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PHASE TRANSITION IN A LOAD SHARING LOSS MODEL

BY VADIM MALYSHEV AND PHILIPPE ROBERT
Moscow State University and INRIA

In this paper we analyze the following loss network: When a customer
arrives at a node of the network, it is served by this node if the node is not
occupied; otherwise it is transmitted to some empty node where it will be
served at a different rate. For the simplest systems of this type with a
very large number of nodes and with global sharing, we show the exis-
tence of second order phase transitions and present explicit formulas for
probability characteristics. For local sharing, we study the case of an
infinite network and present some convergence results. Formulas for
small and large loads are obtained.

1. Introduction. We consider a finite set of A of nodes of a (large)
network such that for x € A there is a Poisson arrival stream, called the
x-stream. These streams are independent and have a constant rate A. A
customer of the x-stream arriving at time ¢ is served at x if this node is
empty. Otherwise, depending on the assignment policy chosen, the customer
can be either lost or dispatched to another empty node. The service of a
customer from the x-stream and served at node y is exponentially dis-
tributed with parameter u(x, y) # 0. If all the possible servers are busy, then
the customer is lost. Let % denote the policy chosen to assign (or discard) the
customers who arrive at an occupied node. Let us give some examples of
possible choices for the policy Z.

Independent policy. A customer who finds his server busy is discarded
and w(x, x) = u. This means that we have independent nodes. The loss
probability here is

A

(1) A

which is the simplest case of Erlang’s formula.

Local sharing—processes with local interaction. If all A’s belong to some
countable metric space . with the distance p(x, y), local sharing means that
a customer arriving at x is lost if p(x, y) > d for all empty sites y. Then we
have a process with local interaction in the standard sense. A customer can

be served only in the vicinity of its arrival node.
Global sharing. 1If all nodes are available for any stream, then we say

that sharing is global. In particular a customer is lost only if all the servers
are busy. In this case, for most of our results, we do not need to specify the
particular rule used to allocate the customers who do not find an empty site.
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If we think of the nodes as the routes of a network, using a policy %#
amounts to saying that a customer who finds a busy route may be rerouted,
that is, another route may be offered to him. Usually rerouting implies an
increased occupancy of the network; instead of using one node, the rerouted
customer will occupy at least two nodes (alternative route) with the same
service rate (see [3], Section 4.3, and the references contained therein for a
complete survey of these problems). Here, the situation is quite different: The
rerouted customer will occupy another route but will be served at a different
rate (smaller in general). The cost of a rerouted customer is a longer service
for this customer, hence, a larger load for the network.

In this paper we are interested in two kinds of behavior of this network:

1. The convergence to a thermodynamic limit, that is, the limit of the
stationary measures when the size of the network tends to infinity.

2. The behavior after the thermodynamic limit, that is, the analysis of a
network with an infinite number of nodes.

Throughout this paper, we assume that there are two possible values for
the service rates of the customers who are not discarded: one for the cus-
tomers who arrive in an empty site (the directly routed customers) and one
for the others (alternatively routed customers). In Section 2 we analyze this
network with the global sharing policy. When the size of the network goes to
infinity, we prove convergence results for the stationary number of directly
(resp. alternatively) routed customers. In particular, for some values of the
parameters, it is shown that when the size of the network gets large, the
alternatively routed customers will saturate the network. However, even in
this case, we prove that the stationary loss probability converges to a
quantity which is less than 1 and, moreover, the number of idle nodes
converges in distribution to a geometrically distributed random variable. As a
consequence, we obtain the condition under which rerouting is worthwhile to
minimize the loss probability of this network. In Section 3 we consider an
infinite network on Z for which is a customer is assigned to the first empty
place on the right of its arriving node (the arrival node included). This process
may be described as an infinite particle system with a long range interaction.
We give the conditions under which it is possible to construct such a process
and analyze its asymptotic behavior when time goes to infinity. Section 4 is
devoted to the local sharing policy which is the model analyzed in Section 3,
but with a local interaction: A customer is lost if it cannot find an empty place
among the d nodes on the right of its arrival node. For this process we derive
asymptotic expansions of the loss probabilities, taking the arrival rate and
the service rates as variables. Finally we conclude with some open problems
concerning these networks.

We will denote by é*(x), x € A,0 <t < +o, the corresponding continuous
time homogeneous Markov process with the state space ", where & consists
of 0 and of the set {1,2} if there are two possible values for u(x, y). So we will
have ¢,(y) = 0 if the node y is empty at time ¢ and ¢,(y) = 1 [resp. 2] if the
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node y is occupied by a directly [resp. alternatively] routed customer at time
t. We put

pl{\(sA) =PA(§tA(x) =sx’x€A) with SAz(sx)xEA’
where s, is equal to 0, 1 or 2. Let #* be the corresponding stationary
probability. For any A C A we define the correlation functions p(s,) =
p(A;s4) = PME(x) =s,, x €A). We denote by g, the stationary loss
probability of an arriving customer for the network defined by u,, u, and by
Z.

2. Global sharing. Let N = |A| be the number of nodes of the network
and n (resp. {*) the number of directly routed customers (resp. alternatively
routed customers) at time ¢ in A, and let n, (resp. {,) be the corresponding
random variables in the stationary state. Let us begin with a well known

result (see [7]).

THEOREM 1. Under global sharing, if w, = u,, then, in distribution,

1 N- +» 1: ifP> 1:
(2) N(TIA_F{A)——_—_)p:{p’ ifpSl,

with p = A/ u,. Moreover, the following limit exists:

1
N- +o 1-—, ifp>1,
(3) gy —>q= p

0, if p<1.

So p is the proportion of the busy servers. This means that q (resp. p) as a
function of p, is continuous but not differentiable at the critical point p, = 1.
In other words, we have a phase transition of the second kind.

ProOF. In this case it is easy to see that the number of occupied buffers at
time ¢, n} + ¢/, is a Markov chain. The expression for the stationary proba-
bility of this Markov chain is given by

. _ 0; o2 INJ
(4) (S s ey s SR Al bl Bt

It is straightforward to get (2) and also (3) [as ¢ = #w{N} from (4)]. O

We get a similar picture for the case u, # u,.
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THEOREM 2. Under global sharing, if u, # u,, then, in distribution,

A A2
5) Lz 2rn | VA F A+ Ay =07 (y = Ny +2) + 47 )
N A SA ifl.l«2>/\,
(0,1), if 1y < A,

and when A > u,, the number of idle servers converges in distribution to a
geometric random variable with parameter p,/A. In particular, the loss
probability converges as N - + and

0, > A,
(6) lim ¢, = { Ha

No + 1= /A, pe<aA

PrOOF. It is easy to verify that the pair (»*/N, {*/N) is a Markov chain
with the state space [0, 1]? and values in &y ={(k/N,l/N) |k +1<N} Its
generator (), is defined by

O (F)(%,5) =AN(1 —x —y)(f(x + 1/N,y) = f(x%,9))Lerycny
+AN(x +y)(f(x, 5 + 1/N) = f(2,9)1iary <y
+ i Nx(f(x—1/N, y) —f(x,9)) 1,50
+ paNy(f(x,y —1/N) —f(x,9)) 1,5 g
Let 7y be the stationary probability distribution of this Markov chain and

A A

Xog = ) Yo =
(8) O AN/ (g — M) T

x, =0, yo =1, foru, <A

(7

xy for u, > A,

We have to prove that the sequence (7y)y <y converges weakly to Lo
(with 8, the Dirac measure at a).
Define ) by

X0, yO)

of of
Q) (x,y) =(M1—-x—-y) - pa2)—— + (A(x +y) = “Zy)é?

x,y €[0,1].

For any polynomial function f there exists some real K such that for x, y in
the interior of & = {(x, y) €[0,11% |x +y < 1},

K
(9) IQ(f)(x,y)—QN(f)(x,y)Isﬁ.

In the case A < u, the point (x,, y,) is in the interior of . We can write
Q(fNx, y) as

of af
(_(’\ +p)(x —x) — My _yo))b; + (A(x — %) + (A — pa)(y _yo))a_y‘
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If f(x,y) =(x —x,)%/2 + (y — y,)?/2, then for x, y €,

QUF)(x,y) = = (A + my)(x — x6)" + (A — ) (¥ — ¥o)”
—2min{ py — A, A + pi}f(x, ).

Let us forget for a moment the boundary conditions of (7).
The equilibrium equations give

(10)

IA

(11) JOu(f)(x,y)my(dx,dy) =0, N=1.

Since the 7y, N > 1, are measures on the compact [0, 1]2, one can extract a
convergent subsequence my —;_, .. . By (9), (11) and the continuity of f
we can write that

0= lim [Qy(f)(%, y)my(dx,dy) = [Q(f)(x,y)m(dx,dy).

Since Q(fXx, y) <0 except at (x, y) = (x,, yo), we have 7 =§, , .. Hence
(my)y < converges weakly to 8., ..

The boundary conditions: Let us consider the segment of the boundary
A={(x,y) €« |x+y=1}. On A we have

K
Q8 (F)(%,5) = Q)% 9)| <
with

J Jd
Qu()(x,y) = _ﬂ-1x_£ - szl-

a ay
If f(x, y) = x%2/2 + y? /2, then there exists a fixed a, such that Q,(f,x, y)
< —ay for (x,y) € A and Q(f(x, y) < —a, for (x, y) in a strip S, of width
& around A for a sufficiently small &. If we choose & so that ={(x, y)lx +y =
1 — &} = 0 [where = is the limit of some subsequence of (7y)y <] and

(12) g(x’y)=fAlss(x’y)+flsg(x’y)’

then the previous proof can be carried out replacing f by g. The two other
boundary conditions on the axes can be included in the same way to complete
the proof.

In Figure 1, we represent the vector field associated with (, on S,,
(—p1x, —pyy), and with Q outside S,, (M1 — x — y) — uyx, Mx +y) — uyy).

The case A > u, is analyzed in the same way. Here the function f(x, y) =
A=A+ p)x — Ay)?/2 + a(l — y)?/2 can be chosen as a Lyapounov func-
tion in the interior of & if a is sufficiently large. The vector field in this case
is shown in Figure 2.

Convergence of the number of idle servers when A > w,: Let Z, = N — n}
— ¢ and let Zy = N — 7, — ¢, be the stationary version of Z. The station-
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Fic. 1.
1 d (xoyo)
~
/
~
/
A
0 AL 1
Fic. 2.

ary loss probability for the system with N nodes is simply P(Z, = 0). Using
(7), for any function f, the equilibrium equations for Z,, can be written as

flo’llz)tN(f(z — 1) = £(2)) 15 oy (dx, dy)

13
" " ) 1]2( piNx + py Ny)(f(z + 1) = f(2)) 1, < yyry(dx,dy) = 0,
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with z = N(1 — x — y) in the expressions under the integrals. If f(¢) = (¢t —
K1, gy and ¢y(K) = my(z = K) = P(Zy > K), then (13) becomes, for 0 <
K <N,

Apy(K + 1) = pydy(K) + j;o 1]2[( Moy + %)Lk o,y

1z = K) | my(d, dy),

Mw(K+1) = pady (K) + [ (4a(3 = 1) + ) Ly (dx, d).

Using our convergence result in the case A > u,, it is easy to see that
the integral in the above expression converges to 0. If @(K ) =
lim supy - +» ¢n(K), we get &(K) < (uy,/MNd(K — 1); hence, #(K) <
(mg/M* $(0). In particular, this means that the sequence (Zy)y < is tight.
Using again the above equation, we obtain that any limit point 7 satisfies
m{k} = Cug/N (A — wy/M).

Let us finish by the convergence of the loss probabilities g, = P(n, + ¢, =
N) when N - +o. For A < u,, we have shown that (n, + ¢,)/N converges
in distribution to x, + y,, with the above notation. It is easily verified that in
this case x, + ¥, < 1; hence, limy _, ,, q, = 0. For the case A > u,,q, =
P(Zy = 0), and according to the convergence of Z,, we obtain limy , , ., g, =
1 — wy/A. The proof of Theorem 2 is thus complete. O

REMARK 1. (a) The function g (partially) defined by (12) is usually called
a Lyapounov function. It is surprising that a Lyapounov function approach
can be used here for a problem which is completely different from the
conventional type of stability problems with infinite buffers (see also [5] and
[2], Section 4).

(b) It is important to understand that in the case A > u,, the limiting
value of the loss probability could not be obtained even if we had complete
information about the equilibrium measure after the thermodynamic limit.
For the system with an infinite number of servers it follows from (5) that a
customer is lost with probability 1, but the stationary probability of loss
converges to 1 — uy/A.

From Theorem 2 we can derive the following result: From (3) it follows
that for w; = u,, global sharing is better than the independent policy. The
loss probability is always smaller for global sharing. However, for u, < u,
this is the case iff

My Mg

(14) M‘l_/“LZ__/\—<O‘

As a corollary we get the following result about all correlation functions in
the case when the rule % is chosen in the following way: If an arriving
customer finds its own station is occupied, then it is assigned to any empty
station with equal probability.
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THEOREM 3. For a fixed A, under the above rule, the invariant measure is
exchangeable, that is, invariant with respect to all the permutations of A and
for any fixed subset of stations A = {1, ..., s},

lim 7TA(SA) = l_[ 7(s,),
N- 4o x€EA
with w(s) = limy _, , . 72(&Q) = s).

Proor. If we start the network with an exchangeable distribution, then
according to the assignment policy, the property of exchangeability will be
preserved at any time, and thus, at infinity. We deduce that 7* is exchange-
able.

Let us now consider the case when |A| =

(ZA 1(§A(i)=31))( ZA 1{§A(i)=32)) Z 1(§A(l) 51, éA(8) =53} + Z 1{51\(1) s1, Ea(J)=52}"
te 1 €

i#jEA
From Theorem 2, the ratio of the left-hand side and N2 converges in
distribution to 7(s,)w(s,). By symmetry the expected value of the right-hand
side is
Nt (£4(0) = sy, £(0) =s5) + N(N — )72 (£,(0) = s, &(1) =s5);
hence, lim,,, ,, 7"*(s,) = m(s,)7(s;). The proof of the general case is done
in a similar way. O

3. Load sharing on an infinite network. In this section we consider
the one-dimensional network Z with the following rule to assign the cus-
tomers: If the arrival site of a customer is occupied, then it is moved to the
first empty place on its right. If the customer has not been moved (resp. has
been moved), it is served with rate u, (resp. u,) and the state of the site is 1
(directly routed customer) [resp. 2 (alternatively routed)]. (We set u, = 0 for
convenience.) Because of the nonlocal interaction, an additional problem in
this case is the construction of the associated Markov process with generator
Q:

Q) = L [ m(f(x - 2,8) — (%) + A(f(x + &) — £(x))1{x; = 0}

ieZ
+A(F(x +28,4) — F(®)1x; #0}], xe{0,1,2},

where f is some function belonging to the domain of Q (see [4]), §; is the
Dirac function at i and v/(x) = inf{j > i: x; = 0}. Let us denote by & the set
of translation invariant and ergodic measures ¢ on {0,1,2}% such that
¢{x: x, = 0} > 0. In the following, we will consider Markov processes X(t)
with generator () and initial distribution in &.

THEOREM 4. For any ¢ € &, there exists some h > 0 and a stochastic
process (X(¢))g ., .5 such that:

(i) the distribution of X(0) is ¢,
(i) X(¢) is a Markov process on [0, h] with generator ().
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The method to construct our process is quite simple. We will show that the
real line can be cut into noninteracting (random) intervals between 0 and
some i > 0. For i € Z, we denote by N, the Poisson process (with rate A) of
arrivals at site i and

i+k

Z ]Vj[o’h] - l{xj#O) <0y,
j=k

v(k,h) =inf{ i >0

where X, = (x,); . 7 is some random variable with distribution ¢ and N}[0, A]
denotes the number of points of N; between 0 and .

LEMMA 5. (a) If AR < ¢{x1xy, =0} >0, then v(k,h) is finite a.s. for
kel
() HG) = T4 . nys iy Is almost surely finite and P(H(G) = 0) > 0.

PrOOF. According to the ergodic theorem,

1 itk

—ZN[O R] - {“eo}iti)/\h d{xlx,=0} <0 as.

Thus v(k, h) is finite a.s. Using that {Z} N[0, k] — 1(x,+0) < 0} € {k + v(k, h)
< i}, we get that H(i) is also a.s. finite. The maximal lemma of ergodic theory
(see [1], Appendix 3) gives

N,[0,] - 1 dP >0
SqusO{Zj;lkN'j[O’h]_l(xﬁgo)}>0( oL (xo#O}) )

with £;' = 0. Using that E(N,[0, 2] — 1, . ) < 0, we obtain

sup{ZN[O h] - (x¢0}}<0)>0;

k<0 J k

hence, P(H(i) = 0) = P(H(0) = 0) > 0. The lemma is proved. O

The statement of Lemma 5 (b) has the following consequence: Even if the
customers never leave the network, there is a positive probability that none
of the customers arriving during [0, ] on the sites with negative index is
assigned to a site with a positive index. This implies that on this event during
[0, k], one can discard all the sites on the left of 0. However, if we discard the
sites i <0, the process (xo(¢),...,x,(¢),...),c(0 5 is trivial to construct.
Using that, almost surely, there is a nondecreasmg sequence (¢;);., such
that H(¢;) = 0, we can thus construct our process on the interval [0, A].
Theorem 4 is thus proved. O

REMARK 2. Because of our construction, it is easy to prove that for
0 <t < h, the distribution of X(¢) is in & (by verifying that the ergodic
theorem holds, for example).
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So, our process can be constructed as long as P(xy(t) = 0) > 0. We will
denote by T the (cemetery) state of X(¢) whenever this condition is not
satisfied and denote by 7 the (deterministic) hitting time of 1. We now turn to
the asymptotic behavior of our process.

THEOREM 6. (a) If u, < A, the process almost surely dies, that is, for any
¢ € & there exists some t, such that X(t,) = t.

(b) If X < min{ u,, uy}, then the Markov process X(¢),. , is almost surely
defined.

This result is a consequence of the following lemma which is related in
some sense to the fact that (n,, {,),cr is a Markov process (Section 2).

LEMMA 7. If P(t) = P(x,(¢) = i) fori €{0,1,2} and t < 7, then

3P;£t) =X = APy(2) — (A + ) Py(2),
P (A= w)Pa(t) + APy(1).

Proor. Using the definition of the generator (), we have
Py(t +dt) = (1 -, dt) Py(2)
+Adt Y, P(x;(t) #0,...,x_(¢) # 0,x,(t) = 0) + o(dt).

i<-1

The invariance under translation gives

IP,(t)
Franie —ugPy(t) + XY, P(xo(t) #0,..., %, 1(2) # 0, x,(t) = 0).
i1
The sequence (x,(¢)); ; hits 0 with probability 1; hence,
9Py(2)
FYE — g Py(t) + AP (xo(2) # 0).

Replacing P(x,(¢) # 0) by P(t) + P,(¢) in the above equation gives the
second equation of our lemma. The other equation is proved in the same way.
O

PROOF OF THEOREM 6. The limiting values of the solutions of the differen-
tial equation of Lemma 7 are given by
A A2

15) P, = , P,= i
(15) Py e+ A+ A/ (g — ) 2 (g = M)y +A) + A

(a) If p, < A, then it is easily checked that P; + P, > 1. Hence, there
exists some ¢ for which Py(¢) = 0 and 7 cannot be infinite in this case.
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(b) Using Lemma 7, we get
(P, + Py)(t)
at

A finite extremum of (P, + P,)(¢) (if any) satisfies A — u;Py(¢y) — o Py(t,) =
0; hence,

= A= Pi(8) — pyPy(t).

(P1+ Py)(2) < L.

e
min{ w;, py}

At infinity, it is easy to check that P, + P, < 1. Our process is thus always
alive. O

REMARK. Trite calculations with the explicit solution of the equation of
Lemma 7 would show that when wu, < A < u, and if ¢{x | x(1) # 0} is suffi-
ciently small, then X(¢), . , is almost surely defined; otherwise it dies.

In the case, where 7 = +, there exists at least one invariant measure.
Our next proposition shows that there is a unique one.

PROPOSITION 8. If p, = uy = p and A < u, then for any ¢ € &, (X(¢)), cr
converges in distribution to a unique invariant measure.

Proor. In this case, the state space can be reduced to {0, 1}2. Let X°(t)), c g
(resp. (X(%)), < g) denote the Markov process with the empty network (resp. ¢)
as starting point. Using our construction of Theorem 4, it is easy to couple the
two processes so that X°(¢) < X(¢), that is, x2(¢) < x,(¢) for all i € Z. In
particular, (X°(¢)), . is stochastically nondecreasing, and hence is converg-
ing in distribution to some measure 7. Any limiting distribution ¢ of (X(¢))
satisfies 7 <, y(where < is the stochastic order on measures associated
with <), but according to Lemma 7, m(x, =1i) = ¢(x,=1) for i =0,1,
which implies 7 = ¢ (see [4], Section 2, for example). O

REMARK 3. In the constant case u; = u, = p when A = p, it is easy to
show that 7= +o. The process (X(¢)),.p is completely defined, but its
limiting distribution is the Dirac mass at 7.

4. Local sharing. We consider now the model on the one-dimensional
lattice with A = [—L, L] c Z'. We assume that a customer is lost if it cannot
find an empty site within a distance d to the right of its arrival point. As
before, a customer is served at rate u, if it has not been rerouted and at rate
My otherwise.

From (14) it is seen that important parameters for understanding the
qualitative behavior of the loss probability are wu,/u,; and A. The following
theorem is standard. It gives a satisfactory description of the process in the
thermodynamic limit.
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THEOREM 9. There exists Ay > 0 such that for any A < A the following
limits exist:
(16) p(sy) = hm hm Py Msy) = hm hm Nz Msy)-
- 4o t> t—
The p(sy) are analytzc m A (mcludzng A= O) and define a translation
invariant measure on % with exponential decay of correlations. For exam-
ple, for the two-point correlation functions we have

|p(s.,8,) —p(s,)p(s,)| < Ce 17!
for some C, a > 0.

This is known from the cluster expansion theory for the processes with
local interaction (see [6] and references therein). Now we proceed to the
calculation of the loss probability. Contrary to Remark 1(b), here the loss
probability is defined by the thermodynamical limit of the finite volume
distributions. Moreover, it is equal to

(17) gn(x) =p*(€&(y) #O0forall y € [x,x + d]).

To provide explicit calculations, we use methods from mathematical physics:
the correlation equations for correlation functions. The reader is not assumed
to be acquainted with these techniques, so we give a detailed exposition. We
start by explaining how to get equations for the correlation functions.

Let h(s},s,), s, # sj, be transition rates from sj to s, for our Markov
chain in A so that (we omit for a while the upper index A, having in mind
that we consider Markov chain «*)

(18) h(sy,sy) dt = P(&,.4(x) =s,, x € Al§(x) =5, x €A).
Then the Kolmogorov equations are
Prear(sn) = pu(sa) + LA(sh, 80) pil(s)) dt,
sh
where
h(sp,80) = = X h(sh,sh)-

EEGGEN

For our model only one node can change at a time, that is, for s, # s, the
rates h(s,, s)) can be different from O only if s, # s, exactly at one point
x € A. One can put

h(sy,83) = hi(sh)
when s, is different from s) only in the point x and s, = s. From (18) one
gets, using Kronecker symbols,

P(§t+dt(x) = Slgt) = (1 - Ss(gt(x))hfc( &) dt

roa)1-d T Kie))

s'is'#s
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Taking expectations, we get
Pg(x;s) = X hi(sa)p(Assy)dt +p(x5s)

SAI S ES

—dt ¥ X A (s)pdAssy),

SASx=8§ §'#5s
or for the stationary measure,
(19) 0="Y hi(sp)p(Assy) = X X hi(sa)p(A;s4).

SAL S FS Spl S,=8 §'#s

For any subsets A, B,C,D of A, we shall use the shorthand notation
1,250 * p to denote the subset of the elements of .&* for which the nodes of
C are empty, there is a directly routed customer at each node of A, there is
an alternatively routed customer at each node of B and all the nodes of D are
occupied.

Then (19) becomes [if we put s = 0 for the first equation in (20) and s = 1
for the second one]

0=2ap(0,) — pyp(1,),
d-1

0=2A Z p(* x—k—1,x—1 Ox - /J’2p(2x)
(20) E—0 [ ] )
d-1
=Al X p(*[x—k—l,x—l]) _p(*[x—k—l,x]) — pep(2,).
k=0

REMARK 4. Ifin (20) one puts A = Z, d = +=, then the process is the one
we analyzed in Section 3. If we solve the above equations, one gets the
solutions given by the equations (15), which are also the expressions obtained
in Theorem 2.

To get equations for higher order correlation functions, we consider

P(§t+dt(x) =8y X €A ft)
= T (-oa)  TT_ 8 (60)prs) &

x€A
H(Moam))t-a X T rie).
x€A xEA s, #s,
Then for AU B =,
dp,(2,1p)
tT =A Z pt(2AlB—(x)0x)
x€B
d-1
+ A Z Z pt(2A—(x}lBOx *[x—k—l,x—l])
x€A k=0

—( [.L2|A| + ,UrllBl)pt(zAOB)
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or for the stationary measure,
P(2415) (ol Al + py| Bl)
d-1

(21) =12y X (p(zA—(x}lB *[x—k—l,x—l]) - p(zA—{x}lB *[x—k—l,x]))

x€A k=0

+ A L (P(2a15-(9) —P(2alp- (9 *x))-

x€B

Coming to the problem of minimizing the loss probability, we note first that
for u, = p, the independent policy is always the worst: If there is an empty
available node, a customer should be put into it. For u; > u, this is not
always the case.

THEOREM 10. Under the condition d = 1:
@) If A is small enough and p., py is fixed, then the loss probability (in
the thermodynamic limit) is

_ 2py +
pi(py + o)
(ii) In the case when A is fixed and

(22) p1 =o0(A), Bo =o0( 1),
we have

q A2+ O(X3).

u3

q=1—2&+0
A Apy

PrROOF. (i) We use the analyticity result of Theorem 9 and calculate the
first terms of the expansion in A for d = 1 and small A with u,, u, > 0 fixed.
Using translation invariance of the limiting measure, we get from the for-
mula (21) and the second equation of (20),

p(2) =p(2,) = 0(1?)
and from the first equation of (20),
A
p(l) = —;
( ) My
hence,

A
p(1) = ;%(1 - p(1) = p(2)) = = + 0.

From (21) we get
2p,p(11) = A(p(10) + p(01)) = A(2p(1) — p(1*) — p(*1))

= M2p(1) — 2p(11) — p(12) — p(21))
or

+ O(A%).

A A
p(11) = mp(l) - m(p(m) +p(21)) = (#_1
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Similarly one can show that p(22), p(21) are O()®) and
2
p(12) = ——— + 0(13),
(12) i py + pe) S
S0

Pt
pi( e + p)

(ii) Now we pass to case (ii). Let us note that equations (22) have been
written for correlation functions p(2,1;) as these are small quantities; more
exactly, p(2,15) = O(X4" Bl). Now the correlation equations should be writ-
ten for the correlation functions p(0,15). We leave rewriting the equations
and the proof of the following theorem to the reader.

q=p(**)= A2+ 0(M\3).

THEOREM 11. There exists &, > 0 such that for pe/pq, /A < &, the
following limits exist:

(23) p(s,) = Llim lim p}(s,) = tLiToo

—> 4+ f—> 400

im p;(sy).
L— +®

The p(s,) are analytic in py/uq, /A and define a translation invariant
measure on & with exponential decay of correlations. Moreover, p(0,1p) =
O(&!4VBl), & = max(p, /A, py/ ).

To finish the proof of Theorem 10 for case (ii), we shall use (20) and (21),
having in mind that using the previous theorem we can expand in the small
parameters specified for case (ii). We can write

g =p(**) =1-2p(0) + p(00).
From (20) we get

(1 - p(0) - ;%p(") = 1a(1— p(0) — p(1)) = 13 p(2)

= Ap(*0) = A( p(0) — p(00)),
SO

M5
Ay

+0

we/A + p(00) Mo

p(0) = =

Mo/A+ 1+ po/py A
Case (ii) of Theorem 10 is thus proved. O

5. Some open problems. Load sharing models promise to be rich in
different phenomena that could be common in more complicated models, and
we want to indicate some further problems.

1. In the model of the Section 4 take d — +« or even equal to infinity; take
even W, = W,. The resulting process is not a process with local interaction.
Does the series defining the solution of correlation equations converge for
A/ vy small? Is the solution analytic in A/ u,?
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2. In the model on the one-dimensional lattice with A = [—-L, L] c Z, u(x, y)
=pu, for |x —yl<d and w(x,y) = u, for |x —y| > d. Is the invariant
measure unique for all values of the parameters u,, u,, A and d? Find the
phase diagram for the loss probability.

8. On 7', let p(x,y) ~ p, /(1 + |x — y|%). For which « it is true that this
policy is better than the independent one with the parameter u,?

4. What about higher order correlation functions in the cases of Section 2 for
a one-dimensional lattice when the rule % is just choosing the closest
node.

5. Try similar problems for waiting time and infinite buffers.
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