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A CONSISTENT APPROACH TO LEAST SQUARES
ESTIMATION OF CORRELATION DIMENSION
IN WEAK BERNOULLI DYNAMICAL SYSTEMS

By REGIS J. SERINKO

Pennsylvania State University

A new approach to the least squares procedure for correlation dimen-
sion estimation is suggested. Consistency of the new estimator is estab-
lished for a class of dynamical systems that includes the Cantor map and
the logistic map with parameter value 4. Unlike the proofs of consistency
for other estimation procedures, no assumptions are made about the
Grassberger—Procaccia spatial correlation integral beyond the existence of
the correlation dimension.

1. Introduction. Consider a dynamical system (Q, %, u,T), where Q C
R is closed, F is the completion of the Borel o-field with respect to u and
the projections of w onto the coordinate axes have finite first moments. Let p
denote either the Euclidean or max metric on i¢. The Grassberger—Procaccia
(GP) spatial correlation integral C(r) [12], in terms of which the correlation
dimension is defined, is given by

(1) c(r) = [[_ Js(w @) du(w) du(w),

where I is the indicator of the set E and S, = {(w, ') € O X OQ: p(w, 0') <
r}. The measurability of S, with respect to the product o-field follows from
the continuity of p. Whenever the limit exists, the correlation dimension [12]
v is defined by

log C(r) .

(2) g r-0* logr
it is undefined whenever the limit fails to exist. The correlation dimension
may be used to gauge the smoothness of u over its support [7, 12]. It is also
used along with other quantities such as Hausdorff dimension, Liapunov
exponents and entropy to characterize dynamical systems. For a detailed
discussion of correlation dimension and its relation to other dimensions, see
Cutler [7].

The estimation of correlation dimension from an observed segment of an
orbit is a popular goal in experimental study of dynamical systems [2, 6, 11].

Received April 1993; revised April 1994.

AMS 1991 subject classifications. 60F99 62G99 53F11 28A80

Key words and phrases. Grassberger—Procaccia spatial correlation integral, U-statistic, frac-
tal, convergence in measure, nonlinear dynamics, chaos, itinerate process, absolutely regular.

1234

]
: Jaq
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,%:%?’)

The Annals of Applied Probability . STOR IS

Www.jstor.org
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Although there are a number of different procedures [7, 10-12, 17-19, 22] for
this estimation, all of them begin with the estimation of C(r) from a segment
of an orbit of a point w, € Q, {0, = T*(wy): k =0,1,2,...}. The standard
estimator of C(r) is the Grassberger-Procaccia empirical spatial correlation
integral [12] C,(r; w,), which is given by

n-1 n-1

Z Z IS(wz’w

(3) Co(r; wo) = PO e
i=0 j=i+

If the dynamical system is ergodic and p is the max metric, then C,(r; w,)
converges to C(r) uniformly in r a.s. u [16]. If the dynamical system satis-
fies a uniform mixing condition known as the weak Bernoulli property,
n'%(C,(r; w,) — C(r)) is asymptotically normal for each r [8-10].

The least squares procedure for estimating correlation dimension [7, 10],
which formalizes the original and the most commonly used procedure [11,
12], is considered here. The first step in this estimation procedure is to plot
log C,(r; wy) versus log r for a variety of values of r. The second step is to
identify a linear region in the plot and to fit a least squares line to the points
(log r,,log C,(r;; wy)), B =1,2,...,m, in this region. The slope of this line
0,(ry,re,...,7,; o) is the least squares estimator of v.

The motivation for this procedure comes from the observation that if C(r)
satisfies exact scaling, that is, for r sufficiently small

(4) Cc(r) =ar’,

where a is a positive constant, then for r near the origin, log C(r) is a linear
function of log r with slope ». Under this condition, if the dynamical system
is ergodic and p is the max metric, the results of [7, 16] imply that
U,(ry,ryg,..., ry; wy) converges to v a.s. u, whenever the points ry,ry,..., 7,
are sufficiently small.

However, dynamical systems that satisfy exact scaling are thought to be
atypical [7]. In fact, two often studied dynamical systems—the Cantor map
and the logistic map with parameter value 4—satisfy (2), but not (4). In the
case of the Cantor map, the GP spatial correlation integral may be written as

(5) C(r) =0b(r)r”,

where for r sufficiently small, b(r) is a bounded oscillating function which
fails to converge as r — 0 [7, 20]. In the case of the logistic map with
parameter value 4, the GP spatial correlation integral may be written as

(6) C(r) =c(r)r’,
where c(r) diverges to infinity as r — 0 and log c(r) = o(log r) [7, 12].
Whenever exact scaling is not satisfied, the functional dependence of
log C(r) on log r is nonlinear even for small r. In this case, if the dynamical
system is ergodic, then the results of [7, 16] imply that ,(ry, ry,...,7,; ®y)
converges to v(ry, ry,...,r,) a.s. u, which depends on the points ry, ry,..., 7,
to which the line is fitted. That is, the procedure is asymptotically biased. The
other procedures [17-19, 22] for estimating » are no better in this regard.
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(See [20], [7] and [17, 18] for additional discussions of this problem.)
On the other hand, Cutler [7] has shown that if r{™ =pZm*17% k=
1,2,...,m, for some 0 < ry, < 1, then the asymptotic bias

v(r{™, v, i) — v
vanishes as m — . Hence, if the dynamical system is ergodic,

lim lim 9,(r{™, r§™,...,ri"; 0)) = v as. .

m—onp-s>®
This suggests that the least squares method can be made consistent by
taking the limits as n and m go to infinity simultaneously. However, the
least squares estimator is a functional of log C,(r{™; w,), & = 1,2, ..., m, and
the convergence of log C,(r; w,) to log C(r) is not, in general, uniform in r. As
a result, the double limits cannot be taken along an arbitrary path in the mn
plane.

Paths along which the double limit can be taken are exhibited here. First,
the problem of the double limits is considered outside the context of least
squares estimation. It is shown (Theorem 1), under a set of regularity
conditions (see Section 3) on the dynamical system, which include the uni-
form mixing condition known as the weak Bernoulli property, that there
exists a sequence of reals {b,};_, [see (59)] that vanish as n goes to infinity,
such that for any other sequence of real {r,}, _, that vanish no faster than the
first,

) Culru @0) = C(ra) & o

C(ra)

as n — o, whenever the correlation dimension exists. The rate at which
{b,), - goes to zero depends on the correlation dimension and the mixing
rate. It is a nondecreasing function of the mixing rate and a decreasing
function of the correlation dimension.

Second (Theorem 3), it is shown, under the same conditions that if r, goes
to zero no faster than b,,0 <s < 1, and m, = (1 + log r,/log s), then

A 13
(8) Bu(rfme, g ) = v (r{me g, ) S 0

as n — o, where [ -] is the integer part of -. Further, the rate of convergence is
at least r, °(log r,)'/2, where 0 < 8 < 1. The above result on the asymptotic
bias [7] along with (8) leads to a consistent approach to the least squares
estimation of correlation dimension (Corollary 1).

The proofs of these results use Chebyshev’s inequality and they require an
L? bound on C,(r; wy) — C(r). This bound builds on the work of Denker and
Keller [9, 10] on the asymptotics of U-statistics for weak Bernoulli dynamical
systems.

Both the Cantor map and the logistic map with parameter value 4 are
shown to satisfy the conditions of Theorems 1 and 3.

This paper is organized as follows. Background from ergodic theory is
presented in Section 2. Section 3 contains the assumptions and preliminary
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results. The main results, Theorems 1 and 3, are established in Section 4.
Examples are presented in the final section.

2. Background from ergodic theory.

2.1. Introduction. In this section ideas and results from ergodic theory
that are used in the sequel are gathered together. This will set notation and
provide background for the uninitiated.

2.2. Partitions and the weak Bernoulli property. Throughout this paper it
will be assumed that T is an endomorphism. The results extend easily to the
case of an automorphism. Let a = {A,, A,,..., A,} and B ={By, B,,..., B,}
be finite measurable partitions of (). From these one may construct the
following partitions:

l.avB={ANB: Aca, Be B}
2. T la={T"'A: A € a}.
8. =T Nav T Vyv ... vTCsthy v T r<s, r,s €N.

Let #° denote the o-algebra generated by «f, r <s, r,s € N, and let 57
denote the smallest o-algebra which contains all of the o-algebras &°, r < s,
r, s € N. (This is sometimes denoted by «g.) A partition is called a generator
if the completion of #; with respect of pu is F.

A measureable partition o is said to be weak Bernoulli for a dynamical
system (Q,F, u, T) if

(9) Bo=suwp Y Y Iu(ANB) - pu(A)u(B)

r,seEN Aeaf Bealitk

goes to zero as k — «. The B,’s are called the mixing coefficients. A dynamical
system that has a weak Bernoulli partition will be called weak Bernoulli. The
weak Bernoulli property is a uniform mixing condition, which is known in the
stochastic processes literature as absolute regularity.

2.3. A metric isomorphism. Let (Q;, %, u;,T}), i = 1,2, be two dynamical
systems. These systems are said to be metrically isomorphic or equivalent if
there exist sets (), € Q; of full u, measure, i = 1,2 and an invertible map
6|, - Q) such that (1) ¢ Ty = Ty o ¢ on Q) and (2) u; ¢ H(E) = u,(E) for
all measurable E C Q). (See, e.g. [15], page 4].

A condition under which a given dynamical system is equivalent to a shift

dynamical system is considered. Let 3 ={1,2,...,m}N. A point in 3 is a
one-sided sequence of the first m integers, that is, if a € 3,
(10) a=aya,ay **, a, €{1,2,...,m}, k € N.

Let ¢,1Q — 3 be defined by
(11) [do(@)], =) fT®(w) €A,
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J=1,2,...,m, k € N. The left-shift o is an endomorphism of 3 defined by

(12) [o(a)],=ar, kEN.
It is an immediate consequence of (11) and (12) that
(13) ¢, °T=00°¢,.

This map induces a probability structure on 3 as follows. A cylinder set
Z(8; Jos J1s---5J,) On 3 is given by

(14) B(S;JosJ1s-ndy) ={@a €3:a,,,=Jj,; k=0,1,2,...,r},
Jr€1{1,2,...,m}, ¥ =0,1,2,...,r, and r,s € N. We denote by &/*° the
o-algebra generated by all cylinders of the above form, r, s € N, whereas &

will denote the smallest o-algebra that contains all of these o-algebras. A
measure v is defined on & by

(15)  »(Z(s5do,d1s--50p)) = w(TCVA;, N TC"PA; N N T4 ).
(This measure does not appear outside of this section. Hence no confusion

with correlation dimension should occur.) Two immediate consequences of
these definitions are

(16) b ' =F5 cF
and
(17) v=pdt.

The following proposition gives a necessary and sufficient condition for ¢, to
be a metric isomorphism. Both of the examples considered here satisfy its
conditions.

PrOPOSITION 1. For a dynamical system (Q, %, u,T), where € is a com-
plete separable metric space and F is the completion of the Borel o-field with
respect to u, ¢, is a metric isomorphism if and only if a is a generator.

The proof of this result, which is omitted, can be found in [15], pages
16-17, 274. _

2.4. The itinerate process. The considerations of the last subsection allow
one to connect the dynamics of (Q,%, u,T) to the time evolution of a
stationary stochastic process. Suppose that « is a weak Bernoulli generator
for (Q, 7, u, T). Let

(18) G(@) = [¢u(@)],,

k=0,1,2,..., o< Q. The sequence {,, {;,{,,... is a stationary stochastic
process, called variously the itinerate process or the label process, defined on
the probability space (Q, %, u) with state space {1,2, 3, ..., m} and marginals
given in (15). A sample path ¢ of the process is a random element of 3, given
by

(19) {() = {o(w) (@) fa(w) - .
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As a consequence of the definition of &°, ¢, '% = F°. Therefore, 7° is the
o-field generated by ¢, ¢, 1,---, (s, 7 < 8.

Some additional notation that will make later manipulations clearer is
introduced. Because ¢, is a metric isomorphism, ¢;' exists a.s. v. Let

(20) Xo(&) =:'(¢) as.v.

One has X ({(w)) = w a.s. u. Next let

(21) X;(£) =TO(X(L)) =Xo(c(¢)) as.v,

j=1,2,.... The second equality is a consequence of (13). This notation

emphasizes the fact that points of Q) are functionals of the sample paths of a
stationary stochastic process.

Because « is weak Bernoulli for the dynamical system, the process ¢,
¢y,... is absolutely regular. However, the process X,({), X;({),... is not
absolutely regular because it is a functional of the entire sample path. An
approximation to this latter sequence that is absolutely regular will be
needed below. It is given by

(22) X}l)(é}’g}+1,~.., J+l)=E[XJ(§)|aj’+l],
where for any f € L'(w),

i+11 —
(23) E[flaj*] Aeialm M(A)ffdﬂ

The expectation on the right-hand side of (22) is finite because u has finite
first moment. The sequence X", X{",... is absolutely regular because each
term in the sequence is a functional of a finite segment of the sample path.
For a complete discussion of this type of approximation, see [4], Section 20.

3. Preliminary results. The main theorem requires a bound on ||C,(r)
— C(M2, where |- |l is the L2(w)-norm. It will be slightly easier to work
with
n—-1n-1

(24) Cirio) = & o0, 0)

i=0 j=0
in place of C,(r; w,). This is possible because
(25) [Ca(r5 wp) = Ch(r5 )] = O(n71).
Henceforth, the prime will be dropped; no confusion should result. The first
step in obtaining this L? bound is the following decomposition from the
theory of U-statistics [14], first introduced in this context by Denker and
Keller [10]. One writes,

1 n-1n-1

C.(r;wg) = w2 Z Z Isr(wi, @

i=0 j=0

—C(r)+—2[ (B,(w;)) = C(r)] + R, (r; @),

(26)
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where

Rn(r.wO)
CD LYY [00) - w(Bw)) - u(Bi(w) + Lo(a, )]

i=0 j=0

and B,(0) = {0’ € Q: p(, ©) < r}. As a consequence of the measurability of
S, and Fubini’s theorem ([5], page 234), u(B,()) is a measurable function.
Bounds are obtained separately for the main term and the remainder.

The assumptions used in establishing these bounds are collected together.
Let

(28) nO(r) =| w(B.(X;)) — u(BAX))];»
(29) yO(r) =] Is( X0 X;) = I (X0, XO)|,

j=0,1,2,..., k=i — jl. That n© does not depend on j and " depends
on |i — j| are consequences of stationarity. Let 7’ = sup, n”(r) and ¥ =
Supr l/llgl)(r)'

AssUMPTION 1. (Q,.%, u, T) has a weak Bernoulli generator «.

AssumPTION 2. (Q,%, u,T) is such that the mixing coefficients satisfy
B2/@*+® = O(k~1+9) for some § > 0and 0 < € < 1.

ASSUMPTION 3. (Q, %, u, T) is such that 5®"* = o(1~@*") for some y > 0
such that y/(1 + y) > e.

AssuMPTION 4. (Q,%, u,T) is such that for any sequence of reals {c,}, _,
satisfying lim, _, ., ¢, = % and ¢, = o(n'/2), one has

n—1
Y g = o(n'?).

k=0
The first result is an adaptation of a result due to Denker and Keller [10].

PropOSITION 2 (Denker and Keller [10]). Suppose that (Q, 7, u, T) satis-
fies Assumptions 1 through 4. Then
(30) IR, (r; )z =o(n™1/2)

uniformly in r.

ProoF. Let RV denote the functional obtained from R, by replacing o,
with X, i =0,1,2... . The triangle inequality for L?>-norms gives

n—1

1/2 2 1/2
(B IR(r5) e < IBP(r3 )l + 2007 (r) + — Z o (r)
k=



CORRELATION DIMENSION ESTIMATION 1241

for any [ = 1,2,.... Assumptions 1 and 2 along with Proposition 2 of [9] as
modified in [10] give

(32) IRO(r; )y < Tin~1*</2,

where I is a positive constant that does not depend on r. Next let [ = ¢, =
[n'/27%], where A > €/2 and [-] is the integer part. Then

(33) IRG(r;)llz = o(n™1/%)
uniformly in r. On the other hand, Assumption 4 gives
34 2 nil (cn)/? 2 ni"(c e -1/2

— n < — n =

(34) nk=0¢’k (r) < nk=0¢k o(n )>

while Assumption 3 yields

(35) ¥ (r) < HwV? = o(n~AHN/2-0),

If A < y/(2Q1 + vy)), then

(36) 7 (r) = o(n"172)

uniformly in r. The bounds (31), (33), (34), and (36) lead to (30). This

completes the proof. O

An L? bound for the main term in (26) is obtained through the following
two lemmas. The first is a modification of Lemma 1 in [4], page 170, Section
20 which holds for ¢-mixing processes. Alternatives to the bound given in
Lemma 1 may be obtained by exploiting the fact that an absolutely regular
stochastic process is strong mixing. (This use of strong mixing should not be
confused with its use in ergodic theory.) See [3] and references therein for
these alternatives.

LEMMA 1. Suppose that (O, 7, u, T) satisfies Assumption 1, ¢ is measur-
able ¥} and m is measurable Fy,,. Then suplél <1 a.s. EYInl"] < oo,
l<r<wands=r/(r—1) implies

(37) [E[ ¢&n] - E[ £ 1E[9]l < 2V/'8;°EV"[Inl"].

Proor. Simple functions are dense in L7, 1 < g < «; see, for example, [1],
page 88. Hence without loss of generality one may assume that

(38) n= ZuilAl’
i

(39) £= Lol
J
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where {A;} and (B} are finite partitions of Q that are measurable F; and
Fo1» respectively. Under this assumption Hélder’s inequality gives

[E[ én] — E[ £ ]E[]]

Youn(A)Y"
i

w(A)"" L[ w(BjlA;) - M(Bf)]H

s]l/s

(40)

<EY[Inl']

Y~ u(A)| Zo,| u(BlA;) - u(B))]

It will suffice to show

(41) Z,“«( Ay)

8

< 25/7B,.

v w(BjlA;) - u(By)]

For each i, Hélder’s inequality gives

IZUJ[ w(Bj1A;) = u(B;)]

s

(42) o/
< [;Ivjlslﬂ’(leAi) - /“(Bj)l] %:W(Bj'Ai) - ﬂ(Bj)|]
Further,
(43) Llvl"lu(BjlA;) — u(B)l < Lln(BlA;) - u(B))l
and J J
(44) [ZI w(BjlA;) - P«(BJ)I]S/r <2/,
Therefore, J
‘L:.M(Ai) %:Uj[ w(Bj1A;) = u(B;)] s
(45) <2%/7 Xi;#( A) %jl u(B;lA;) — u(B;)l

< 2%/7B,,

where the last inequality comes from the fact that the dynamical system is
weak Bernoulli. This completes the proof. O

Let
(46) m;(r;) = u(B.(X;(£))),
(47) m{(r; ) = B[m,(r;)laj™],

(48) AD(r) =llm;(r;-) — mP(r;-)3
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and
—_ 1/2
(49) 0, = V2 B}y j5y + 4D/,

where AO = sup, AX(r), j,k =0,1,2,.... A(r) does not depend on j as a
consequence of stationarity.

LeEMMA 2. Suppose that (Q,F, u, T) satisfies Assumption 1. Then
(50) [E[mo(r;-)my(r;)] = E[mo(r;)|E[m,(r; )]l < 6,C7*(r),
E=0,1,2,....

Proor. The triangle inequality gives
|E[mo(r;-)ymy(r;)] - E[mo("§')]E[mk(";‘)]|
<|B[mP(r;ymP(r; )] = E[mQ(r; )| E[mP(r; )]
(51) +|E[m{(r; ) (ma(rs) = mP(r;9)]]
+|E[mP(r; ) (mo(rs7) = m@(r;)]|
+|E[(mo(r37) = mP(r;))(malr; ) = mP(r3)]],

where E[m{(r;-)] = E[m,(r;-)] has been used, ¢ =0,1,2,..., [ =12,
3,... . Several applications of Holder’s inequality give

|E[mo(rs ) ma(r; )] = E[mo(r; )]E[m,(r; )]
(52) <|E[m@(r; ymP(r;)] — E[mP(r; )|E[mP(r; )]
+ 2EV2[(m(r; )| A0 (r) + 4O(r).
Note that 0 < m{)(r;-) < 1 implies m{(r;-)* < m{(r;-). Therefore,
A R P
= EI/Z[E[mO(r; -)Ia(l,]]
= EV2[mo(r;)]
= CY2(r).
Further, the triangle inequality for L2-norms leads to

(54) A0V (r) = BV2[(mo(r;7) — m@(r3 )] < 2BV2[(mo(r5))"]-

(53)

Therefore,
|E[mqo(r;-)ym(r;)] - E[m,(r; ) |E[my(r;)]]
(55) <|E[mP(r;)ymP(r;)] - E[mQ(r; )| E[mP(r; ]|
+ MO (P CV2(r).
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If I = [k/3], then Lemma 1 with r = s = 2 gives
lE[m%"’/3])(r;-)m%"’/:ﬂ)(r;-)] — E[m%k/3])(r;-)]E[m%k/m)(r;-)]|
< V2B 5 CA(r).
Equation (49) and bounds (55) and (56) lead to
(57)  [E[mo(r;)my(r;-)] — E[mo(r;)JE[m,(r;)]| < 6,C2(r).
This completes the proof. O

(56)

4. The main results. To state the main theorems, let

n—1
(58) /\n = Z Ok’
k=1
where 6, is defined in (49) and
A 2/(3(v+&p)) 1 1/2(v+ &)
(59) bn=max{(~—n) ,(—) },
n n

where ¢, &; > 0.

THEOREM 1. If (Q,%, u,T) satisfies Assumptions 1 through 4, then when-
ever v exists,

(60) limr,=0
n—ow
and
b
(61) lim sup — < o
now Iy
imply
Co(ry; w9) = C(ry) &
62 0
© ey
asn — o,

ProOF. It must be shown that for any ¢ > 0,

. Cn(rn;wo)_c(rn) > & _
S N

whenever the sequence {r,} satisfies (60) and (61). For n sufficiently large,
Chebyshev’s inequality gives the bound

{w.qvﬁ%)—am>>6H<nqvﬁo—amw%
' C(ra) T ey

It suffices to show that the right-hand side of the above inequality vanishes
as n — o under the conditions of this theorem.

(63) lim w

n— o

(64)
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To this end, note that (26) and the definition of m (r;-) give
2

2n-1
“Cn(rn;') - C(rn)”% =“; —ZO [mi(rn;') - C(rn)] +Rn(rn;')

2

n—1 2
(65) < 2T (mira) — €| + 1Ru(ras )
L 2
2 n—1
+ 2| — Z [mi(rn;') _C(rn)] ”Rn(rn;')llz’
ni-o 2

where the inequality comes from expanding the square in the norm and an
application of Holder’s inequality. Under Assumptions 1 through 4, Proposi-
tion 2 holds. Therefore,

(66) IR, (r,; )3 =o(n ).

Note that C(r) = E[m(r;-)]. Hence,

2

2 n— 1
(67) '_ Z [mi(rn;') _C(rn)]
ni-o 2
is the variance of a sum of a stationary process and one may write

2
2

2 n-1
7 L Imi(rs) =€)

4
(68) < —lmo(rs3) = C(r)l3

n—

1
Zl [E[mo(rn; Ymy(ry; )]

k=
—E[mO(rn; )]E[mk(rn; ')]] *
It follows from an expansion of the square in the norm and inequality (53)
that

(69) Imo(ra;-) = C(ru)lz < C(r,)(1 = C(ry))-
Lemma 2, which holds under Assumption 1, gives

1n-1
~E [Bma(raiyma(r259] = Elma(ras B m i ]

4
+ —
n

(70)

n—1

Ay
<— X 6,CV%(r,) = —CV*(r,).
n .1 n
It follows from this series of inequalities that

41,
IC,(7037) = C(ra)llz < —=C2(r,)(1 + 0(1)) +o(n™")

(71) AN 1/2
+ TnCl/z(rn)(l +0(1))o(n1)
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It suffices to show

A
(72) lim —C~%2%(r,) =0
n-ow N
and
(73) lim n~'C~2%(r,) = 0.

Given € > 0, the definition of correlation dimension, (2), implies C(r) =
o(r*"¢) and r**< = o(C(r)). Therefore, (72) and (73) are satisfied if

A
(74) lim sup —f(r,’[*sO)_3/2 <o
n—oow
and
(75) limsupn~!(r}*e) 2 < w,
n—-o

for some £, > 0 and &, > 0. These are an immediate consequence of (59) and
(61). This completes the proof. O

The modification of the least squares method of estimating the correlation
dimension is now considered. It can be shown [7] that this estimator is given
by

(76) U(r; wg) = v+ d(r) + €,(r; ),
where d is the asymptotic bias, which is given by
m
(77) d(r) = Y (v(r;) - 0)(x; — X)/S,.,
i=1

and €,(r; w,) is the random error, which is given by

(18)  ex(rimy) = 3, (log Cy(ri; wp) — log C(r))(x; — £)/Surs

i=1
and
(79) r=(r,,ry,rsy.c.srn),
(80) x; =logr,
1 m
(81) Xx=— Z X,
mi-1
(82) v(r) =logC(r) —vlogr,
: Lo
(83) 7= Lo,
(84) Sie= L (% - %)
i=1

The components of r give the points (log r,,log C,(r;,, wy)), & = 1,2,...,m, to
which the least squares line is fitted.
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Note that exact scaling implies that v(r) is a constant. Therefore, under
exact scaling, if the components of r are sufficiently small, there is no
asymptotic bias, that is, d(r) = 0. If exact scaling is not satisfied, then, in
general, there will be an asymptotic bias. The next result shows that this bias
can be made to vanish, if the entire orbit of the system is available.

THEOREM 2 (Cutler [7]). Forany 0 <s<1,ry>0andm =1,
(85) rm — (szm—[m]ro’ szm—[m]+1r0’ szm_[m]+2r0,..., s2m—1r0) e Riml,
where [] is the integer part of -, implies

(86) lim d(r™) = 0.

m— o

In fact, this is a slight generalization of Cutler’s [7] result. There the case
of integer m is considered. However, the proof with noninteger m is nearly
identical to the proof with integer m. Therefore, it is omitted.

For any 0 <s < 1and r, > 0, let

87 1 1_i_logrn
(87) Mn T g logs |

THEOREM 3. If (Q,%, u, T) satisfies Assumptions 1 through 4, then when-
ever v exists, 8§ < min{3¢, &,},

(88) limr, =0
n—o o

and

. b,
(89) limsup — <

n—o rn
imply
(90) ry3(log r,) "% €,(r™; wg) Lo
as n — o,

ProOOF. Define

_\2
(91) Sx,,,xn = (xn,j - xn) ’
Jj=1
1 [m,]
92) X, = Y x,
( o me] S
(93) r{mn) = g2makp

(94) X, =logri™, k=12,...,[m,]
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Then
[m,]
&(r"; wp) = (log Co(rf™?; wo) — log C(r}”‘")))
(95) j=1

><("‘:n.j - ’—Cn)/sxn,xn‘
The Cauchy-Schwarz inequality gives

[mn] 1/2
(96) e, (r™; )l < ( Yy (log Cn(r}’"">;w0) — log C(r}’"n’))z) S;12.
J=1
However,
(m,] m,] +1\°
S, P CALEY
(97) !
1
= -5 (logs)([m,]([m,] + 1)([m,] - 1)).
Therefore,
(98) Ie(r("‘"); wo)l < A ( wO)O(m;1/2),
where
(99) A,(wg) = max [ogC, (r‘”‘n’, wo) — log C(r}'"”)l.

1<j<lm,]

As m, = O(log r,), it suffices to show, for any £ > 0, that
(100) lim p({wo: 4,(we) > rle}) =0
n—-o

as n — «. To this end, note that subadditivity gives

[m,]
(101) m({wo: A,(wo) > rle}) < '§1 M({woz A, i(wy) > r,fa}),

where

C
log—L—"_22

Ca(r"™; @0)
Cc(r™) |

(102) An,j(wO) =

Chebyshev’s inequality leads to

”Cn r(m");' — C(rimn ”2
(103)  pf{wo: A, (@) > rle}) < = C(r})mﬂ)zi ) =
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where &, = 1 — 1/cosh re. This yields

[m,]

p,({woz A (wg) > r,fa}) < ';1 /.L({wOZ A, (@) > r,‘fa})

[m,] ||Cn(r}mn>; ) - C(r}’""))llg

<
o praa) o
(mp)e .y — (m)))|2
< tma] max 10") - SO
1sj<[m,] C(r}mn)) z,

It follows from inequality (71), &, = r2%2(1 + o(1)) and the definition of r{™»,
k=12,...,[m,], that

) e 1G5 = ()

1<j<lm,] C(rj(m"))2§n

< [m,]ry2%2(1 + o(1))

105)
( X { 4:” c(rim) (1 + o(1)) + C(r{™) *o(n™Y)

1/2
+(4’:n C(rim) 21 + 0(1))C(r§m"))—2o(n‘1)) }

The definition of m, (87) gives r{™» = r, and [m,] = O(log r,,). Therefore, it
suffices to show that

-25
r,“°logr,A,

(106) lim c(r,) =0
n—ow
and
r;2810g rn -2

The definition of correlation dimension (2) implies that for any £’ > 0,
lim, , o+(r**¢'/C(r)) = 0. Take &' < min{e, — 8, &; — 8}. Therefore, in light
of (74) and (75), (106) and (107) are satisfied because 8 < min{2 ¢, £,} implies

(108) liminf(log r, ) r3/2Xeo=(4/3d-€) = @
n— o

and

(109) lirrlxii;lf(log ry)riemime) =0,

This completes the proof. O
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Under the conditions of Theorem 3,
o
(x5 ) — v =d(x™) + €,(r"; w,) = 0

as n — », To make practical use of this, an explicit form for r, is needed. One
choice is r, = b,. However b, is a function of v and the, in general, unknown
A,. Consequently, this choice does not result in a statistic. The next corollary
addresses this problem.

COROLLARY 1. If (O, %, u, T) satisfies Assumptions 1 through 4, Q c R,
A, = 0Q) and r, = n~Y/%d* <) for some €, > 0, then ¥,(r™"; w,) is consis-

tent for v.

Proor. It suffices to show that if

(110) r, = n"1/2d+e)
then

by
(111) lim sup — < .

n—ox rn

The definition of 4, (59) and A, = O(1) give
(112) b, = n~1/20+e0),

The assumption O € R? implies v < d [7]. Therefore, b, < r,. This completes
the proof. O

5. Examples. It is shown that both the Cantor map and the logistic map
with parameter value 4 satisfy Assumptions 1 through 4. Further, in both of
these examples, Q) = [0,1] € R and A, = O(1). Therefore, Corollary 1 gives a
consistent estimator in these systems. Other specific examples that satisfy
these assumptions may be found in [10], whereas a class of dynamical
systems, which satisfy the assumptions, are given in [13].

ExAMPLE 1 (The Cantor map). Consider the dynamical system (Q,#, u, T),
where Q = [0, 1], & is the completion of the Borel o-field with respect to u,
the Cantor distribution (see [1], page 77), and T'(w) = 3w mod 1. The correla-
tion dimension of u is log2/log 3 [7].

Assumptions 1 and 2. The partition a = {(0, 3],(3, 2],(2, 1]} is a generator,
because #; is the o-field generated by the triadic rational intervals, which is
just a Borel o-field. The definition of u gives

(113) w(A N B) — u(A)u(B) =0

for A€ o) and B€ o}, r<s,k=1,2,....Hence a is weak Bernoulli for
the dynamical system with B, = 0if £ > 1. In fact, this is a stronger property
known as the Bernoulli property.
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Assumption 3. Jensen’s inequality gives

nO(r) =| u(B.(X0)) - u(B.(XP))]

(114) = foXQ(Is,(w" Xo(0)) — Is (0, XP(0))) dp(w') du(w)
< X :U’(A)f sup |Is(w w)—IS(w 0" ) du(w').
Acal Qw, 0w €A

The fact that the square quantity in the second line is either 0 or 1 has been

used. A € o/ is a subinterval of [0, 1]. Therefore,

(115) Y sup IIS(w w)—IS(w o")| < VIB(w),

Aeal w, w" €A

where V 8f, flla,b] - R, denotes the total variation of f. It is easily verified
that V (I)I}_—;r(w!) < 2 and w(A) = 1/2!, A € a/. Therefore,

(116) nO(r) < 214
Hence,

SOV _ -y
(117) 7" = o(1-0+7)
for any y > 0.

Assumption 4. A bound is found for :{"(r). Recall that

(118) 4(r) = [ (Is(Xo(w), Ky(0)) = Ls (X (), X{(@)))" dus(w).
Therefore,
YP(r)y < X Vaplw(ANT*B) — u(A)u(B)

(119) A,Bea}
+ X Vigu(A)u(B),
A,Bea}
where
(120) Vig = sup |Ig(z) —Is(2")l.
2,2’ €AXB

One may easily verify that

_[1, fAnNnB+r+JorANB-r+J,
(121) VAB_{O, otherwise,

where B + r ={y € R: y =x + r; x € B}. The number of pairs of sets in the
partition o} for which V,; is nonzero is no more than four times the number
of sets in the partition. To see this, consider the sets

(122) L,={(x,9) €QxQ:y=x+r},
(123) Vi,={(x,y) € Q X Q: x = sup A},
(124) H,={(x,y) € QX Q:y=supA}.
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The quantity V, 5 = 1 if and only if one of the following hold:

[L,NnV,]NAXB=+(,
[L,nHzy] nA X B+,
[L.NnV,]NnA XB +,

[L.LNHy] NAXB +@.
However, each of the intersections in brackets contains at most one point.
Therefore, the number of pairs of sets such that V, 5 = 1 is no more than four

times the number of sets in the partition. The number of sets of nonzero
measure in the partition is 2!. Hence (119) gives

(125) YiO(r) < B, +4 x 271 =221

k > I. Therefore, for any sequence of reals {c,);_, satisfying lim, ¢, = ©
and ¢, = o(n1/2) one has

n— [c,] "
Z1_ DVE Z l,b(c IR Zl @,5“"’1/2
k=0 =0 E=[c,]+1
(126)
<2([c,] +1) + ((n=1) = ([c,] + 1))(2)1/2(1‘[0n1)
=of nl/z).

Consistency. It is shown that A, = £7Z16, = O(1) and, therefore, the corol-
lary to Theorem 3 applies. The coefficient 6, is considered. Because g8, = 0 if
k>1,

(127) 6, = 4ALR/2D?,
Further,

AD(r) = | w(B.(X)) - E[ w(B,(X))lal]

IA

Y ;L(A)(esssup,u(B (X)) - essmf,u,(B (X)))2
(128) Acap

<Y p,(A)f sup s(w,0') ~Is (0, 0") du(o)
Acal Qo' 0" €A
521—1,

where the last inequality follows from the same reasoning that led to (116)
Consequently, Corollary 1 gives that the least squares estimator with r,
n~1/24%20) ig consistent for v.

ExAMPLE 2 (The logistic). Consider the dynamical system (Q,%, u,T),
where ) = [0, 1]. & is the completion of the Borel o-field with respect to u,
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which is given by

1 do
(129) r(E) = ;IEW,
E € &, and

(130) T(w) =40(1 - w)
is the logistic with parameter 4. u has correlation dimension 1 [12, 7].
Assumptions 1 and 2. The map ®|Q — Q, given by

(131) P(w) = %sin'l(\/_t;),

first introduced by Ulam and von Neumann [21], is a metric isomorphism
between the original dynamical system and (Q', 77, A, S), where Q' = (0, 1],
F'is the completion of the Borel o-field with respect to the Lebesgue measure
A and S(w) = 2w mod 1. S is the dyadic map of the interval. It is discussed
at length in [5]. The partition « = {(0, 1],(3, 1]} is a generator for the second
dynamical system for which
(132) [M(ANB)—-AMAANB)I=0
if A€ ki and B € k[}, r <s, k > 1. Therefore, the partition o is a weak
Bernoulli generator, with B, = 0 if £ > 1, for the dyadic map. Because ® is a
metric isomorphism, the partition a = ® % ={(0,3],(3,1]} is a weak
Bernoulli generator for the original dynamical system, with 8, = 0 if & > 1.
Therefore, Assumptions 1 and 2 are satisfied.

Assumptions 3 and 4. Note that
(133) u(A) = p®~1(B) = A(B) = 27,
where A € @)/ and B = ®A € k{, and that the number of partitions of
nonzero measure in « is the same as in «/}, which is 2. This observation
and the arguments in the previous example show that this dynamical system
satisfies Assumptions 3 and 4.

Consistency. The same arguments used in Example 1 yield A, = O(1).
Therefore, the least squares estimator with r, = n~1/21%%0) ig consistent for
V.
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