The Annals of Applied Probability
1994, Vol. 4, No. 3, 923-932

A STRONG LAW FOR THE HEIGHT OF
RANDOM BINARY PYRAMIDS!'

By Hosam M. MAHMOUD
George Washington University

By embedding in a suitable continuous-time process, we find a strong
law for h,, the height of a random binary pyramid of order n. We
show that %,/In n converges almost surely to a constant limit and we
determine that limit.

1. Introduction. Chain letters are a business practice of a pyramidal
hierarchy in which a promoter sells an initial letter carrying a certain list
containing a number of repetitions of his name. A purchaser crosses off the
name at the top of the list and adds his own name at the bottom, then tries to
sell copies of this modified letter. The process repeats recursively and at each
stage all participants in the chain letter venture compete, under certain
rules, to sell copies of their letters. Each time someone purchases a letter, he
or she must pay a certain amount of money to the seller and an equal amount
of money to the promoter. The promoter’s claim is that the scheme is quite
lucrative to all participants, a claim refuted in Gastwirth and Bhattacharya
(1984).

In some pyramid schemes, a participant cannot sell more than a certain
quota (m letters), unless the participant buys another copy of the letter.
This model can be represented as a growing m-ary tree with a nonuniform
probability model as follows. The promoter is represented by a root node
labeled 1. The nodes of the tree at any stage have a bound m on the num-
ber of children they may have (the number of children a node has as its
outdegree). At the (n + 1)st stage, a new node labeled n + 1 is adjoined to the
tree; a node with outdegree m is saturated, but a node of outdegree 2 < m
has an equal chance, like any other unsaturated node, of attracting the new
node. Thus the probability that an unsaturated node (participant) succeeds
in attracting the new node (selling a copy of the letter to a new partici-
pant) is 1/U,, where U, is the total number of unsaturated nodes after n
participants join the venture.

It is helpful to speak of the extended pyramid. This is a pyramid or tree
obtained from the original pyramid by adding to every unsaturated node one
external node. These external nodes represent the insertion positions of the
next participant in the hierarchy and they are the equally likely objects
in the growth rule. The number of external nodes added is U,. Figure 1
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Fic. 1. Extended binary pyramids of order 4 and their probabilities.

illustrates all possible binary pyramids (m = 2) of order 4; the top row of
numbers in the figure denotes the probabilities of these trees.

Although pyramids existed in the literature for over 25 years, very few
of their properties are known, except for the case of unbounded outdegree.
Trees corresponding to that latter case are known as recursive trees. There
exists quite a substantial literature on recursive trees as surveyed in Smythe
and Mahmoud (1994). By contrast, only two papers were written on pyra-
mids with bounded node outdegree [Bhattacharya and Gastwirth (1983) and
Gastwirth and Bhattacharya (1984)]. In these two papers, Markov chains
were used as a model to study the proportion of nodes of outdegree i in a
random pyramid of size n. Nodes of outdegree 0 represent the “shut-outs” or
the frustrated participants who join the venture but are unable to sell any
copies of their letters. In the language of trees, the shut-outs are the leaves of
the tree.

One reason for the difficulty in analyzing parameters in pyramids with
bounded node outdegrees is that the number of insertion positions, U,, is a
random variable, unlike its deterministic counterpart in many other well-
studied classes of random trees, such as the binary search tree [see Mahmoud
(1992), for example] and, noticeably, such as recursive trees, where simply
U, = n. This difficulty is finessed in this paper, as it suffices for our purpose
to work with probabilistic limits of U,.

In this paper we analyze the height of a random binary pyramid, or the
length of the longest root-to-leaf path in the pyramid. This parameter may
have the following significance in the legal aspect of the business venture.
Suppose a frustrated participant who is not able to reach his quota decides to
take legal action against the promoter. Lawyers involved may then want
to trace the case back to the promoter, talking first with the parent node of
the frustrated participant, and if no compromise is reached talking with
the parent of that parent and so forth, until the root is reached. The height
then represents the worst case amount of time and effort in preparing the
case (and hence of legal fees) across the whole pyramid.

The method of analysis applies in principle to all m, with the proviso U, is
explicitly characterized. The probabilistic behavior of this quantity will be
derived in the binary case from the results of Gastwirth and Bhattacharya
(1984).
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2. An associated birth-and-death process. Consider the following
birth-and-death process. An ancestor to a species is born at time # = 0. The
ancestor produces its first child after time 7,, which is distributed like EXP(1)
[the notation EXP(s) stands for a random variable following the exponential
distribution with parameter s]. A second child is born to the ancestor after
time 7, + 75, where 7,, the interbirth time, is also distributed like EXP(1)
and is independent of 7,. Immediately after the birth of the second child, the
ancestor dies. The lifetime of the ancestor L = 7, + 7, is thus a random
variable. Therefore, X(¢), the number of children born to the ancestor at time
t, is determined by randomly stopping a Poisson process with rate 1; that is,
if Z(t) represents a Poisson process with rate 1, then

Z(t), ift<L
X(t) = ‘ ‘
() {2, if t > L.

The instant a child is born, it mimics its ancestor, thus behaving according
to a (time-shifted) Poisson process with rate 1 and with the same random
stopping rule applied to its own lifetime. All members of the species are
assumed to behave independently of their parents, of other members, and
of their own birth time. The children of the ancestor are called the first
generation, their children are the second generation and so on.

The process may be represented by a family tree that grows with time.
Suppose the nth member of the species is born at time ¢, (with probability 1,
the numbers ¢, are distinct). Define a sequence of nested family trees {T,}, _;,
where T, is the family tree within the time interval

(1) t, <t <t,,q

At time ¢, some members of the species may be dead, but each living
member is in the process of producing a child. This may be thought of as if
each living member has an embryo, which may be represented by a partly
grown edge emanating out of the parent in the family tree. The remaining
time until the embryo matures into a child is, of course, still distributed like
EXP(1) by the memoryless property of the exponential distribution. Assume
that at time ¢ belonging to the interval specified in (1), the number of living
members (subsequently, the number of growing embryos) is r,. According to
the independence assumption and the memoryless property, any embryo is
equally likely to mature into a child, and the next birth [of the (n + 1)st
member] will take place after a period of time distributed (conditional on r,)
like

Qpt1 def min{el’ et er,,} A EXP(I‘"),

where each e; is an independent EXP(1) random variable, for 1 <i <r,.
Thus the sequence of family trees is recursively built according to a rule
which, at any stage, chooses' with equal probability one of the candidate
embryos for the next birth (just like the equal likelihood of unsaturated nodes
in a binary pyramid to succeed next in selling their letter). The boundary
conditions are the same, too; that is, the start of this recursive process (at
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t = 0) coincides with the basis of the inductive process of building a random
binary pyramid. Hence the sequence of family trees has the same distribution
as random binary pyramids, and r, must have the same distribution as U,
and we have the conditional relation

(2) an ., llUn A EXP(Un)

Hence it suffices to study properties of 7, to develop any parameter
concerning binary pyramids. [Extension to the m-ary case is obviously done
by considering m children, instead of just two, with interbirth times that are
EXP(1) and a stopping rule in which a parent dies immediately after giv-
ing birth to the mth child.] Our birth-and-death process is an instance of a
general stochastic process known as the Crump—Mode process, named after
Crump and Mode (1968).

Kingman (1975) developed an important result concerning B,, the time of
the first birth in the kth generation in a Crump—-Mode process. Conditioned
on the event of eternal survival of the species (a condition automatically met
in our case), the time of the first birth in generation % satisfies the strong
law:

B,

— > a.s.,
k y

where
y = sup{zlu(z) <1},
w(z) = inf{e*’p(6)|6 > 0}
and ¢(0) is a characteristic function of the process given by
X ()
E Z e—bjo ,
j=1

where b; is the birth time of the jth child of the root. However, with
probability 1, at ¢ = «, the number of children born to the ancestor is 2. Thus,
in our case,

#(0) =E[e 9] + E[e-(n*™?] = ﬁl.
(1+6)
The function
e’®(2 + 6)
0) = 2%h(0) = —————
gz( ) def € ¢( ) (1+0)2

achieves its minimum at a value 60, = 6,(z), which may be obtained by
setting the derivative to 0. One sees that 6, is a root of the quadratic
equation )

‘ 202+ (832 —1)0 + (22 — 3) = 0.

One root is always less than — 2, and is of no consequence to our purpose. The
other root is less than 0, if z > 3/2; thus, the infimum of £,(0) is reached
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at 0 =0, as £,(6) is increasing for 6 > 0. Hence for z > 3/2, inf{£,(6)16 >
0} = £,(0) = 2. On the other hand, if 0 <z < 8/2, the infimum of £,(0) is
reached at

6o = 05(2) = 3(— (32 - 1) + V(32 - 1)’ - 42(22 - 9) ).

The value of the infimum is thus £,(6,(2)), an increasing function for
0 <z <3/2. If z is negative, the function £,(0) decreases monotonically as
0 > 0 increases, and its infimum is obviously 0 (reached at «). The function
w(z) is plotted in Figure 2.

Thus y is indeed well defined by the unique value of z that solves the
equation w(z) = 1. This yields the value y = 0.405634... .

3. A strong law for the height of a pyramid. We first establish a
connection between the height of the tree and the time of birth of the nth
member of the species.

LEMMA 1.

tn
- - y=0405634... a.s.

n

ProOOF. When the growing family tree has n nodes at time ¢,, its height is
h, (possibly reached by a node indexed with less than n). So, we have

B, <t,<B, .;.

However, ¢, = 0 + EXP(U,) + EXP(U,) + -+ + EXP(U, _,), which is stochas-
tically larger than 0 + EXP(1) + EXP(2) + - + EXP(n — 1), as U, < n. Thus,
as n — o, t, - o almost surely and so must %,. Dividing throughout by 4,
and applying Kingman’s theorem, we have the result. O

We wish to determine the asymptotic behavior of ¢,. For this we first need
to develop a lower bound for U,.

#(z)

r | | | | | | 2
-4 -3 -2 -1 0 v 1 2 3

F1G. 2. The function u(z).
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LEMMA 2.
n+1
2

U, >

PROOF. A pyramid is complete if its nodes on all levels (except possibly
the last two levels) are saturated. A pyramid is leftmost complete if it is
complete and all the nodes on its last level are as far left as possible. For
example, in Figure 1 the last three pyramids (counting from the left) are
complete, but only the third and fourth pyramids are leftmost complete.

We demonstrate next that the leftmost complete pyramid of order n has
the minimum number U™" of unsaturated nodes among all the binary
pyramids of order n. To see this, assume we have a pyramid T, of order n,
with U™" unsaturated (or equivalently external) nodes. If the pyramid is
leftmost complete, we are done. Suppose the pyramid T, is complete, but
not leftmost complete. Let v be the rightmost node on the last level and let u
be the parent of the leftmost external node on the last level. There are four
cases according to whether v is the only child of its parent or not and
whether u is a leaf or not. One case cannot arise, and that is the case that v
is the only child of its parent and z has one child, for in this case if we
transfer v to become the second child of u, we obtain a pyramid with a fewer
number of unsaturated nodes, contrary to our assumption that 7, has U™"
unsaturated nodes. If v’s parent is saturated and u is a leaf, transfer both v
and its sibling to become children of u, resulting in a pyramid with the same
minimal number of unsaturated nodes. In the remaining two cases, just
transfer v to become a child of u, a transformation that does not change the
number of external nodes.

In any of the three feasible cases, if the resulting pyramid is leftmost
complete, we are done; if not, continue transferring nodes on the last level to
the left as before, filling the gaps systematically until the process becomes no
longer possible. This series of transformations produces a leftmost complete
pyramid with the fewest possible number of unsaturated nodes.

If T, is not complete to begin with, there must be an unsaturated node u
on some level before the last two. Let v be the rightmost node on the last
level. Again, there are four cases according to whether u is a leaf (or has only
one child) and whether v’s parent is saturated or not. One of these cases
cannot arise in a pyramid with U™" unsaturated nodes, and that is the case
that « has one child and v is the only child of its parent. For in this case, by
transferring v to be the second child of u, the new pyramid has fewer than
U™» a contradiction. A second case is when u is a leaf and v’s parent is
saturated. In this case transfer both v and its sibling to become children of u,
producing a pyramid with the same number of saturated nodes as T),. For the
remaining two cases, just transferring v to become a child of » will produce a
pyramid with the same number of unsaturated nodes as T),. Thus in all the
feasible cases we have a transformation of 7, into a new pyramid and the
transformation leaves the number of external nodes unchanged.
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As long as there are unsaturated nodes on levels before the last two,
continue with the transformation, resulting in pyramids with the same num-
ber of external nodes. When it is no longer possible to proceed with the
transformation, the final pyramid is complete and must have U™" unsatu-
rated nodes. Once a complete binary pyramid with U™" unsaturated nodes is
obtained, we can proceed as above to transform it into a leftmost complete
binary pyramid with U™"® unsaturated nodes. Observe also that the last
pyramid in the chain of transformations has the minimum height [log, n|
among all possible binary pyramids.

We next compute U™", In the leftmost complete pyramid of order n, let v,
be the number of leaves on the last level and let v, be the number of
unsaturated nodes on the level before last. Clearly,

(3) Yo =n — (20421 4 o 42loBznl=1y = 5 4 ] _ gllogzn],

The total number of saturated nodes on the level before last is |y, /2], and
v, = 28:=1 — | y /2| Thus,
l]nmin =v,ty,
9llog,| Y,
+ —_—
3]

It follows from (3) and the observation that 2!'°627I=1 js an integer, for all
n > 2, that

ymin n+1 .
| 2
LEMMA 3.
t, 2
- .8.
Inn V5 -1 -

ProorF. For the random variable ¢,, we have recurrence
tn = tn_ 1 + an,

and a,, as discussed in Section 2, is distributed like the minimum of U,
independent exponential random variables with parameter 1. Unwinding the
recurrence,

" Thus,
@ E[1,] = ¥ E[q,].
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As the interbirth times {a;};_, are independent, we have a similar expression
for the variance:

(5) Var[¢,] = ilVar[ a;].

By the conditional relation (2), we have

1 1
(6) E[a;,|U] = [ Var[a; U] = ﬁ}'i
Thus, the unconditional average is
(7 Ela;,,] = E[I/Uj]~
Gastwirth and Bhattacharya (1984) have shown that, as n — o,
V6 —1 6V5 — 13
E[U,] ~ n, Var[U,] ~ —g

Thus by an application of Chebychev’s inequality, we have

U, Vb -1

- 5, .

n 2

According to Lemma 2, n/U, < 2. In view of this uniform bound, the last
convergence implies convergence of all the moments of n/U,. Thus,

(8) E[1/U,] ~ E[1/U?] ~

2 4
Plugging (6) into the conditional variance formula, we get
Var[a;,,] = E[Var[a;,,U}]] + Var[E|[a;,,IUj]]
= E[1/U?] + Var[1/U}].

We conclude from (8) that, as n — o,

4 1
(9) Var[an] ~ m + O(;l—z-)
Therefore, from (4), (7) and (8) we have
n 2 2
E[t,] ~O0(1) + j§1 (‘/E EETE ~ T 1lnn,

and similarly from (5) and (9) we obtain

Var[¢,] = O(1).
A standard application of Kolmogorov’s theorem on the convergence of the
random series £, — E[¢,] = £7_ (a; — Ela;]) completes the proof. O

Combining Lemmas 1 and 3, we arrive at the main result.
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THEOREM 1. The height of a random binary pyramid satisfies
h,
N
Inn (V6 — 1)y

= 3.989120... a.s.

4. Discussion. We have determined the probabilistic behavior of the
height of a binary pyramid to be about 3.989121n n. The method used
employs a birth-and-death process with a random stopping rule, an instance
of the Crump—Mode process.

The method would also work for m-ary pyramids with higher branching
(m > 2) if we have an explicit characterization of the probabilistic behavior of
the total number of unsaturated nodes, which would be a generalization
of the estimate of Gastwirth and Bhattacharya (1984) in the binary case. As
m increases, one would expect the limiting height to come down because
nodes with outdegree between 2 and m — 1 continue to attract newcomers,
whereas their analogue in the binary case is saturated. In other words, new-
comers attracted by nodes having outdegree between 2 and m would have
been directed to deeper levels in the binary pyramid, increasing the chance of
a larger height in the binary case. When m increases without bound, the
pyramid scheme is equivalent to the uniform recursive tree, whose height has
been determined by a stochastic process similar to ours [Pittel (1993)], the
one difference being that no nodes are ever saturated; that is, each node
continues to produce children indefinitely, or no member of the species ever
dies. The process there is thus a pure birth process with no stopping. It is
shown in Pittel (1993) that A}, the height of a recursive tree of size n,
satisfies the strong law

rec
hﬂ

— e =271828... a.s.
Inn

This latter result is implied in a subtle way in Devroye (1987), who proves a
similar probabilistic law for the height of UNION-FIND trees; Pittel (1994)
makes the connection explicit by a construction that links the height of
recursive trees to the height of UNION-FIND trees.

Recursive trees provide a natural lower bound on the height of pyramids
with any bound on the outdegree. One expects the following tree to provide an
upper bound. The binary tree is a tree with n nodes and each node has no
children, one left child, one right child or two distinct children (one left and
one right). Binary trees are extended by adding the appropriate number
of external nodes to make all node outdegrees uniformly equal to 2. While a
uniform probability model on binary trees of order n produces the large
asymptotic expected height 2V7n [Flajolet and Odlyzko, (1982)], a non-
uniform model corresponding to a natural growth rule produces heights of
logarithmic order. The uniform distribution is suitable for use when the
binary trees are used as syntax trees as in the theory of compiling [Kemp
(1984)]. On the other hand, when binary trees are used as data structures
for efficient data retrieval, the appropriate model of randomness is the ran-
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dom permutation model [see Mahmoud (1992)]. This latter probability model
corresponds to choosing any external node with equal probability as the
position for the next insertion, and binary trees grown under this model are
called binary search trees. These trees and their growth rule are similar to
binary pyramids, but an important difference is that leaves in binary search
trees have two external nodes. Thus the affinity of a leaf is twice as much as
a node of outdegree 1 in binary search trees. In particular, the collection of
leaves at the deepest level in the tree will have a higher probability of
attracting the next node than their counterpart in the binary pyramid. That
is, the few leaves at the deepest level in a binary search tree attract nodes
that would have been attracted at higher levels in the pyramid, and one
expects the height A"t of a binary search tree of order n to be a bit larger
than the height of a pyramid of the same order. Indeed
bst

" - 4.31107... as.,
Inn

as proved in Pittel (1985, 1994) and Devroye (1986, 1987). Thus, the limiting
normalized height (normalized by In n) of pyramids of different branching is
sandwiched between the limiting normalized height of recursive trees and the
limiting normalized height of binary search trees.
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