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THE NET OUTPUT PROCESS OF A SYSTEM WITH
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By P. A. FERRARI AND L. R. G. FONTES
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We study a system of infinitely many queues with Poisson arrivals
and exponential service times. Let the net output process be the difference
between the departure process and the arrival process. We impose certain
ergodicity conditions on the underlying Markov chain governing the cus-
tomer path. These conditions imply the existence of an invariant measure
under which the average net output process is positive and proportional to
the time. Starting the system with that measure, we prove that the net
output process is a Poisson process plus a perturbation of order 1. This
generalizes the classical theorem of Burke which asserts that the depar-
ture process is a Poisson process. An analogous result is proven for the net
input process.

1. Introduction. We consider a system of infinitely many queues with
arrivals and departures. To describe it, let S ={—1,0,1,...} and consider
that at each x > 0 there is a queue formed by a nonnegative number of
indistinguishable customers. If this number is positive, we can think that one
of the customers is being served and the others are waiting for service. The
service time of queue x > 0 is exponential with rate u(x); that is, it depends
on the queue label but does not depend on the configuration of customers in
the system. Once the customer is served it jumps to queue y with probability
p(x, ¥). The matrix p is called the routing matrix. “Queue” —1 is out of the
system and it is considered as a queue only for notational convenience. We
assume that there are infinitely many customers at —1 at all times. This
implies that customers are entering from the outside of the system to queue
y = 0 according to a Poisson process of rate u(—1)p(—1, y). This system is a
particular case of the so-called zero range process with an external
source/sink of customers. The process takes values in = NN and its
generator is given by

(1)  Lf(m)= X LYn(x)>0tu(x)p(x,y)[f(n*) - f(n)],

x,y=>—1
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where n € ) is a state of the system, n(—1) is defined as +o, n*? is defined
by

n(z), ifz+#x,y,
n(z) ={n(x) -1, ifz=ux,
n(y) +1, ifz=y,

and f is a local function in ). There are two differences between the system
studied here and the zero range process studied by Andjel (1982). The first
one is that we have a sink/source of customers, which is absent in Andjel’s
paper. The other is that our service rate u(x) does not depend on the
configuration, but it may depend on the queue label. The service rate consid-
ered by Andjel is a function g(%), where % is the number of customers in the
queue, independent of the queue. Since our rates do not depend on the
configuration and may vary from queue to queue, it is more convenient to use
the notation

Q(x,y)=l-"(x)p(x’y)’ xFYy, q(x’x)=_/"‘(x)'
If the total arrival and departure rates are uniformly bounded, that is,

(2) sup ). q(x,y) <, sup).q(y,x) <,
y x Yy x

then it can be shown as in Andjel (1982) that the process is well defined, at
least for a class of initial configurations. We call 7, the resulting process in
NN, where for x > 0, 1,(x) is the number of customers in queue x by time ¢.

We are interested in the case when on average there is a positive net flux
of customers out of the system. In order to guarantee this, the underlying
continuous time Markov process on S with jump rates matrix g must satisfy
some conditions. First we assume that the transition rate matrix q(x, y)
determines a unique finite invariant measure m on S satisfying

(3) w(y)ym(y) = X m(x)q(x,5), y=-1,
x>-1
(4) m(—-1) = 1> m(x), x> 0.
In particular, the process with transition rate matrix ¢ must be positive
recurrent. We discuss later the null recurrent and the transient cases. We

also assume that for each A > 0, there exists a sigma-finite measure p = p,
on S satisfying

(5) w(y)p(y) = Z_lp(x)Q(x,y), y >0,
(6) p(=1) =1> p(x) > m(x), x>0,
(7 A= Zo(p(x)q(x,—l)—Q(—l,x))-

One can interpret the parameter A as the “rate of entrance of customers at
infinity.” In equilibrium this rate must equal the difference between the rate
of exiting to — 1 and the rate of entrance from — 1. This is the meaning of (7).
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Let v, be the product measure on NN whose marginals are geometric with
parameter p(x). In other words, for any finite set A € N, and any nonnega-
tive numbers k(x) > 0, x € A,

(8) v(n(x) =k(x), x €A) = IGIA p(x)*F(1 - p(x)).

If p satisfies the conditions above, then , is invariant for the system, as a
consequence of Proposition 1 below. This was proven by Jackson (1963) for
finite networks, by Andjel (1982) for infinite conservative systems and by
Ferrari (1986) for a special case of g(x,y) satisfying our conditions. The
condition p(x) < 1 is necessary for the invariant measure », to concentrate
on configurations with a finite number of customers at each queue.

Let the departure process D, be the number of customers leaving the
system in [0, ¢] and let the arrival process A, be the number of customers
entering the system in [0, ¢]. The departure (respectively, arrival) process at
time ¢ counts the number of customers jumping to (respectively, from) —1 in
the interval [0, t]. Let the net output process be X, = D, — A,. Burke (1956)
showed that for one queue in equilibrium with Poisson arrivals and exponen-
tial service times, the departure process D, is a Poisson process. This result
was extended to systems with a finite number of queues; see Kelly (1979) and
references therein. The extension to a system with infinitely many queues is
demonstrated by the following theorem.

THEOREM 1. Let g(x,y) be the transition rates of a continuous time
Markov process on S satisfying (2) to (7) and

q(y, x)
(9) supp(y)pZ_1 O

Let m, be the system of queues with rates q(x, y) whose generator is given by
(1) with initial distribution v, given by (8). Then the departure process D, is a
Poisson process with parameter Y.sop(x)g(x, —1).

SKETCH OF THE PROOF. The easiest way to prove Theorem 1 is to follow
Reich (1957) [see also Kelly (1979)]. Construct 7}, the reverse process of 7,
with respect to the invariant measure », and verify that {D,} = {A%} as
processes in distribution, where A?¥ is the number of customers entering the
reverse process. By construction, A% is a Poisson process with rate
.. 0p(x)g(x, —1). Condition (9) guarantees the existence of the reverse

process nf. O

If no customers enter the system from —1, that is, g(—1, y) = 0, then the
net output process equals the departure process: X, = D, and by Theorem 1,
X, is a Poisson process. When ¢(—1, y) is not identically zero, customers
enter the system producing memory, which prevents X, from being a Poisson
process. In this case, we have the following theorem, which is our main result.
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THEOREM 2. Let g(x,y) be the transition rates of a continuous time
Markov process on S satisfying conditions (2) to (7) and

(10) LT

(11) supm(y) x>2_1 qr(n‘}(’;c)) < oo,
q(y,x)

(12) sup(p(y) =m(y) L ~o3 o0y

Let m, be the system of infinitely many queues on NN with rates q(x, y), whose
generator is given by (1) and whose initial distribution is the invariant
measure v, defined in (8). Then the net output process X, can be expressed as
the sum

(13) X, =R, - B, + By,

where R, is a Poisson process with rate A given in (7) and B, is a stationary
process on N such that the distribution of B, decays exponentially. In other
words, the distribution of B, does not depend on t and there are positive
constants C and B such that

(14) P(B,>k) <Ce™P*  k,t>0

In general, B, is not a Markov process and it is not independent of R,. The
exact distribution of B, is given in the proof of the theorem.

We sketch now the proof of Theorem 2, in which we also use the reverse
process but in a somewhat more subtle way. The main point is to distinguish
between two types of customers: those that enter the system from — 1 that we
call black customers and the others that we call red customers. We can think
that the red customers come from “infinity.” The motion of this two species
system is based on the assumption that black and red customers behave in
the same way in the queues x > 0. When the server in queue x finishes a
service—this happens at rate u(x)—it chooses uniformly one customer from
among those in its queue. Hence the probability of choosing a black customer
is the quotient of the number of black customers and the total number of
customers in that queue. The chosen customer jumps to queue y # x with
probability p(x, y) = g(x, y)/u(x). The only difference between black and
red customers occurs at the boundary: only black customers enter into the
system from —1 and they enter queue y at rate ¢g(—1, y). We call (o,, ¢,) the
resulting system, where o,(x) [respectively, £,(x)] is the number of black
(respectively, red) customers in queue x by time ¢. By construction o, = o, + &,
coordinatewise. This means that if we disregard colors, we recover the
original system 7,. Denote by R, the departure process of red customers and
by B, the number of black customers in the system at time ¢. Since no red
customers enter the system, we have X, = R, — B, + B,.

The next step is to find the invariant measure v, for (o, &) and the
reverse process (o, &)* = (0%, &) with respect to v,. We simply exhibit
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them and show the assertion. Call R the arrival process of red customers in
the reverse system. Call B/ the number of black customers by time ¢ in the
reverse system. The reverse process is still a queueing system with service
rates u*(x) = u(x) depending only on the queue label. The main difference is
that the reversed routing matrices are different for red and black customers.
Nevertheless the reverse routing matrices still do not depend on the configu-
ration. The most important property of the reverse process is that R¥, the
arrival process of red customers is a Poisson process. On the other hand,
under the invariant distribution v,, Bf, the number of black customers at
time ¢, is stationary and its distribution has an exponential tail. To conclude
the proof of Theorem 2, we use the same idea as in the proof of Theorem 1. By
reversing the process under initial distribution v,, {B,} = {B}} and {R,} =
{R}} as processes in distribution.

In this light, we can explain where the conditions of Theorem 2 come from.
Condition (3) is necessary in order to have an invariant measure concentrat-
ing mass on configurations with a finite number of customers. In turn, this
together with (10) implies that B,, the number of black customers by time ¢,
has an exponential tail uniformly in ¢. Conditions (5) and (6) guarantee the
existence of an invariant measure with infinitely many customers. This
implies that the departure process of red customers is not trivial. Conditions
(11) and (12) are sufficient to show the existence of the reverse two species
process. They are automatically satisfied if g(x, y) is of finite range.

We now discuss the cases when ¢ is not positive recurrent. In the null
recurrent case it is not possible to find a finite m satisfying (3). Hence the
number of black customers will be infinite and we cannot expect an analog of
Theorem 2 to hold.

More interesting is the transient case. We assume that there exists a
sigma-finite solution p of (5) satisfying also

(15) p(—=1)=1> p(x) >0, x> 0.

This solution is not summable because a finite solution would imply positive
recurrence. Under the invariant distribution », the net input process Y, = A,
— D, has a positive mean. Using the sketched proof of Theorem 2, we prove
that the net input process can be expressed as the sum of a Poisson process
and an error of order 1. To state the result, let a(y) be the probability that a
process on S with transition rate matrix ¢ starting from y eventually hits
—1. Since q is transient, a(y) < 1, and by ergodicity, a(y) > 0. Of course
a(-1) =1

THEOREM 3. Let q be the transition rate matrix corresponding to a tran-
sient Markov process satisfying (2). Let p be the unique (sigma-finite) solu-
tion of (5) and (15). Assume (10),

p(y)a(y)
yo0 L= p(y) + p(y)e(y)

(16)

’
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(17) supa(y) y 820 . ®)
x>0 a(x)
(18) sup(1-a(y) T {0 (3.%)
xZO a(x)

Then the net input process Y, can be expressed as
Y, =R, + B, - B,
where the process R, is a Poisson process of rate

Y p(—L,y)(1-a(y))

y=0

and the process B, is stationary and has an exponential decay as in (14).

In Section 2 we introduce the two species process, the corresponding
invariant measure and the reverse two species process. In Section 3 we show
Theorems 2 and 3. In Section 4 we compare the infinite system with finite
systems, discuss some extensions of our results and show simple examples of
systems satisfying the conditions of Theorems 2 and 3.

2. The two species system. We introduce the process (o3, §,) € O, = Q
X Q as follows. Each queue may have two types of customers: black and red.
The number of black (respectively, red) customers at queue x at time ¢ is
o,(x) [respectively, &(x)]. Let the system evolve with the provision that only
black customers enter it and they do so at queue y with rate g(—1, y). The
evolution in the system is the following. Given that a service time finished at
queue x, the probability that a black customer has been served is the number
of black customers in x over the total number of customers in x. The service
corresponds to a red customer with complementary probability. Then the
chosen customer jumps to queue y with probability p(x, y) = q(x, y)/u(x).
Notice that this specification implies that our system is not a classical system
of queues with two types of customers. In a classical system the customer is
chosen according to some rule (that may be random, as is our rule) at the
beginning of the service time interval. In our system, the customer is chosen
at the end of this interval. In this way a customer that has arrived after the
starting of the service time interval can be the one served by the end of the
interval. The generator of this process is given by

_ _ ) e ey e
sz(a,§)—x’yg_lq(x,y){a(x)+§(x)[f(0 €)= f(o,8)]
é(x)

+m[f(0,§”) —f((f,&)]},

where (o, ¢) is the initial state of the system [with o¢(—1) = +% and
£(—1)=0], 0™ and ¢*7 are defined analogously to n*” with the exception
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£%71(—=1) = 0. f is a local function in Q, and we adopt the convention that
©/w =1 and 0/0 = 0. Then we have the following lemma, whose proof is
straightforward.

LEMMA 1. Let the process (o,, £,) have initial configuration (o, ¢). Then
the process {0, + £} has the same distribution as the process {n,} with initial
configuration o + £. In other words, if f is a local function defined on Q, then

L,f(oc+ ¢) =Lf(o + é).

Define a measure v, on (), as follows. Let n be chosen from ». Let
a(x) = m(x)/p(x). For all x > 0, each 1 customer in queue x will be called
black, with probability a(x), or red, with probability 1 — a(x), independently
of each other and of other queues. For each x let o(x) and &(x) be the
number of black and red customers, respectively, in queue x. The distribution
of (o, ¢) so obtained is called v,. Under v,, {o(x), £(x)}, is a collection of
independent random vectors with marginal distribution

vo(0 (%) = b, E(x) =) — k)
— () (1= p(e)) 12" A= a2, szhzo0

A short computation shows that under v,, o(x) is geometric with parameter

(a(x)p(x)) /(A = p(x) + a(x)p(x)):

(19)

~ a(x)p(x) *
(20) Vz(a(x)Zk)_(1—p(x)+a(x)p(x)) , k=>=0.
From Lemma 1 and the construction of v, we have
(21) [dva(o, &) Lyf(o+ &) = [dn(n)Lf(n).
Define new Markov transition rates ¢*(x, y) on S as

9(y, x)p(y)

22 *(x,y) = =T
(22) 9*(x,y) (%)

and a new system of queues 7f in  with transition rates ¢*(x, y) and
service rates w*(x) = L, ¢*(x, y). [Notice that u*(x) = u(x), x € N] It is
easy to check that a(x) is the probability that the process on S with
transition rates ¢* eventually hits —1, given that the initial state is x.

As in the system 7,, we distinguish between two kinds of customers in this
new system, which we call black* and red*. Let

gi(x,y) =q*(x,y)ea(y)/a(x), x=-1,
(23) g’ (x,y) =q*(x, ) (1 - a(y))/(1 — a(x)), x=0,
g7 (—1,9) =q¢*(—-1,y)(1 - a(y)).

If we consider a Markov process on S with transition rates ¢* and
condition it to be eventually absorbed at —1 we get a new Markov process
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with transition rates given by g¢j. If we condition on nonabsorption, we get
rates g;. Notice that L, q}(x, y) = L qf(x, y) = p*(x) = u(x). We define a
process (o,*, £), where 0,*(x) and &7(x), respectively, count the number of
black* and red* customers in queue x at time ¢. This process has the
following evolution. At rate w*(x), a customer is selected in queue x uni-
formly among the o,*(x) + £*(x) customers. If it is a black* one, then the
customer jumps to y with probability ¢y (x, y)/u*(x) and if it is a red* one,
then the same jump occurs with probability ¢*(x, y)/u*(x). The black*
customers enter the system to queue y at rate ¢}(—1, y) and red* ones do it
at rate g;(—1,y). The process (o;*, £¥) takes values in Q, and has the
generator

* = *(x —_O'(x) oY —flo
L2f(a’§)_x,y§—1{Qb( ’y)g(x)+a(x)[f( ,5) f( ,5)]
£(x)

+q;k(x,y)0( [f(o.’gxy)_f(o.’g)]}’

x) + &(x)
where we use the convention
o(-1) _ &-1n
o(-1) +&(-1) o(-1)+&(-1)

Condition (12) insures the existence of this process. Here is the main ingredi-
ent in the proof of Theorems 2 and 3.

1.

PROPOSITION 1. The processes (a,, §,) and (0%, £¥) are the reverse of one
another with respect to v,.

ProOF. We want to show that

(24) [fLogdv, = [gLifdv,

for local functions f and g on ,. The above equality will be established if we
prove the equalities

5 q(x’y)f?rﬁ(;(f—?g(x)f("”,f)g(o,g)dyz(g,g)
=";’k(y’“f%f(mg)g(ayx,g)dyz(a,g)

and

(26) q(x’y)f;@%f(a,é”)g(a,f)dy2(a,§)
=qr(y,x)f—(;(—y%(f—)g(y—)f(m)g(a,gw)dyz(a,g),



OUTPUT OF INFINITELY MANY QUEUES 1137

for x,y € S and

X a(x,5) [Ho(x) + E(x) > 0}f(0,£)g(o, &) dvy(a, §)
x,y

(27) =qu*(x,y)f%f(a,f)g(mé)dv2(0,§)
F Y ) [, 680, ) dua(o, ©)
%9 o(x) + &(x)
where the sums have index set {x, y: x or y € [—1,..., N]}, where N is large

enough so that [0, N] contains the supports of f and g. To prove (25) and
(26), we can take f, g of the type

[11{o(v) =&} [ 1{é(w) =1,},
vEA weB

where A and B are arbitrary finite subsets of N and %, and [/, are arbitrary
nonnegative integers. Since v, is a product measure, it is sufficient to
consider the cases

(o, 6) = o (x) =k, 0(y) =k, + L, &(x) =L, £(3) = L},
8(7,8) = o (x) =k, +1,0(y) =k,, £(x) =1, £(9) =1}
and
f(o,¢) =o(x) =k,, a(y) =k, &(x) =1, £(y) =1, + 1},
g(o,€) = o (x) =k, 0(y) =k, &(x) =1, + 1, &(y) = 1,},
respectively, for (25) and (26), when x, y € N. When y = —1, take
flo,§) = Ho(x) =k,, &(x) =1},
g(o,¢)=1o(x) =k, +1,&(x) =1,}
and
flo,€&) = Ho(x) =k, &(x) = 1,},
g(o,¢)=1Yo(x)=Fk,, &(x)=1,+1},

respectively, for (25) and (26). When x = —1, (26) is trivially satisfied (both
sides vanish); for (25), one should take

f(o,8) =1o(y) =k, +1,&(y) =1,},
g(o,¢) =1o(y) =k,, £(y) = 1,}.

For all these cases, it is a simple calculation to verify (25) and (26). The
equality (27) is easily verified for the sums taken in the set {0 <x <N,
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y > —1} from the equalities
Ya(x,y) = Xai(x,y) = XaF(x,y), x=0.
y y y

So it suffices to show that

[f(a,6)e(a, HLa(-Ly)dn(r, )+ T T a(x7)

x>N y<N

x]l{a(x) +£(x) > 0}f(0,€)8(0,€)dvy(0, )

(28)

= [feXas(~1,5)dv, +ffg2q;*(—1,y) dv,
y

)  + I Tannfo )( Y (0, €)8(0, ) duy(o, £)

x>N y<N + f(x) (

+ Z Z g7 (x, y)f o(x ) f(o,€)g(a,€)dvy(a, €).

x>N y<N x) + &(x) (

The second term in the Lh.s. and the third and fourth terms in the r.h.s.
equal, respectively,

Jre X ¥ p(x)a(x,y)dv,,

x>N y<N

Jfe ¥ L a(x)p(x)ai(x, ) dvs,

x>N y<N
[fe X T (1= a(x)p(x)g}(x,y) dvy,
x>N y<N

50 (29) can be rewritten (when [fgdv, # 0; otherwise we are done) as

Eq( Ly)+ X X p(x)q(x,y)

x>N y<N

—qu( 1, y)+Eqr( Ly)+ X X o(¥)a(y,x).

x>N y<N

So, it suffices to prove the equahty

Y X p(x)g(x,y) - X X o(y)a(y,x)

x>N y<N x>N y<N

(30)
=Y p(y)q(y,—1) - XYq(—-1,y),

which we do by rewriting the lLh.s. as

Y X p(x)g(x,y) - X X p(¥)e(y,x).

x>—-1y<N x>-1y<N
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This equals the r.h.s. of (30) plus
Y X oe@a(xy)- X X ey, %),

x>—-10<y<N x>-10<y<N

and the equality of these two terms follows from (5). O
3. Proofs of Theorems.

PrOOF OF THEOREM 2. From Proposition 1 and (21) it follows that », is
invariant for the process 7,. From Lemma 1, we have 1, = o, + £,, and

(31) X,=R,- B, + By,

where B, is the number of black customers in the system at time ¢ and R, is
the number of red customers leaving the system in the interval [0, ¢] for the
process (o,, &) under initial distribution v,. Proposition 1 implies

(32) {(R,,B,)} = {(R¥, B})} as processes in distribution,

where B} is the number of black* customers at time ¢ and R} is the number
of red* customers entering the system in [0, ] for the reverse process. By
definition, R} is a Poisson process of rate

(33) Y pi(—Ly) = X [p(x) —m(x)]lq(x, -1).

y=0 x>0

However, this is just A given in (7) because

Y m(x)q(x,—-1) = } q(-1,x)

x>0 x>0
is the balance equation that m must satisfy for state —1. On the other hand,
under initial distribution v,, B}, B,, |g{| and |o,| all have the same distribu-

tion, which is also independent of ¢. This is also the same as the distribution
of

(34) By = ) o(x),

x>0

where {o(x)}, is a collection of independent random variables with geometric
distribution given by (20). Hence

(35) D vo(o(x) 2 1) = y a(x)p(x)

x20 es0 1= p(x) +a(x)p(x)
by (10). This suffices to get the exponential decay required in (14). O
ProOF OF THEOREM 3. Let
(%, y) =q(x,y)a(y)/a(x), x=-1,
q.(%,5) =q(%,9)(1 —a(y))/(1 - a(x)), =x20,
7,(-1,y) =q(-1,5)(1 - a(y))
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and consider the process (o, £,) in Q, generated by

_ _o®) o Y e
sz(o-’f)_x,yg_l{qb(x’y)o_(x)+§(x)[f( ’5) f( 75)]
+qr(x,y)%[f(0,§”)—f(0,§)]},

with the usual conventions. This exists by (17) and (18). The difficulty here is
that the process (o, + ¢,) is not Markovian, so we have to use the reverse
process. Define new rates ¢*(x, y) as in (22) and consider the processes n} in
Q and (o5, &) in Q,, respectively, generated by

L*f(n) = X 1n(x) > 0}g*(x, »)[F(n™) — f(m)]

x,y>-1
and
L5f(0,§) = Z_lq*(x,y){#%[f(axﬁé) —f(o,¢)]
£(x)

- xyy —
which exist by condition (9) and Lemma 1.

Changing labels in the proof of Proposition 1, we get that (o,, £,) and
(0%, &*) are the reverse of one another with respect to v,. An argument in
the same vein shows that n, and n;* are the reverse of one another with
respect to v,. Then, calling Y;* the net output process of 7, starting with ,,

(36) {Y,} = {Y,*} as processes in distribution,
and calling R¥ the output process of &* and B} =|o/*|, starting with v,
(37) {(R},B¥)} = {(R,,B,)} as processes in distribution,

where R, is the input process of ¢, and B, = |o,l.

Since the generator of the reverse process is the same as the generator of
the direct process of Lemma 1, this lemma implies n = ¢, + £*. Then Y*
can be written as

(38) Y*=R¥ - Bf + B}.
From (36), (837) and (38) it is clear that starting u, with », and (o,, £,) with

Vo,
{Y,} ={R, — B, + By} as processes in distribution.

However, R, is indeed just the input process, since ¢ particles do not leave
the system, so that it is a Poisson process (with rate given in the statement of
Theorem 3). Finally, the distribution of B, does not depend on ¢ and has the
required exponential tail as shown at the end of the proof of Theorem 2. Here
enters (16). O
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4. Final remarks. The method of proof of Theorem 1 allows one to show
that the departure process from queue y is a Poisson process of parameter
p(»)q(y, —1). Furthermore, the departure processes from different queues
are independent [Kelly (1979)]. One is tempted to extend the result to the net
flux out of queue y, but we think that this does not necessarily hold. It is true
that the departure processes of red customers from different queues are
independent Poisson processes with rate [ p(y) — m(y)lq(y, —1), but it is
hard to control the net output process of black customers because they can
enter into other queues different from y and the compensation that allows
one to prove Theorem 2 does not occur.

Another possible extension would be to consider a zero range process with
service rates depending on the number of customers in the queue. For this
process there are product invariant measures as shown by Andjel (1982).
However, the reverse process with respect to any of these measures is not a
zero range process, because the rate of jump of the reverse process depends
also on the number of customers of the destination queue. This implies in
particular that not even Theorem 1 is true because the arrival process for the
reverse system is not Poisson.

When there is a unique source/sink of customers at —1, the main differ-
ence between a system with a finite number of queues and a system with
infinitely many queues is the following. For ergodic ¢(x, y), the finite system
admits at most one invariant measure. In contrast, the infinite system may
admit infinitely many invariant measures. These measures are indexed by
the parameter A that represents the “rate of entrance of customers at
infinity.” The relation between A and p is given in (7). Notice also that
m = p,, the measure obtained when the entrance rate at infinity is null.
Hence m(x) can be interpreted as the stationary probability that queue x is
occupied when no customers enter from infinity (A = 0) and p(x) is the
stationary probability that queue x is occupied when the rate of entrance at
infinity is A. Finite systems with N queues and a unique source/sink of
customers at —1 correspond roughly to the infinite case A = 0. For these
systems the analog of Theorem 2 is trivial. The only hypothesis needed is the
existence of a finite invariant measure m, satisfying (3). To show the
theorem in this case, observe that the net output at time ¢ is the same as the
number of customers in the system at time 0 minus the number of customers
at time ¢:

D, -A,= Inol - |7’t|’

where |n,| is the total number of customers in the system by time ¢. This is of
order 1 because in equilibrium |r,| has the same distributions as ||, which in
turn is a finite sum of independent geometric random variables with finite
means:

N my(x)

El”?ol = Z

x=1 1 _mN(x) '

In this case, R, is the trivial Poisson process of rate 0 and B, = [n,l.
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Another possibility is to consider a finite system in {0,..., N — 1} with two
boundaries: one at —1 and the other at N. To make a parallel with the
infinite system, we do not allow customers to exit to N and we put a source at
N. The entrance rates are determined by an infinite transition matrix ¢
satisfying the conditions of Theorem 2 and by the invariant measure for the
infinite system p, as follows. For x,y € {—1,0,..., N} define

q(x,y), ifx,y<N-1,
an(x,y) = z‘:;Np(z)q(z,y), ifx=N,0<y<N-1,
0, if y = N.

Let py be the unique invariant measure of the matrix g, and let v, be the
corresponding invariant measure for the process my , constructed with the
rates gy. Using the technique of proof of Theorem 2, one can prove that the
net output process Xy , of this system can be written as

(39) Xyt =Ry, — By, + By,
where Ry, , is a Poisson process with rate

Av= X agy(N+1,y)= Y py(x)gy(x,—1)
0<y<N O0<x<N

and By , is a stationary process on N whose distribution decays exponen-
tially unlformly in N. Furthermore, one can show that, as N — o, Ay
converges to A. Appropriately modlfymg the entrance rates, one could get
finite approximations 7 , of the process 7, satisfying Ay = A and still get the
uniform (in N) exponential bound on the error By ;. We leave this to the
reader.

One particular case of a (positive recurrent) transition function satisfying
the conditions of Theorem 2 is the nearest neighbor asymmetric random walk

a, ifx>-1,y=x+1,
q(x’y)= b, ifoO,yzx_l,
0, otherwise,

where b > a > 0. In this case

m(x) = (a/b)*",
and since ¢(x, y) satisfies
Y a(x,y)= X q(x,9)=a+b,
yiy#x x:x#y
we can take
p(x) =m(x) + (1 -m(x))p,
where p is any number in the interval (0,1) [Ferrari (1986)]. Here A =

(b — a)p. When a = 0, Theorem 1 applies and X, is a Poisson process. For
nearest neighbor jumps, the system of queues is isomorphic to the simple
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exclusion process as seen from the leftmost particle. This is mentioned for
this model by Spitzer (1970), quoting an oral communication of Kesten, who
noticed that Theorem 1 holds for this last process. Liggett [(1985), Theorem
4.7] proves Theorem 1 by a direct computation for the exclusion process.
Kipnis (1986) makes the relationship between Burke’s result and Kesten’s
observation.

It is possible to prove Theorem 2 for the net flux of customers between two
consecutive queues in a doubly infinite system. To be more precise, let ¢, be
the process on ZV with transition rates a and b, respectively, for customer
jumps to the right (respectively, left) nearest neighbor. Let », be the product
measure of geometrics of parameter p. Let Y, be the net flux of customers
between queues 0 and —1. Then Y, is a Poisson process of parameter
(b — a)p plus a perturbation of order 1 as in Theorem 2. The case a = 0 is
immediate. The proof for the case a > b > 0 is based on a coupling between
the semiinfinite process m, and the doubly infinite process ¢{,. This proves a
conjecture of Arratia (1983) and will appear in Ferrari and Fontes (1994).

A simple case of null recurrent q(x, y) is

a, ifx=-1,y=0,
q(x,y) =(b, ifx>0,y=x+1,

0, otherwise.
If a = b, there are no solutions p satisfying (5) and (6). If a < b, there is a
unique sigma-finite solution of (5) and (6), but there is no finite solution of (3)
and (4). Hence our method to show Theorem 2 does not work.

A (transient) case satisfying Theorem 3 is

a, ifx=-1,y=0,
b, ifx=>0,y=a2+1,
¢, ifx=>20,y=x-1,
0, otherwise.

Taking ¢ < a < b, the unique solution of (5) and (6) is p(x) = a/b. In this
case,

q(x,y) =

c c\* ca
a(x)=c+b(3) and A=?—a.
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