).

For each x,y € Q let Yey = (23)4—0,... ¢ be any path from x to y and let
{H(x})},-0.... x be the corresponding set of values assumed by the function in
the points of v,,. For each v, €T, , let us define

xy?

elev(y,,) = max {H(x)}
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and then

H,,= min elev(y,,).
'nye xy

Hence H,, is the lowest possible elevation along any path from x to y.
Afterwards we set
(6) m = xI,I;,aE'XQ{ny_H(x) _H(y)}
The parameter m is the least total elevation gain of the function H in the
sense described preceding Theorem 2.1 in Holley and Stroock (1988).

We shall consider the following set I': For each x, y € (), the set contains a
path having an elevation elev(y,,) such that

(7) elev(y,,) — H(x) - H(y) < m.
We shall refer to these paths as admissible paths.

NortE 3.1. Holley and Stroock (1988) consider a particular set of admissi-
ble paths, the set of paths having the lowest possible elevation. Actually this
choice is too restrictive; in fact, for the proof of Theorem 2.1 in Holley and
Stroock (1988), condition (7) is sufficient.

The following proposition gives a characterization of the function H in
terms of the parameter m now defined.

PROPOSITION 3.1. Let Q be a finite set and let H be a real-valued function
defined on Q. Then the parameter m defined in (6) is nonnegative. Further-
more, m = 0 if and only if the function H has only one point of local minimum
(up to equivalence).

PrRoOOF. The first statement of the proposition is obvious. It is sufficient to
choose either x or y as a point of absolute minimum. Regarding the second
assertion, at first let us suppose that

xn;aexﬂ {ny —H(x) —H(y)} =0,
and we shall prove that the function H has only one point of local minimum
(up to equivalence). We prove it by contradiction. Accordingly, suppose that,
in addition to a point x, of absolute minimum, there exists a distinct point y,
of local minimum that is not equivalent to x,. We must consider the following
two cases: (1) 0 = H(x,) = H(y,); (2) 0 = H(x,) < H(y,).

In the first case, the hypothesis m = 0 implies that H, ,, = 0 and hence
that there exists a path of constant energy from x, to y,, contradicting the
hypothesis that the points are not equivalent. In the second case, the hypoth-
.esis m = 0 implies that H, , = H(y,); but this is a contradiction because,
from the definition of a point of local minimum given at the beginning of this

section, along any path vy, , €T, , there must exist a point z such that

H(z) > H(y,), and hence H, , > H(y,).

Xo0Yo
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Conversely, let us suppose that the function H has only one point of local
minimum (up to equivalence) and let us prove that H, y, —H(x) — H(y) <0,
for all x,y € Q). We need only to show that, for each x,, x,y € Q with
0 = H(x,) < H(x) < H(y), the hypotheses imply that H,, = H(y). Obviously
H,, = H(y) if y is a point of absolute maximum for the function H. In
general we suppose, again for contradiction, that for any 1, y €T,, there
exists z € v,, such that H, = H(z) > H(y) and prove that this hypothesis
implies that the function H has at least two nonequivalent points of local
minimum. We can prove it by the construction of two finite and decreasing
sequences which terminate in two nonequivalent points of local minima, say,
yy and x;.

In fact, if y is not a point of local minimum for H, then there exists a point
¥1 € N(y)\ {y} such that H(y,) < H(y); if y, is not a point of local mini-
mum for H, then there exists a point y, € N(y;) \ {y, y;} such that H(y,) <
H(y,) and so on. In such a way we obtain a finite sequence {y;};_, .. ;, where
¥o =y and y,; is a point of local minimum. With the same argument for the
point x, we can obtain another point of local minimum from the sequence
{x;};,_o,... ;- Obviously these two points cannot coincide or be equivalent. This
completes the proof. O

As regards the choice of the set 3 of cycles with an odd number of edges,
first let us consider the set A, defined by

(8) Ap ={x € Q|P(x, x) > 0}.

We denote by 2, the set of all cycles from x to x having an odd number of
edges, and we denote by r(o,,Ap) the number of edges which must be
travelled along the (general) cycle o,, starting at x, to reach a vertex
y € 0, N Ap. Then set
(9) r.= min r(o,,Ap),

0, €3,
with r, = 0if x € A,.

We take for X = {o,: x € Q} the set of cycles o, having the minimum
number of edges indispensable to join the vertex x to a vertex of Ap.

In other words, o, € 3 if and only if either (1) x € Ap and 0, = x = x or
(2) x € Ap and g, = {x,},_,. . ¢ is an odd cycle with the minimum number
of edges K such that

Xo=Xg,-oor Xk-3)/2 = Xki3y2 EAp and x5 = X112 € Ap.

NoTE 3.2. Unlike the set of paths T', the set of cycles 3 depends on the
transition probability matrix P. -

Finally, let us set

(10) r* = maxr,.
x€Q
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In particular, each cycle o, € 3 has a number of edges not greater than
2r* + 1. We shall give some characterizations of the set A, in the next
section.

NoTE 3.3. Obviously, more than one set of admissible paths I" and more
. than one set of shortest cycles 3 can exist. In the following we shall always
consider one of the possible choices.

4. Results relating to the Metropolis algorithm. Let H be a real-
valued function defined on  and, without loss of generality, assume that H
is a nonconstant function with min,_, H(x) = 0. From now on 7 is the
Gibbs distribution depending on the function H and on a parameter T > 0:

e H&/T

(11) ’lT(x)ET VxeQ,

where Z; = ¥, . qe 7@/ T is the partition function. The set Q is the set of
states or configurations of a given physical system, the function H is called
energy [hence H(x) is the energy of the state x € Q] and the positive
parameter T is the temperature.

Let G =[Q, E] be a connected graph; for simplicity, we suppose that G
contains neither self-loops nor multiple edges. Let us denote by d* =
max, . o d(x) the maximum degree of the graph. Let R = (R(x, y)), , <o be
the symmetric transition probability matrix on the set () defined for each
x,y € Q by

1

75 if y € N(x) and y # x,
(12) R(x,y) ={ d* —d(x) .

— ify =x,

0, otherwise.

The transition probability matrix R is irreducible and reversible with respect
to the uniform distribution on (.

The Metropolis algorithm is based on a Markov chain with transition
probability matrix P = (P(x, y)), ,<q defined as follows:

R(x,y), ifm(y) > m(x)and y # x,
(1) P(x.y) = :Ei’;R(x,y), if w(y) < m(x),

1- Y P(x,2), ify=x,

Z#x

where 7 is the Gibbs distribution defined in (11) and the transition matrix R
has been defined in (12).
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The transition probability P is irreducible and reversible with respect to

the Gibbs measure. In fact, for 7(x) < w(y) and y # x, we have

m(x)P(x,y) = w(x)R(x,y) = w(x)R(y,x) = n(y)P(y, x).
Furthermore, the transition probability matrix P is aperiodic [e.g., see
Frigessi, Hwang, Sheu and Di Stefano (1993), Proposition 3].

Note that G(P) = G = [Q, E] is the underlying graph of the Markov chain
with transition probability matrix P. In this section we obtain a bound on the
spectral gap of the transition matrix P in terms of some geometric quantities
of the underlying graph G(P) of the Markov chain and of the function H and
prove that p(P) = A, for small values of T. Two other quantities of interest
are

(14) br = max#{y € Tle € v},

(15) yr = maximum number of edges in any path of T'.

4.1. Bounds on MA,. In the next two theorems we get results similar to
those of Theorem 2.1 in Holley and Stroock (1988). The difference consists in

the fact that we are able to specify the constant which appears in front of
e /T,

THEOREM 4.1. Let P be the transition matrix of the Markov chain (13).
Then its second largest eigenvalue A, satisfies the relation

Zp
16 1-— -m/T
( ) Ao < bryrd* ¢ ’

where Zy = ¥, ge H&/T,

ProOF. We choose a set of admissible paths I' on the graph G(P), that is,
a set of paths satisfying (7). Let e € E by the definition of R it follows that

WE;_) , ifm(e”) <m(e™),
ey =m(e)Ple) =1 | (ov)
FTER ifm(e”) > mw(e"),

where P(e) = P(e”,e*) and Q(e) = Q(e™,e™). The Q-length of the path Yey
from x to y is given by

yle= L (Qe)) ™ = ¥ [w(eT)P(e)] 7},

enyy i ee'yxy
and, if we set w(e,) = min{w(e™), w(e*)}, it follows that

(*)

Q(e) = m(e)P(e) =
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Hence

1ylem(2)m(y) = ¥ [w(e”)P(e)] 'm(x)m(y)

T exp[H(e*) ~H) —H(y)],

where H(e, ) = max{H(e™), H(e")}. Thus, by the definition (1) of «, it follows
that

x = max Y ,|7xy|Q7T(x)7T(y)
- ime}x Y X a* eXp[H(e*) _Hl(‘x) Y

ZT € 'yxyBe'eE'yxy

Since H(e,) — H(x) — H(y) < elev(y,,) — H(x) — H(y) <m, for each e €
Yey» by our choice of I', from the definitions of m, b and yp—respectively,
(6), (14) and (15)—we obtain

*
o< ot
Zy

The theorem follows from Proposition 2.1. O

NoTE 4.1. If H =0, then P here is a random walk, and the bound (16)
reduces to

N

Apg<1l— —ur,
2 bryrd*

which is exactly the bound of Corollary 1 in Diaconis and Stroock (1991), if G

is assumed regular, since then 2|E| equals Nd*. Note also that, in the special

case H = 0, any choice of paths is permissible.

NoOTE 4.2. The fundamental difference between the bounds obtained in
this paper and those of Diaconis and Stroock (1991) obtained in the case of
simple random walks is exhibited by comparing Theorem 4.1 with Corollary 1
in Diaconis and Stroock (1991). In fact they give a bound on A, for any choice
of the set I and hence the problem is to find an optimal choice of this set (the
optimal set may not be unique, as we remark in Note 3.3). By contrast the
bounds (16) and all the bounds obtained in this paper are obtained corre-
sponding to the set I' of admissible paths discussed in the previous section.
Analogous comments apply to the set of cycles 3.
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Other geometric bounds on A, can be obtained with other approaches.
With the notation of Section 3, let

(17) n=m W— L, 77(96)77(_y),
@ e 5, i)

where |v,,| is the number of edges of the path v,, and the maximum is over
directed edges. Sinclair and Jerrum (1989) and Sinclair (1991), respectively,
have proved the following bounds on A,:

(19) AZSI_S_‘I)Z,

1
20 Ag<1——,
( ) 9 =

based, respectively, on the Cheeger inequality and the Poincaré inequality.
Hence we have the following theorem.

THEOREM 4.2. Let P be the transition matrix of the Markov chain (13).
Then its second largest eigenvalues A, satisfies the relation

Z3
8(brd*)?

(21) Ag <1 — ~2m/T

ProoF. The proof is the same of that of Theorem 4.1. From (17) we have

1
"= max oy L, 7(x)m(y)

d
=max —— Y. w(x)7(y)

i *
eck T(e )yxyse
*
< brd e
Zp

The theorem follows from (19). O

m/T

Hence if
8b.d*
o
then the bound of Theorem 4.1 is tighter than the bound obtained in Theorem

4.2. On the contrary, with easy calculations it can be proved that the bound
(20) gives the same result as Theorem 4.1.

e /T <
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Now we achieve a lower bound for A,. In this theorem some inequalities
are quite crude, but here we are mainly interested in the rate of convergence
of A,.

THEOREM 4.3. Let P be the transition matrix of the Markov chain (13).
Then its second largest eigenvalue satisfies

Zp (N\* _
(22) A221—d—*(3) e m/T,
where N is the cardinality of the set ) and m has been defined in (6).

PrOOF. The first part of the proof follows as in Holley and Stroock [(1988),
Lemma 2.3]. Let x, and y, be such that H(x,) < H(y,) and H, , — H(x,)
— H(y,) = m. Let W be the following subset of {):

W={z€0QlH,, 6 <H,,]}

X0Yo

0Yo

The result is that x, € W and y, € W¢ Let (x, y) € E N (W X W°), where E
is the set of directed edges. Then, by the choice of the set W we have
H(y) > H, , and H(y)> H(x).In fact, the path v, , can be chosen so that

Yeoy = (Yxox» ¥) and hence, from the definition of W, H, , <H, , <H, ,.
Therefore H(y) > H(x) and H(y) > H, ,,, and hence
7()

Q(x,9) = m(x)P(x,) =~

Then, by Proposition 2.2,
Q(W x W¢)
T(W)m(W°)
)y 7(y)

(x,y)eEN(WxW®)
d*m(W)m(W°)

y e~HOYT
1 1 G, peBEnwxwo
Zy d*m(W)m(W°)

Ay =1

=1-

Since
H(y) = onyo’
exp[ —H(x,)/T] < Zwexp[—H(x)/T]
and

exp[—H(y,)/T] < Zv',vcexp[—H(y)/T],
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it follows that

_(onyo B H( xO) - H(yO))
exp x .

1
Az 2 1 - ZT? Z
(x,)EEN(WXW®)
Consequently, we have
1
A.2 2 1 - ZT_* E e_m/T.
(2, y)€EN(WXW®)
Finally, since the set E N (W X W¢) contains at most (N /2)? edges, we have
Z, (N)\?
-m/T
and hence the theorem. O

4.2. Bounds on A,;,. Now we turn to the bound on A, . First we must
provide a characterization of the set Aj.

PROPOSITION 4.1. Let P be the transition matrix of the Markov chain (13).
Then the set Ap does not depend on the temperature T.

Proor. The proposition follows immediately by considering that
P(x,x)=1-%,,,P(x,y). 0

PROPOSITION 4.2. Let P be the transition matrix of the Markov chain (13)
and x € Q. Then x & Ap if and only if d(x) = d* and H(y) < H(x), for each
y € N(x).

ProoF. The statement follows from the definition of P since x & Ap if
and only if P(x,x) =0, that is, X, , P(x, y) = 1. By definition of P, this
holds if and only if 7(y) > m(x) for all y € N(x) and d(x) =d*. O

The next two corollaries follows from Proposition 4.1.

COROLLARY 4.1. Let P be the transition matrix of the Markov chain (13),
and let r* be the parameter defined in (10). Then r* > 1.

ProoF. Obvious, as Ap C . O

 COROLLARY 4.2. Let P be the transition matrix of the Markov chain (13). If
x and y are two distinct vertices of O and v,, = (x),_¢,. g is a path from x
to y composed entirely of vertices not belonging to Ap, then v,, is a path of
constant energy.
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Proor. It follows immediately from Corollary 4.1. O

Now let us introduce two other quantities, namely,

23 8= min min H —H(x)|,
( ) x€Q yEN(x):H(y)#H(x)l (y) ( )l

(24) by = max #{o € 3le € o}.
ecE:eisnota self-loop
We have assumed H # 0 so that 0 < § < ». The parameter § is the
minimum gap of the function in any transition; by, with respect to the set of
the shortest cycles 2, has the same role as b with respect to the set of paths
I'. Furthermore, let us denote with ey an edge which is crossed by the most
number of o € 3, that is,

(25) es = arg magg{ M IcerQTr(x)}.

e€E \g.5e

THEOREM 4.4. Let P be the transition matrix of a Markov chain associated
with the Metropolis algorithm given in (13). Then the least eigenvalue A, of
P satisfies

2 B !
(26) AminZ—l'FE; A+W ,
where 8 has been defined in (23); A and B are two constants given by
A =2bsr* + by + 1 and B = by + 1, with r* and by given, respectively, in
(10) and (24).

ProOF. Let us choose a set of shortest cycles X with an odd number of
edges as defined in Section 3:

@) If x € Ap, then

Oy =X X = Yy

(i) Otherwise, let v,, = (x,),_o,. . x (With x5 = x and xx = y) be a short-
est path from x to y such that x, € Ap, for £ =0,...,K—1,and y € A,.

For simplicity throughout this proof, we shall use the same notation y to
denote subpaths of the cycle o,, but these paths should not be confused with
the earlier ones.

The proof follows the scheme of Theorem 4.1: First we shall obtain an
upper bound on the parameter ¢ given in (2),

¢ = max Y Ia'xIQTr(x),
ecE o.De

and then we shall apply Proposition 2.1.
* In Section 3 we introduced the quantity r, as the smallest number of edges
which must be travelled along the cycle o, starting at x to reach the nearest
vertex y € o, N Ap, and then r* = max, . o r,. Hence for each e € E we can
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write
(27) > |0'x|Q7T(x) = Z (l(rle)lo-xIQTr(x) + l{rx=0)|0-x|Q7T(x))’
o.De og.De

where the real function 1,, is the indicator function of the set {-}. In other
words we split the sum ¥, , l0,lq7(x) of the cycles which share the edge e
into two parts. The first one corresponds to the cycles g, € 3 with x & Ap;
the second one corresponds to the self-loop e = {x, x}.

First let us consider the case x & Ap. Any cycle o, with r, > 1 can be
described as

T = (Yays Vyys Yyx)>s

where y € Ap and v, is simply v,, reversed. To keep the proof simple (the
other case is harder), we consider here the case d(y) = d*. The subpath y,,
can be further split as

ny = (wa 2 ’wa) ’

where v,,, is the subset of y,, with vertices not belonging to Ap having a
constant energy [and equal to H(x)] and r, — 1 edges; v,,, is the edge (w, y).
Then we can write

(28) 0 = (YVews Yoy> Voy» Yyws Yoz) s
and hence
lolom (%) = 1%ulem (%) + 1%,lem (%) + ln,lqm (%)
+ 1 %ulem (%) + 17,lem(%).
We have to estimate each part of ||, in (29), considering that |vy,,lq = |7,.lq

and |y,,| = |¥,lq-
To begin, as v,, is a path of constant energy equal to H(x) with r, — 1

edges, we have
Yewlem(2) = L (Q(e)) 'm(x) = ¥
(30) Q eer eay.. (%)
=(r, - )d* < (r* — 1)d*.
Furthermore, from Corollary 4.1, it follows that H(x) = H(w) > H(y) and
hence
(3L lnuylem(x) = [7(w)P(w, )] 'm(x) =
The bound on |v,,|o7(x) is more complicated:
1yl (%) = [7(¥)P(y, )] 7 ()

= -W(y)(l— > P(y,z))]_lﬂ(x)

zeN(yN\{y}

(29)

*

m(x)

*

m(w)

m(x) = d*.

1 (—(H(z) ~H(»)" )]1 m(z)
exp

-i-= X :
| a* zeN(y\{y} T ()
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As y € Ap and d(y) = d*, Corollary 4.1 implies that there exists at least one
2y € N(y)\ {y} such that H(z,) > H(y); then we have

~(H(zo) —H()) |\]" =(x)
T m(y)

1
lyy,lem(x) < [1 - d—*(d* — 1+ exp

g exp| — (H(x) — H(y))" /T|
1~ exp| —(H(2,) — H(y))" /T]

(32) <q* 1 +
1- exp[—(H(zo) + H(y)) /T]
1
<d 1—-exp(-6/T)

1
= A%
d 1-i_exp(é/T)—l)’

where § is defined in (23).
Finally, from (29) by means of (30)—(32) we obtain

1
(33) L, syloylem(x) < d* (2r* +1+ T 1 1)
and then a bound on the first part of (27);
1
(34) age(l(,le)laler(x)) < byd* (2r* +1+ e_a/—T—_1)

where by is defined in (24).

Now let us turn to the case x € Ap. Again, for simplicity, we consider
d(x) = d* (the other case is harder). A bound on the second term of the
right-hand side of (27) can be obtained with arguments similar to that of the
bound (32). Thus we have (we shall omit details)

1Yerlqm(x) = [m(x)P(x, x)] "7 ()

= (P(x,x))"
= [1 - ¥ P(;:c,z)]_1
zeN(x)\{x}
(35) P . (-(ch> —H(x))*”‘l
[ d* zeN(Zx)\(x)e g r
exp(8/T)
exp(6/T) — 1

1
(1 * exp(8/T) — 1)'
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Hence, from (34) and (35), we have obtained a bound on (27):

1 1
(36) Z |0'x|Q7r(x) szd*(zr*+1+e§/T—_1) +d*(1+ ;7—1,_—1)

g,De
and, with some calculations, we obtain the following upper bound on ::

v=max ), lolom(x)
(37) "

by +1
<d*|2byr* + by + 1+

eT 1)

The theorem follows from Proposition 2.1, setting A = 2b5r* + b5 + 1 and
B=b;+1. 0O

Note 4.3. If we can find a set of shortest cycles 3 such that ey is not a
self-loop, then we shall obtain a tighter bound on ¢ than (37), as 1, _o = 0in
(27). In fact in this case we have

< (2byr% 4+ by + i
L= sr 2T T 1)
In this case set A = 2r*b; + by and B = by to obtain the result of Theorem
44.

4.3. Bounds on p(P). The results of the previous two subsections give a
bound on p(P). Now we prove that the bound on p(P) uses (16) for small
values of T and the (26) for large values of T. Finally, we shall prove that
p(P) = A, for small values of T.

THEOREM 4.5. Let P be the transition matrix of the Markov chain associ-
ated with the Metropolis algorithm (13), and let ¢ be the number of absolute
minima of the function H.

Claim 1. If m > 0 and T < T, then we have

3
— -m/T
(38) p(P) <1 bryrd*e ,
where
39 T i 1 (4+B) B 0
(39) 1 = min| m|log by ' Tog2 |

Claim 2. If m > 0 and T > T,, then we have

2 B -1
(40) p(P)Sl_F(A_‘_E—T__I) ,
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where
a r 1 E(A+B)\" 5
(41) o = max|m|log by ' Tog2 |
Claim 3. If m = 0, then
42 P 1 i ¢ 2
< — I —— ———

for each T > 0.

PrOOF OF CLAIM 1. According to Theorem 4.1 we have

VA
Ay <1 d

-m/T
= brYrd*e "

2

and according to Theorem 4.4 we have

2 B -1
)\minZ—].-I-F A+e—8/T_—I .

The proof of the claim is completed by showing that

Zr

1—
br'Yrd*

-1
e_"‘/T>1——-2 A+—B
= d* e¥/T 1

for T < T}, and observing that ¢ < Z,. Indeed, from (39) we have

1-— -m/T > 1-— -m/T
br'Yrd*e br'Yrd*e
>1- N e /T
B br'Yrd*
>1 N 2bryr

=" bpyrd* N(A + B)

2 -1
=1_F(A+B)

2 B .
=1_§*’ A+ 25/(3/Tog2) _ |

2 -1
Zl—d—*(AJf;-a/T—l—:{)

2 B -1
ZI_EI(A-'-WTI-) .

363



364 S. INGRASSIA

ProOOF OF CLAIM 2. For T > T, we have

1- Zr e ™/T<1-— ¢ e /T
bryrd* bryrd*
¢
<1- —m /Ty
= br’)’rd*e
3 2bryr
<1- m
bryrd* ¢(A + B)
2 -1
=1- EI(A + B)
2 B -1
=l-GF\ AT s - 1)
2 B -1
Sl_F A+__——_e8/T2_1)
2 B -1
<1- ';l";' A+ E—T———l) . O

ProOF OF CLAIM 3. This claim follows from the same estimates as for
Claim 1 with the observation B/(e®/T — 1) > 0. O

Now we shall prove that p(P) = A, for small values of T.

THEOREM 4.6. Let P be the transition matrix associated with the Metropo-
lis algorithm (13), and let r*, d*, A, and B be the quantities defined above.
Then p(P) = Ay, for T < T, where

r (o N(A+B) s
« = min| m|log 3 ' Tog2 |

ProoF. According to Theorem 4.3 we have
Z,(N\® _
Azzl—?(—z-) e m/T’

and according to Theorem 4.4 we have
B -1
min d* W_:—l) :

2
Apin = —1+ —(A +
The proof of the claim is complete& by showing that
Zp (N\? 2 B \7!
l—z’:(‘é—)e /TZ].—'&;(A+;§/—T_—1)
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for T < T,. The proof is essentially the same as that of Claim 1 of Theorem
45. O

As we observed before, the lower bound (22) on A, is quite rough. Improv-
ing this bound leads to a higher value of T,.

5. Results relating to the Gibbs sampler. In this section we wish to
obtain two main results. First we prove that for the Gibbs sampler p(P) = A,
for small values of T'; second, we prove that the random updating dynamics
on sites based on the Gibbs sampler and on the Metropolis algorithm have
the same rate of convergence for small values of 7.

Let S be a lattice of sites and let £ be a neighbourhood system of sites,
that is, a collection £ ={%,, s € S} with &, C S, s ¢ &, and s € &, if and
only if ¢t € Z,. Let X = {X,, s € S} be a random Markov field with respect to
2 and assume that all X, have the same state space V ={0,1,...,¢ — 1}.
Finally, denote by Q = VS the configuration space, that is,

Q= {(xs)sES’ x; € V}’

with N,(x) the set of the configurations x’' € () which differ from x at most
in the coordinate s:

(43) N,(x) = {«' € Q: x); = x;, for j # s}
and
(44) N(x) = USNs(x)~

Obviously y € N,(x) if and only if x € N,(y). For simplicity we shall suppose
that all the sets N,(x), for each s € S and x € (), have the same cardinality
¢, that is, [N,(x)| = ¢, and hence d* = |N(x)| = c|S|.

Let H be a given real-valued function defined on (), and let = be the
Gibbs measure on () with respect to the function H and a parameter T > 0.
The function H is the energy and it usually can be written as a sum of
potentials depending on the neighbourhood system of sites £.

The Gibbs sampler algorithm [Geman and Geman (1984), Geman (1991)] is
a Monte Carlo method for the generation of samples from ) with probability
distribution 7. Given a site s € S, first let us define the transition matrix

e H)/T
if y € N,(x)
—-H(z)/T 1 y S ’
RG(x,y) = ze%:(x)e .
0, otherwise,

~ and introduce the real-valued function 1,,

1, if y € N(x),
0, otherwise.

ls(x,\y) = {
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The Gibbs sampler relative to a random updating of sites is based on a
Markov chain with state space () and transition matrix RG =
(RG(x, ¥)), < q defined as follows:

1
RG(x,y) = — Y. RG,(x,y)
|S| seS
(45) 1 e HOVT
"B TT e

zeN/(x)

In this notation, the letter R is used as mnemonics for random updating of
sites.

It can immediately be shown that each RG, (and hence RG) is reversible
with respect to the Gibbs distribution 7 given by (11). In fact if y € N,(x),
then, by (43), the two sets N,(x) and N,(y) are equal and hence we get

e H&Y/T  o=HO)Y/T
7(x)RG.(x =
(x)RG,(x,y) Zy Z e H®)/T
zeN/(x)

e~ HOYT  o=H&Y/T

R > —aeyT ~ T(9)RG(y, x).

zeN/(y)

Then also the transition matrix RG defined by (45) is reversible with respect
to the Gibbs distribution 7. Moreover the transition probability matrix RG is
irreducible and aperiodic [e.g., see Proposition 3 in Frigessi, Hwang, Sheu
and Di Stefano (1993)].

Now let G(RG) =[Q, E] be the graph underlying the transition matrix
RG. In this section we obtain bounds on the eigenvalues of RG as we did
previously. Now A, and A_;, refer to RG. The results will be discussed in
subsection 6.3. The methodology is the same but we have to consider a
suitable set of admissible paths I'; the quantities m, b; and y; have been
introduced before.

5.1. A suitable set of admissible paths. In order to obtain an upper bound
on the second largest eigenvalue A, of RG, we must select a suitable set of
admissible paths I'. Let x,y € ( and e € y,,, with the notation introduced
above that e = (e, e*) is the directed edge from the vertex e~ to the vertex
e*. Thus e~ and e* differ only in the value of a site, say, s. In Theorem 4.1,
for each e € y,,, we have

(46) H(e.) - H(x) — H(y) <m,
where H(e,) = max{H(e™), H(e")}.
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Now we require a stronger condition than (46). For each x,y € Q we
require a path such that, for each e € y,,,

(47) {H(e”) —H(&)} +{H(e") —H(x) —H(y)} <m

holds, where ¢ is any neighbour of e~ at site s, that is, é € N,(e”), s being
the site in which e~ and e* differ. This choice is always possible by means of
a suitable sequence of updating of the sites along the path. Now we prove the
existence of a path satisfying (47) in the most critical case, that is, the case in
which the path from x to y is such that elev(y,,) — H(x) — H(y) = H,, —
H(x) — H(y) = m and either H(e") = H,, or H(e*) = H,,. The other cases
may be treated in an analogous way.
In this case (47) becomes

{H(e”) —H(é)} + {H(e") — H(x) — H(y)} < H,, — H(x) - H(y),

for each e € v,,.

In fact, with the notation of Section 3, let z €  such that H(z) =H,,,
and let v’ and v” be the vertices immediately preceding and following z along
the admissible path v,,. The vertices v’ and z differ only in the value of a
site, say, s'; similarly the vertices v” and z differ only in a certain site, say,
s". Then (47) is guaranteed if we consider a path such that

(48) H(v') —H(t') <0 foreacht € N,(v'),
(49) H(v") — H(t") <0 foreacht” € N,(v").
In other words, the path must cross the vertex v’ € N,(2) such that H(v') —
H(¢') < 0, for each ¢ € N,(z), immediately before the vertex z such that
H(z) = H,,. The vertex v" must be crossed immediately after the vertex z.

The elevation of the paths does not change. This choice can be made clearer
by Figure 1. The two paths (x,w’, z,w", y) and (x,w’,v’, z,v", y) have the

Fic. 1. Example of paths from x to y (in this case each vertex has the same degree d* = 4): The
path from x to y to be considered is (x,w’,v', z,v", y). All other paths (in which at least one edge
is drawn in dotted line) are to be rejected.
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same elevatidn, but the latter is the one to be considered. In fact, for example,
if e =w' and e*= z, when é = v/, then
H(w') -H(v')>0
and (47) is not satisfied; similarly, if e =2z and e*= w”, when € = v", then
H(w") —H(v") >0

and again (47) is not satisfied. The set of paths I' introduced above shall be
used in the proof of Theorem 5.1.

5.2. Bounds on eigenvalues. In this section we get bounds on the eigen-
values A, and A,;, of RG.

First, to obtain an upper bound on A,, we shall consider a set of admissible
paths T' such that the condition (47) holds.

THEOREM 5.1. Let RG be the transition probability matrix of the local
updating dynamic based on the Gibbs sampler (45). Then its second largest
eigenvalue satisfies the relation

Zy

- e /T,
br’YrC|S|

1

A

(50) Ag

ProOF. Let I' be the set of paths which we have introduced above and
e € E, and set RG(e) = RG(e ", e"). We have

1Vylem(2)m(y) = X Q7 (e)m(x)m(y)

e<y,,
= Y [w(e)RG(e)] 'm(x)7(¥)
eeny
1 -1
= X S m(e”)RG,(e)1,(e)| m(x)m(y)
ecy,, seS
-1
1 e—H(e*)/T e—H(e‘)/T
= — - 1
Z\m LT e g O
éeNge™)
X m(x)m(y).

For each e € v,, the sum in (£,cg **)~! contains only one term different
from zero, and so

S H(e™) — H(&
'I’Yx?,IQW(x)ﬂ'(y)=% DD exp({ (e )T (e)})

e€vy,, SES éeN,(e7)

y exp( {H(e") — H(x) - H(y)}

CRLETN
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Furthermore, our choice of paths assures that

o B ZHON | (B(e") = H) - HO) )

m
< exp(?)

holds for each e € y,,. Then

{H(e™) — H(&))} {H(e") — H(x) — H(y))}
i %e_)exp( - i)exp( ( L
< cexp(?r—),
and thus
S|
Yeylem(x) 7 (y) < Z Y ce™/T.

Hence, from the definition of y it follows that

S| m)T
InyIqu(x)ﬂ-(y) < Z c'Yl“e *
T

Thus we obtain
k=max Y, ly,lom(x)m(y)

ecl YayDe
< br7r0|S|em/T
< —-——ZT
Proposition 2.1 completes the proof:

ZT
Ap<1— —F ¢ m/T, O
2 bryrclS|

A lower bound for A, is obtained in the next theorem. In this theorem some
minorizations are quite crude, but we wish to fix the rate of convergence
of A,.

THEOREM 5.2. Let RG be the transition probability matrix of a local
updating dynamic based on the Gibbs sampler (45) Then its second largest
eigenvalue satisfies the relation

2

Z; N
-~ _,o—m/T

Proor. Let W be the proper subset of ) defined in Theorem 4.3:
W= {z € QIH <H

xoyo}
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where x, and y, are such that H(x,) < H(y,) and H, , — H(x,) — H(y,) =
m. Then

QW X W) (

s T w@Re)|( £ @) £ )]

(x, )EEN(WXW®) xeW yEWS®

1
( Z E Z ﬂ(x)RGs(x’y)ls(x’y))

(x,y)EEN(WXW?) ses§

(L 7 ¥ w(y))_l.

xeW yeEW®

Now in the sum over (x, y) € E N (W X W°) we may suppose that x and y
differ at only one site, say, s [otherwise RG,(x, y) = 0, for all s']; hence we
have

QW X W°) 1 e HO)/T e—H®)/T
m(W)a (W) ~ i8I (x,y)eﬁg(WxWﬂ Y e HO/T 2z,
zeN(x)
e H)/T e~ HOVT -1
8 erW Zp yeZ‘Vc Zy ’

and, as x, € W and y, € W¢, it follows that

QWX W) _Zp o el -H(x)/Tlexel -H(5)/T]
m(W)m(We) ~ S| (o, B WX %‘,( )exp[—H(z)/T]

X (exp[ ~H (o) /T]exp[ ~H(,)/T]) "

_Zr 5 exp[ —H(y)/T]
S| Y exp[—{H(z) — H(x)}/T]

(x,y)eEEN(WXW®)
z€N(x)

x| L HO)

Zy exp[—H(y)/T]

B ﬁ(Jc,y)tsl?;(Wx’W") 1+ Z exp[—{H(z) - H(x)}/T]
zeN(x)\{x}

{H(x,) +H(y0)}).

X exp( T
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In the proof of Theorem 4.3 we showed that if (x, y) € E N (W X W¢), then
H, , < H(y). Hence

X0Yo

QWX W)  Z,
2 (W)a(W) =~ 18]

_{ %0¥0 H(xo)—H(yO)}
> exp( T

(x,y)EEN(WXWE®)

Z m

= ﬁ Yy exp( - _7—‘-)
(x, ) EEN(WXW®)

Since the set £ N (W X W¢) has less than or equal to (N/2)? edges, we have

QW X W¢) Z; N?

—— < o —e /T,

a(W)a(We) ~ IS| 4

which, using Proposition 2.2, completes the proof. O

Now let us turn to the smallest eigenvalue. We begin with a proposition
which is a companion to Corollary 4.1.

PROPOSITION 5.1. Let RG be the transition probability matrix of a local
updating dynamic based on the Gibbs sampler (45). Then r* =

PrOOF. The definition of RG shows that RG(x, x) > 0, for each x € Q.
Hence x € Agg, for each x € O, and then r* = 0. O

In order to prove a bound on the smallest eigenvalue of RG, we define
another quantity, the maximum jump A of the function H in any transition:
(52) A = max max IH(y) H(x)|.

x€Q yeN(x

THEOREM 5.3. Let RG be the transition probability matrix of a local
updating dynamic based on the Gibbs sampler (45). Then its smallest eigen-
value satisfies the relation

Amin = —1+ ,
mn 1+ (c—1)et/T

where A is as defined in (52).

PrOOF. Proposition 5.1 states that self-loops are allowed in each site s,
that is, x € Ap; for each x € Q. In this case the set of shortest cycles % is

constituted by self-loops. Then we have
-1

N exp[ —H(x)/T]
lolgm(x) = Esgs Z( )exp[—H(Z)/T]
zeN(x

— 1+
IS] seS ( zeN(x)\(x}

[{H<x> —H(z)}]) )
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As the harmonic mean is always less than or equal to the arithmetic mean,
we have

1
lolgm(x) < |S|

X (1+ ) exp[{H(x);H(z)}})
se8 zeN(x)\{x}

({H(x) -H(Z)})
exp T

r X

|S| s€S zeN(x)\{x}

A
1+ (c— 1)exp|=]|.
< (c )exp( T )
Finally, as each cycle contains only one edge (i.e., the self-loop), we get

v=max ) lolom(x)

ec€E g, 3¢
<1+ (c—1)e/7,
and Proposition 2.1 completes the proof. O

5.3. Bounds on the spectral gap. We show how results of the previous
subsection give a useful bound on p(RG) for small values of T when m > A.

THEOREM 5.4. Let RG be the transition matrix of the Markov chain
associated with the Gibbs sampler algorithm (45), and let ¢ be the number of
absolute minima of the function H. Suppose m > A. Then if T < T,, we have

I
(53) p(RG) <1- me / ,
where
N \7' o
(54) T, = (m —A4) (IOgM) » N >2ISlbryr,
o otherwise.

2

PROOF. According to Theorem 5.1 we have

Zp
Ag <1 — ———e ™/T,
2 cSlbryr

and according to Theorm 5.3 we have

Apin = -1+ .
min . 14 (c—1)e?/T
The proof of the claim is completed by showing that

2 Zy

1- —~1
1+ (c—1)e?/T = clSlbryr

-m/T
e m/T,

1-—
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for T < T,. Foreach T > 0, as £ < Z; < N and e*/T > 1, we have
N Z,

1______e—m/T 1 - —— -m/T
clSlbryr clSlbryr

e >

1- <1-—0.
1+ (c—1)et/T 1= et

Straightforward calculations give, for T' < T},

1- Ee‘A/T <1- —Le'"‘/T.
c clSlbryr

This completes the proof. O
Now we prove that p(RG) = A, for small values of 7.

THEOREM 5.5. Let RG be the transition matrix of the Markov chain
associated with a Gibbs sampler algorithm (45). Suppose m > A. Then if
T<T,, we have
(55) p(RG) = A5,
where

N3\
T, = —A){log—| .
Proor. The proof goes along the same lines as Theorem 5.4, substituting

the use of Theorem 5.2 for that of Theorem 5.1. Note that, as N = ¢!,
c¢N® > 8|S|forc>2 O

NortE 5.1. Using other techniques,
p(RG) = AZ’

for each T > 0, has been proved by Frigessi, Hwang, Sheu and Di Stefano
(1993).

6. Discussion. In this section we discuss usefulness and drawbacks of
our bounds and compare them with the geometric bounds on A, and A, for
reversible Markov chains recently obtained by Desai (1992) following an
algebraic approach. First we summarize these results and then we give a
comparison with the bounds previously obtained both in some cases in which
we know the exact value of A, and A, [Hanlon (1992)] and in another case
of interest. Finally, we compare the rate of convergence of random updating
dynamics based on the Metropolis algorithm and the Gibbs sampler. This
problem has been recently approached by some authors. Frigessi, Hwang,
Sheu and Di Stefano (1993) have proved that for Ising models the Metropolis
algorithm is the best at low temperatures and the worst at high tempera-
tures. Chiang and Chow (1991) have proved that the Metropolis algorithm
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and the Gibbs sampler are asymptotically equivalent in annealing for lat-
tices.

6.1. The geometric bounds of Desai (1992). In his Ph.D. dissertation,
Desai (1992) obtained geometric bounds on A, and A, for reversible Markov
chains, following an algebraic approach. These bounds, in conjunction with
some results of Fiedler (1973), give easy-to-compute upper bounds on A, for
any reversible Markov chain with transition matrix P and a lower bound on
Amin for a reversible Markov chain with transition matrix P having a
k-regular underlying graph (i.e., a graph in which each vertex has the same
degree k).

Let G =[Q, E] be a graph; denote by A = (A(x, y), ,<q) the adjacency
matrix of the graph G and by D = (D(x, x), . o) the diagonal matrix indexed
by Q, where D(x, x) = d(x). The matrix L = D — A is named the Laplacian
matrix of G [Mohar (1991), Fiedler (1989)]; another name, the admittance
matrix, comes from the theory of electrical networks. The Laplacian matrix of
a graph and its eigenvalues can be used in several areas of mathematical
research and have an interpretation in various physical and chemical theo-
ries. For example, Maas (1987) considers the spectrum of the Laplacian
matrix to describe the behaviour of a liquid flowing through a system of
connected pipes. The second smallest eigenvalue of L is named the algebraic
connectivity of the graph G, and it is related to several problems in graph
theory and its applications.

In this section, P is an aperiodic, irreducible and reversible transition
probability matrix with respect to a probability measure 7, and we denote by
G(P) the underlying graph of P, by L the Laplacian matrix of G and by
Mo(L) the second smallest eigenvalue of L. Finally, let us set

(56) Tax = MaxX (),
(57) @nin = min{7(2) P(2,): P(x,y) > 0}.

Let A, be the second largest eigenvalue of P. In Theorem 4.8 of Desai (1992)
the following upper bound on A, is obtained:

Qmin
(58) Ap<1- = ma(L).

max

Now we turn to the smallest eigenvalue A,;,. Let us define the matrix
IL| = (IL(x, y)D,, < o, and denote by wu,(|L|) the smallest eigenvalue of the
matrix |L|, with 6 = min,_, P(x, x) the smallest diagonal entry in P.
Theorem 4.13 of Desai (1992) gives the following lower bound on A, :

Qmin
59 3 = 1
( ) ‘tmm = I

max

m(IL]) + 26.
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If the underlying graph of P is k-regular, that is, the degree of each vertex is
k, then
(60) m(ILl) = 2k — puy(L),

where uy(L) is the largest eigenvalue of the Laplacian matrix L of G, and
then

Qmin

max

(61) Amin = —1+ (2k — uy(L)) + 26.

In (58) and (61) the quantities u,(L) and uy(L) in general cannot be
explicitly evaluated. However, bounds for u,(L) and u,(L) were obtained in
a paper by Fiedler (1973) dependent on some classical parameters of graph
theory. Let e, be the edge connectivity of the graph G, that is, the minimal
number of edges whose removal would result in losing connectivity of the
graph G, and let d* be the maximum degree of the graph G. Fiedler [(1973),
Theorem 4.3] gives two lower bounds on u,(L) depending on these quantities:

(62) (L) = 2e5[1 — cos(m/N)],

(63) me(L) = cieq — cyd*,

where c¢; = 2[cos(7/N) — cos(2m/N)] and c, = 2cos(w/N)[1 — cos(w/N)]
and the second bound is better if and only if 2e; > d*. For k-regular graphs
one can also apply Diaconis—Stroock bounds (or Cheeger) to obtain bounds on

mo(L) and on puy(L).
An upper bound on uy(L) is given in Fiedler [(1973), Theorem 3.7],

(64) py(L) < 2d*.
Hence, from (58), (62) and (63), we obtain the following bounds on A,:
(65) A, <1-— Q“‘“‘zeG[l - cos(z)],
Topax N
(66) A <1— Q"“’“(cleG — ¢,d*)

max

(the second is better if and only if 2e; > d*); if the underlying graph of P is
k-regular, then, from (59), (60) and (64), we have the following bound on A_;:

(67) Apin = —1 + 2.

If 6 = 0, then the bound (67) does not give any information on A_;,. We shall
refer to (65), (66) and (67) as Desai—Fiedler bounds.

Finally, the algebraic bounds on ‘A, obtained in this subsection can be
summarized as
(68) Ay <1-— CQ""“,

Wmax




376 S. INGRASSIA

where
me(L), if this value is known,
T
2eG[1 - cos( — )] , if the value of u,(L) is unknown
(69) c= N and 2e; < d*,
cieq — c,d*, if the value of u,( L) is unknown
and 2e; > d*.

6.2. Metropolis chains: Examples and comparisons. Let M be the oscilla-
tion of the function H, defined as
(70) M= max (H(x)—-H(y));

x,y€Q

in particular, M =H_ , = max,.o, H(x), as we supposed H, ; =
min, ., H(x) = 0.

The algebraic bound on A, given in the previous section can be specialized
in the case of Metropolis chains as follows.

THEOREM 6.1. Let P be the transition matrix of the Markov chain (13).
Then its second largest eigenvalue A, satisfies the relation
-M/T
(71) A,<1-C T

where C and M have been introduced, respectively, in (69) and (70).

PrOOF. The proof follows from the algebraic bound on A, given in (68),
evaluating suitably the quantities @, and m,,,. We have
e-H®/T  g-Hun/T

1
@ .. = maxw(x) = max = = —
max xe) ( ) x€Q ZT ZT ZT,

as H;, =0.
In the evaluation of the quantity @, = min,, {7 (x)P(x, y): P(x, y) > 0},
we have to consider two cases:

(1) H(x) > H(y), that is, m(x) < 7w(y). Then
e—H(x)/T 1
m(x)P(x,y) = m(x)R(x,y) = Zl_*—Z—T = d—*w(x);

(2) H(x) < H(y), that is, m(x) > 7 (y). Then
1 e HOVT 1
7(x)P(x,y) = m(y)R(x,y) = &z =+ 7(9)-

Thus,
e_Hmax/T 1 e_M/T

1
. o= 1 — = = — . D
@min = 1001 ( d* "(x)) &z, _d* Z,
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Now we can immediately compare this last bound with that obtained in
Theorem 4.1.

PROPOSITION 6.1.  Let P be the transition matrix of the Markov chain (13),
and let § be the number of absolute minima of the function H. Suppose m > 0.

@) If M > m, then we have

e /T <1 — Ee‘M/T

72 A 1-
( ) 2 < b[")’[‘d* = d* ’

for T < T, where the constant C has been introduced in (69) and T, is given
by

Cbryr

-1
T, = (M—m)(ln ¢ ) , Ifé€<Cbryr,

oo, otherwise.

(i) If M = m, then (72) holds for each T > 0, provided that &> Cbryr
(and bounds are in the other order if N < Cbpyr).

PrROOF. The proof follows with straightforward calculations from Theo-
rems 4.1 and 6.1. O

In the rest of this subsection we consider some examples of applications of
the obtained bounds. The first two cases come from Hanlon (1992), who
considers a particular random walk on the symmetric group S ¢ in which the
probability of moving from a permutation p to any permutation p(, )
depends on the change in the number of disjoint cycles between p and p(i, j).
Let ¢(p) denote the number of cycles in the disjoint cycle decomposition of p.
Then c¢(p(i, ) = c(p) + 1. The probability of moving from p to p(i,j)
depends only on whether ¢(p(i, j)) = ¢(p) + 1 or ¢(p(i, j)) = ¢(p) — 1, and it
is « times as likely to move to p(i,j) if ¢(p(i,j)) = ¢(p) — 1 rather than
c(p(i, j)) = c(p) + 1. For a > 1, these chains are particular cases of Metropo-
lis chains and in some cases they can be explicitly diagonalized: For these
cases we wish to compare the bounds on A, and A, with the exact values. In
both the examples any set of shortest paths is also admissible. Further
details are given in the Appendix.

In the case a = 1 we have simple random walks.

ExaMPLE 6.1 (Random walk on S;). Let Q = {x, x,,..., x5}. Let H be a
real-valued function such that H(x,) =2, H(x,)=H(x;)=H(x,) =1,
H(x5 = H(xg) = 0. For a fixed value of a > I, let T > 0 be such that

1
? =loga.
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Let R be the transition probability matrix defined as

0 1 1 1 0 0
1 0 0 O
r_Xlt 000 11
311 0 0 0 1 1
0 1 1 1 0 0
0 1.1 1 0 0
Then, from (13), we have
[0 «a a «a 0 0 i
1 a-1 0 0 a o
111 0 a—1 0 a o
(73) P= 3all 0 0 a—1 o o
0 1 1 1 3(a—1) 0
0 1 1 1 0 3(a—-1)
In this case, Hanlon (1992) has calculated that
1
74 Ap=1— —
( ) 2 a ’
1
(75) Amin = - —C; .

Then p(P) depends on «: In fact, Ay > [A;,| for @ > 2; hence p(P) = A, for
a>2and p(P) = |Ay,lforl <a<2

In Figure 2 we give the underlying graph of the transition matrix P. In
this case we have immediately that yp =2, d* =3, é =2, r*=1and m =
8 = 1. We see immediately that x,,...,x¢ € Ap while x; & Ap, and hence

Zq

Ts Ze

Fic. 2. The underlying graph of the transition matrix P of Example 1.
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o, must include the self-loop of x, or x; or x,; thus by = 1. The parameter
br can be evaluated as in Diaconis and Stroock [(1991), Example 2.2]. The
graph G(P) has Nd* = 18 oriented edges. Any choice of shortest paths is also
a set of admissible paths, and it has Nd* = 18 ordered pairs of vertices at
distance 1 and N(d* — 1) = 12 ordered pairs of vertices at distance 2; that is,
18 + 212 = 42 directed edges to be crossed. Thus some edge must be
crossed by three paths, and hence b > 3. In the Appendix we give a set of
paths T" achieving b = 3.
Therefore the obtained bounds give

1
<1——92
1 a—-1
/\mmz—1+§2a_1

The bound on A, is not too imprecise and has the right order of magnitude as
a — ; the bound on A_;, has the right order of magnitude as « goes to 1.
The bound on p(P) gives

1 . 5+ 13
~ 9w’ 1fa2—6—,
P) = max( Ay, [Apl) <
p( ) (2 n) 1 a—1 1 <5+/‘—13
- = < —_—
32a-1" "¢ 6

Note that (5 + V13)/6 = 1.434.

Now let us compute the algebraic bounds. From Hanlon (1992) we can
obtain the values of u,(L) and uy(L) for the graph G(P), which are
(L) = 8 and py(L) = 6 (see also the Appendix). As d* = 3 and M = H(x,)
= 2, then Theorem 6.1 gives

1

and its order of magnitude is off by a factor of 1/a as o — ». As § =0 in
(67), the bound on A, is equal to —1 and so does not provide information on

.- We can also compute the Desai-Fiedler bounds. The graph G(P) has
eG = d =3, N=6 and 2¢; > d*; thus we consider the bound (66). As
H(x,) = 2, with straightforward calculatlons we get

1
TTmax = "Z_;’
1 1
Qumin = 3422,
€ = V3 — 1,
cy = \/§(1 - ij—-),
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then

Ay <1 — .
2 2a?

ExamPLE 6.2 (Random walk on S,). Let Q = {x, x,,..., x,,}. Let H be a
real-valued function such that the following hold: H(x,) = 3; H(x;) = 2, for
i=2,...,7, H(x;)=1, for i =8,...,18; H(x;) =0, for i =19,...,24. As
above, 1/T = log a. For simplicity we do not display the matrix R; in the
Appendix we give the graph underlying P. In this case the second largest
eigenvalue and the smallest one depend on the value of «. For large values of
a, the eigenvalue

N 9(a—1) +V9a® - 2a+9

12«
is arbitrarily close to 1; for values of a arbitrarily close to 1, the eigenvalue
1
/\Il -
o

is close to —1. In the Appendix we show that A, = X' for o sufficiently large,
and A, = X' for a sufficiently close to 1. For the graph underlying the
transition matrix P we have y =3, d* =6, ({=6,r* =1land m=6=1.
With arguments similar to those of Example 6.1, we obtain by = 1 and
b = 8. Therefore the obtained bounds give

A 1 !
< — —
2= 24a’
A 1 1 a—1
o> =14+ = .
min 62a—1
Hence
) . 3++/5
- — or o >
24a’ - 4 ’
p(P) (22 ) 1 a—1 3+
1-— , forl<ax<
62a—1

Note that (3 + V5)/4 = 1.309.
Also in this case the values of u,(L) and uy(L) are known and they are

mo(L) = 4 and py(L) = 12 (see the Appendix). Then Theorem 6.1 gives
Ay <1

B 3ad’

and its order of magnitude is off by a factor 1/a? as a —» «. As 0 = 0, the
bound on A_;, is equal to —1 and so does not provide information on A ;.
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" Now let us compute the Desai—Fiedler bound on A,. The graph G(P) has
ec = d* = 6, N =24 and 2¢; > d*, and thus we consider the bound (66). As
H, . =M=3and

cieq — c,d* = 12sin®(w/24),
we get

2 T
(76) Azsl—ysm (—2:1—)

These bounds are worse than the bound derived from Theorem 4.1.

The main problem with our bounds concerns the estimate of the parame-
ters in (38). In general, given the graph G(P), only the quantity d* can be
readily evaluated, while the partition function Z; can be bounded below by
the number ¢ > 1 of the points of absolute minima of the function H. On the
contrary, the parameters by, yr and m are in general difficult to calculate
except in some simple cases.

Nevertheless, calculable bounds on p(P) can be obtained by choosing a set
of paths I" with the smallest number of edges between each pair of states. In
this case Theorem 4.1 can be reformulated as follows.

THEOREM 6.2. Let P be the transition probability matrix of the Markov
chain associated with the Metropolis algorithm defined in (13). Then its
second largest eigenvalue A, satisfies the relation

_ Zy e M/T

bryrd* ’
where M = max, , . o(H(x) — H(y)) is the oscillation of the function H, and
b and y; are defined analogously as (14) and (15) for the set T".

(77) A <1

PrOOF. The proof is the same as for Theorem 4.1. O

Furthermore, the results of Theorem 4.5 are changed accordingly. For
example, Claim 1 becomes

¢ ,-m
— -M/T
(78) p(P) 1= gz ™7,

for T < Ty, where

N(A+B))_1 5 ]

T{ = min| M
(79) 1 mm[ (log by ' Tog2.

Now (78) does not give the best order of convergence to w, but it can be easily
applied, at least in some cases of irterest. Diaconis and Stroock (1991) have
some .examples in which the parameters b} and y; are explicitly evaluated.

This fact shows us that in the choice of the set of paths, in general we have
to decide between admissible paths and paths with the smallest number of
edges, with the advantages and disadvantages given above. In another paper,
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we show that neither of the Poincaré bounds and the Desai—Fiedler bounds
dominates the other in general [Ingrassia (1994)].

Finally, we compare the bounds of Theorems 6.1 and 6.2 in the case of the
d-dimensional cube. Analogous bounds can be computed for the Gibbs sam-
pler.

EXAMPLE 6.3. Let us consider a Metropolis chain on a d-dimensional cube.
Given a set of paths I" with the smallest number of edges, in bound (77) we
have d* = d, y; = d and b} = 29" L. In many cases of interest £ and M can
be directly evaluated (with 1 < £ < Z;); then bound (77) gives

(80) Ag<1-— d22d_1e-M/T.

In this case u,(L) = 2 [see, e.g., Fiedler (1973)], and Theorem 6.1 gives
2
Az S 1 - 'd"e_M/T.

Thus it is much tighter than (80), while from the Desai—Fiedler bound (68),
as e; =d and N = 2%, we have

(81) Ay <1 —2dsin®(m/2%)e ™M/,

which is even worse than (80) for large d.

NoTE 6.1. For a Metropolis chain on a d-dimensional cube, we cannot
compute the bound of Theorem 4.1 on A, in general cases. In fact the set of
paths I" depends on the definition of the function H on the set Q (i.e., on each
vertex of the cube).

6.3. A comparison between the rates of convergence of the Metropolis
algorithm and the Gibbs sampler. Recently Frigessi, Hwang, Sheu and
Di Stefano (1993) investigated the speed of weak convergence of the Metropo-
lis algorithm and the Gibbs sampler in terms of their second largest eigenval-
ues in absolute value and studied the stochastic Ising model in depth. In
particular, it is proved that the Metropolis algorithm is the best at low
temperature (and then, in this case, it is faster than the Gibbs sampler) and
the worst at high temperature (see the original paper for details).

To begin, we reformulate the Metropolis algorithm as a random local
updating dynamic on sites. As for the Gibbs sampler, first we consider the
transition probability matrix RM, relative to the site s. With the notation of
Section 5, we have

exp[ - {H(y) - H(x)} " /T]
(A L iy enemn ),
RM(x,y) ={1 _ Y  RM/(x,2z), ify=x,
ze N (x)\{x}
0, otherwise.
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Then the transition probability matrix RM relative to the random updating
of sites, for each x,y € (, is given by

1
— RM (=x,
e

1 > exp| —{H(y) — H(x)} " /T]
S| c—1

seS

RM(x,y) =
(82)

1(x,y5),

where ¢ is the cardinality of the set N,(x). As above, in this notation, the
letter R means random updating of sites.

For each s € S, the transition matrix RM, is reversible with respect to ;
thus also RM is reversible with respect to 7. Now Theorem 4.1 becomes the
following.

THEOREM 6.3. Let RM be the transition probability matrix of a random
updating dynamic based on the Metropolis algorithm. Then its second largest
eigenvalue satisfies the relation

Zr ( N
(c—1)ISI\ 2

Zr

— ____________e—m/T
bryr(c — 1)|S|

2
(83) 1- ) e/ T<r<1

ProOF. The theorem follows from Theorems 4.1 and 4.3. O

Since at low temperature the dominant eigenvalue is A,, then we have
proved that, for small values of 7', the two algorithms have the same order of
convergence e ™/T to the equilibrium distribution .

APPENDIX

Let S; be the symmetric group, let p denote any permutation of S, let
p(i, j) denote the permutation of p by exchanging i and j and let ¢(p) denote
the number of cycles in the disjoint cycle decomposition of p. Then ¢(p(i, j))
=c(p) +1

Let H: S; — R be a real-valued function defined as H(p) = ¢(p) — 1, for
each p € S, and let R;=(Ri(p,q)), ;< s, be the transition probability
matrix on S; given by

-1
(84) R/(p,q) = (g) , if pq~! is a transposition,
0, otherwise.
For a > 1, set 1/T = log «; then from (11) we have
exp[—H(p)loga] o H®P
’n-(p) - ZT,a B ZT ’

y
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where Zp , = ¥, .5, expl—H(p)log a] = Zpesfa‘H(”). Then the transition
probability matrix P, .= (P, A(p,q), ,c s, of the Metropolis algorithm be-
comes:

(g)_ L if ¢ = p(i, ) and
@ c(qg) =c(p) +1,

(85) P, (p,q) = (g)_ , if ¢ = p(i, j) and
c(q) =c(p) - 1,

1- ZP(p,r)’ ifq=p,

r#p
0, otherwise.

In particular, P, ; gives a simple random walk on S;. In Hanlon (1992) the
transition probability matrices P, ; and P, , are studied in depth.

Note A.1. For a fixed integer f, all transition probability matrices
{P, (), »1 have the same underlying graph G(P, ;). Let L; denote the Lapla-
cian matrix of G(P, ;) and {u,(L,)};_, . denote the set of eigenvalues of L.
As the graph G(P, ;) is k-regular, then the following relation holds between
the eigenvalues of L, and the eigenvalues {A{"7),_,

(86) mi(Lf) = (g)(1 - ALY,

In the following we give further details on Examples 6.1 and 6.2.

TABLE 1
Eigenvalues of P, 4

Eigenvalue Multiplicity
1 1
1
1-— 1
a
L 1 ! 3
3 o
1
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TABLE 2
Eigenvalues of Ly

Eigenvalue ' Multiplicity

0 1
3 4
6 1

CasE f=3. The transition probability matrix P, ; is given in (73). In
Table 1 we list the eigenvalues of P, ; [Hanlon (1992)]; hence A, =1 — 1/«
and A, = —1/a.

Afterwards, from (86), we immediately obtain the eigenvalues of L; (Table
2); and hence uy(Lj3) = 3 and pg(Lg) = 6.

The graph G(P,;) is given in Figure 3, where we have the following:

(c=3) x, = id;
(c=2) x,=(1,2), x3=1(1,3), x,=(2,3);
(c=1) x,=(1,2,3), x4=1(1,3,2).

1

2

s Te

FiG. 3.



386 S. INGRASSIA

A set of admissible paths is the following (for simplicity, we shall write v, j
rather than v, , ):

Y12 = €125 Y13 = €135 Y14 = €145 Y15 = €12,€255 Y16 = €145 €465
Ya1 = €215 Y23 = €21,€135 Y24 = €25,€545 Vo5 = €255 Y26 = €265
Y31 = €315 Y32 = €31,€12; Y34 = €365 €645 VY35 = €355 Y36 = €365
Ya = €q; Ya2 = €45, €525 Vi3 = €465 €63, Va5 = €455 Ya6 = €465
Y51 = €53, €315 V52 = €525 Y53 = €535 V54 = €545 Y56 = €535 €365
Y1 = €645 €415  Ye2 = €625 Ye3 = €635 Y4 = €645 Ye5 = €635 €35-

By counting, one can verify that the most traveled directed edges
(e12, €95, €31, €36, €46, €53, €43, €64) belong to three paths and thus b, = 3. Note
that the paths y,; and y3;, do not have the lowest elevation; condition (7)
holds—in fact, we have

elev(ny) _H(x) _H(y) =H1 _Hz _H3 =0<m=1.

Cask f=4. In Figure 4 we give the graph G(P,,), where we have the
following:
(c=4) =x,=id;
(=3 =x,=(,2), xg3 = (1,3), x, = (1,4), x5 = (2,3),
xg = (2,4), x, =(3,4);
(c=2 x3=01,23), x5=0,24, x,=0,34), 2x,=(34),
tp=(1,3,2), x55=01,4,2), x,=(143), x;=(24,3),
%16 = (1,2X3,4), x,;, = (1,3X2,4), x5 = (1,4X2, 3);
1) x,9=01,2,3,4), xy = (1,2,4,3), x5, = (1,3,2,4), x5 = (1,4,2,3),
x93 = (1,8,4,2), x,, =(1,4,3,2).

(c

The transition probability matrix P, , can be immediately written by (85).
Unfortunately the list of eigenvalues of P, , given in Hanlon (1992) is
incomplete since the sum of the multiplicities is 22 rather than 24. Moreover,
some of these eigenvalues are given implicitly as roots of a certain equation
. depending on «, and these eigenvalues are incorrectly given, missing a factor
6a. In fact, in the case a = 1 the roots of this equation are not in the interval
[—-1,1].
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N\

RN

YA
, Va2 N
p %’«(5’(/”/“’
/

FiG. 4. The graph G(P,,): First line, x,; second line (from left to right), x,, ..., Xy; third line,
Xgy ..., X1g; fourth line, x19,..., Xo4.

We have computed the correct spectrum of P, ,, which is given in Table 3,
where r;, r, and ry are the roots of the equation :
r3—9(a—-1)r?+ 4(5a% - 11a + 5)r

(87)
—(12a® — 50@® + 50 — 12) = 0.

For large values of «, the eigenvalue

N 9(a—1) +V9a?—-2a+9

(885 12
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TABLE 3
Eigenvalues of P, 4

Eigenvalue Multiplicity
1 1
1 1 4
2 6a
1
- — 1
a
1 1 1
2 2a
1 1 4
6 2a
1 1 1
3 3a
9(a—1) + V9a? — 2a + 9 3
12«
9(a—1) - V922 -2a+9 3
12«
rn Ty T3
6a’ 6a’ 6a 2 each

is arbitrarily close to 1; for values of a arbitrarily close to 1, the eigenvalue

1
N = ——
o
is close to — 1. In fact, for @ = 1, from (87), we obtain the eigenvalues — %, 0
and 3, while for large values of «, the eigenvalues given by (87) are smaller
than the eigenvalue X given by (88).
Afterwards, from (86), we immediately obtain the eigenvalues of L, given
in Table 4, and hence uy,(L,) = 4 and p,,(L,) = 12.
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TABLE 4
Eigenvalues of L,

Eigenvalue Multiplicity

N OO
= O K O
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