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A STOCHASTIC GAME OF OPTIMAL STOPPING
AND ORDER SELECTION
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We study the following two-person zero-sum game. n random num-
bers are drawn independently from a continuous distribution known to
both players. Player 2 observes all the numbers and selects an order to
present them to the opponent. Player 1 learns the numbers sequentially
as they are presented and may stop learning whenever he /she pleases. If
the stop occurred at the number that is the kth largest among all n
numbers, Player 1 pays the amount q(k) to Player 2, where ¢(1) < -+ <
q(n) is a given payoff function. Player 1 aims to minimize the expected
payoff; Player 2 aims to maximize it. We find an explicit solution of the
game for a wide class of payoff functions including those ¢’s typically
considered in the context of best choice problems.

1. Introduction. A number of minimax versions of the best choice prob-
lem can be viewed as particular forms of the following two-person zero-sum
game. Let ¥ be a family of n-dimensional distributions F' of the random
vector (Y75, ...,Y,) with zero probability of ties and let T be a class of stopping
rules with possible values in {1,...,n}. Let ¢(1) < --- < q(n) be a nonde-
creasing sequence. Independently of each other, the participants make their
choice: Player 1 selects 7 € T and Player 2 selects F € #. Player 1 observes
successively the values Y,,...,Y, and applies 7 to stop the observation
process. The loss of Player 1, hence the reward of Player 2, is g(k) if Y_ has
the kth largest value among Y7,...,Y,. The antagonistic objectives of the
participants are minimization, respectively, maximization, of the expected
payoff.

The assumption that the payoff depends on observations only through
their ranks, but not otherwise on their actual values, is specific for the best
choice problems. Two classical goals, maximizing the probability of stopping
at the largest observation and minimizing the expected rank, correspond to
the payoff functions q(&) = 1, ;, and q(k) = k&, respectively. We will speak
of the unrestricted game if T 1s the class of all nonanticipating stopping rules
and of the rank game if T is the class of stopping rules based solely on the
observation of the relative ranks.
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The best known game of this kind is Martin Gardner’s Googol [cf. Ferguson
(1989) and Gnedin (1994)]. This is an unrestricted game, where .7 is the class
of all exchangeable distributions and Player 1 aims to maximize the probabil-
ity of stopping at the largest observation.

Another example relevant to the subject of the present paper is the rank
game where Player 2 chooses the order in which random numbers must be
demonstrated to Player 1. The two classical payoff functions appear in Gilbert
and Mosteller (1966) and Chow, Moriguti, Robbins and Samuels (1964). One
of the possibilities to bring this model into agreement with the above scheme
is to identify & with the family of distributions on the set of permutations,
represented as integer n-vectors.

Recent results of Hill and Kennedy (1992) are naturally interpreted in the
framework of the unrestricted game in which the observations are indepen-
dent and Player 1 knows the distribution of max(Y7,...,Y,). Using a convex-
ity idea, Hill and Kennedy obtained general estimates of the performance of
threshold rules prescribing to stop at the first observation that exceeds a
fixed level. To construct minimax distributions for certain payoff functions,
they introduced a sequence of random variables, called Bernoulli pyramid,
that generates the process of relative ranks with an independence property.

Unrestricted games with various parametric classes of exchangeable distri-
butions have been studied in the framework of the so-called partial informa-
tion problems [cf. Berezovskiy and Gnedin (1984) and Section 3 of Samuels
(1991)]. Other related work appears in Hill and Krengel (1991, 1992) and Irle
and Schmitz (1978).

In this paper, we study the unrestricted version of the game introduced by
Gilbert and Mosteller (1966) and Chow, Moriguti, Robbins and Samuels
(1964), in which Player 2 compiles Y7,...,Y, by rearranging the values of an
iid sequence with continuous distribution known to both players. The class &
appearing in this model can be characterized by the property that the
cumulative distribution of the order statistics of (Y3,...,Y,) is the same as
the distribution of the order statistics of a vector with iid components. Our
majn construction of the travellers’ process yields a sequence of observations
with the same rank properties as that of the Bernoulli pyramid, leading in
some cases to a solution analogous to the solution of Hill and Kennedy (1992).

It is surprising that rearranging iid variables may give the same effect as
selecting distributions of independent variables. This is the case for the
above-mentioned classical payoff functions. We make a step forward by
characterizing explicitly those payoff functions that admit a solution via
Bernoulli pyramid or travellers’ process.

2. Description of the game. The game is played by two participants.
There are n iid continuously distributed random variables X;,..., X,. The
. integer n and the distribution of the X,’s are known to both players. Player 2
observes all random variables X;,..., X,, and arranges the observed values
in some order. The resulting sequence Y,,...,Y, is shown successively to
Player 1, who must stop the process at one of the observations solely using
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the information collected so far. That is, having observed Y7,...,Y;, Player 1
must decide whether to stop at Y, or to make the next observation, if there is
at least one more observation available; in the case i = n, Player 1 must stop
at Y,. If the stop occurs at the observation that is the %th largest among all n
observations, Player 1 has to pay the opponent the amount g(%). We assume
that the payoff function g¢(-) is nondecreasing and satisfies q(1) < g(n).
Player 1 aims to minimize the expected payoff; Player 2 wants to maximize it.
We are interested in the value of the game and in the minimax strategies of
both players.

The monotonicity assumption means that Player 1 prefers to select obser-
vations with small ranks, trying to recognize them in the course of the
observation process. Player 2 tries to make the search as difficult as possible.
We can view the game as a worst-case study of the “full-information” best-
choice problem [cf. Gilbert and Mosteller (1966)] when the common assump-
tion of arrival of the objects in random order is violated.

Because the distribution of the X;’s is known exactly, and because the
ranking of variables is invariant under all monotonic transformations re-
specting continuity of the distribution, we lose no generality by assuming
that the distribution is uniform on I = [0, 1]. Hence, we can identify X =
(Xi,...,X,) with a random point of the unit r-cube sampled from the
Lebesgue measure.

We first give a formal description of the available strategies and of the

payoff structure.
We define a stopping rule to be a measurable function 7: I" - {1,..., n}
such that the inverse image of any i = 1,...,n is a subset of I" ="' X ["*™*

of the form B; X I"~‘, where B, C I'. This condition formalizes the anticipat-
ing property: The decision to stop at y; in the series y,..., y, must depend
solely on y,,...,y; Clearly, each stopping rule can be identified with a
measurable partition of I" into n pieces B; X I" %,

We define an arrangement to be a measurable mapping ¢: I" - I"
satisfying {x,...,x,} ={y1,..., ¥, for y = ¢(x). This means that there
exists a permutation s depending on x such that y; =x,qy,..., ¥, = %)
For almost all x this permutation is unique. Hence, ignoring a null set, any
arrangement can be seen to be a partition of I into n! pieces.

For y eI",i €{1,..., n}, we define the absolute rank of y; as

R, . (y)=#{j:j<n,y =y}
and the relative rank of y; as
Ri(y)=#{j:j<i,y =y}

Note that the ith relative rank is completely determined through compar-
isons of y; with the first i coordinates.

 Assume that all components of y are different. Then the sequence of
absolute ranks (R, ,(y),..., R, ,(y)), which in this case is a permutation of
n integers, uniquely determines (R,(y),..., R,(y)). The converse of this
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connection is less obvious: Absolute ranks are unambiguously reconstructable
from the sequence of relative ranks.

With these definitions, the game looks as follows: Player 2 selects an
arrangement ¢ and Player 1 selects a stopping rule 7. The arrangement ¢ is
applied to transform X into ¢(X) =Y = (Y,,...,Y,). Then 7 is applied to Y.
The payoff is q(R, ,(Y)), where R (Y)=R, (Y) on {r=~k}. Thus the
expected payoff is

o(d,7) < Eq(R, (V) - ¥ [

i=1 fxel™ 1(¢(xN=i

}q(Ri,n(cb(x))) dx.

Player 2 determines the distribution of Y by his choice of the arrange-
ment. For example, if ¢ is the identity, then Y is uniformly distributed in the
cube; if ¢ puts the components in increasing order, then Y is uniformly
distributed in the unit simplex. By backward induction, for any ¢, there
exists an optimal counterstrategy that minimizes v(¢, - ). On the other hand,
also for any 7, there exists ¢ maximizing v(-, 7). Indeed, for each x just pick
a permutation maximizing R ,(y), taking special care of measurability.

The game will be solved if we find two strategies ¢*,7* such that ¢*
maximizes v(-,7*) and 7* minimizes v(¢*, ). If such strategies exist, they
are minimax and the value of the game is

v(¢*,7*) = inf sup v(¢,7) = sup infv(¢, 7).
T ¢ ¢ T

REMARK. Standard minimax theorems of the game theory, which state
the existence of the value of a game, rely on convexity of the strategy spaces.
Because the set of partitions of I" has no obvious convex structure, it does
not seem possible to apply the general results to the game under considera-
tion. One would expect in this situation that the strategy spaces must be
convexified properly to guarantee the existence of the value or, in other
words, that randomized strategies should be allowed. In what follows we
isolate a class of payoff functions such that the randomization is not needed,
that is, both players have minimax pure strategies and the value of the game
exists.

3. Threshold rules. Define the threshold rule with threshold 6 € I by

min{i: y;, > 6},

(y) = {

That is, stop at the first exceedance over 6 or proceed to the last observation.

It is easy to understand which arrangements are the best counterstrate-
gies against 7,. Assume first that some 2 > 1 elements of x,,..., x, exceed 6.
Then Player 2 cannot prevent stopping at one of the exceedances, whose
absolute rank is not greater than k. On the other hand, Player 2 forces the
opponent to stop at the observation with the absolute rank equal to %2 by
showing the smallest exceedance prior to the other exceedances. If there are

n, if there is no such i.
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no exceedances at all, then 7, prescribes stopping at the last observation;
hence it is optimal for Player 2 to put the minimal value (= rank n) at the
end of the sequence. Because the number of exceedances is binomially
distributed, this argument yields
= _ def

() maxo(d,n) = ¥ (7)(1-0)'0m (k) + 07a(n) ' F(0).

k=1
By taking the derivative, it follows that the minimum of f(6) in [0,1] is
attained by the unique value 6* satisfying the equation

@ e - =T (" V(5 otk 1) g,

k=1

Therefore, the upper value of the game satisfies
(3) inf sup v(¢,7) < sup v(, 7.) = f(6%).
T ¢ ¢

4. Travellers’ process. Think of the unit interval as a road connecting 0
and 1 and passing through n cities with unknown locations x,..., x,. Two
travellers start walking at time ¢ = 0 from some point 6 strictly between zero
and one. They move in opposite directions with constant speeds and reach the
endpoints at the same moment ¢ = 1. The travellers report the locations of
the cities as soon as they reach them on the road, and the locations become
known as soon as they are reported.

The story above determines an arrangement, defined for almost all x € I".
Indeed, consider the function

x— 0
) t ey forxe[0,1],
@ (£)={ 5"
R for x € [0,0].
[The function #(x) is the moment when one of the travellers reaches x.]
Assuming that x = (x,,..., x,) has different components and
xl - 0 0 - xJ . .
#* Vz,_]:xis0<xj,

1-6 0
there exists a unique permutation s such that #(x,;) < -+ < #(x,,)). Define
¢0(x) = (xs(l)? tee xs(n))‘ )

This arrangement is invariant under permutations of the arguments
Xy,..., X,. Applying ¢, to the random vector X we obtain a random sequence
Y =(Yy,...,Y,) = ¢,(X) called the travellers’ process with starting point 6.

"Fori=1,...,n,set J, = 1y, . ¢)- An important distributional property of
the travellers’ process is given next.
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LEMMA 1. The random variablesd,..., dJ, areiid, with P{J, = 1} = 1 — 0.
For any i=1,...,n — 1, the variables J,,4,...,J, are independent of
Y,...,Y,.

Proor. Introduce random variables H; = 1x ., and U, =#(X,), i=
1,..., n. Clearly, the H,’s are iid Bernoulli random variables. We prove now
that the variables H,,...,H,;U,,...,U, are independent. Indeed, indepen-
dence of the pairs (H,,U,),...,(H,, U,) follows from the independence of the
X.’s. The variable X, conditioned on {X; > 6}, is uniformly distributed on the
interval [1 — 6, 1]. Therefore, the distribution of U, conditioned on {H; = 1} is
standard uniform. The same holds for conditioning on {H, = 0}, whence H;
and U; are independent as well.

Set U/ = U, and H; = H, if U; has the ith smallest value among Uy, ..., U,.
The above independence implies that the vector (Hj,..., H,) is independent
of Uj,...,U, and has the same distribution as (H,,..., H,). It remains to
note that H! = J; and Y, is a function of H; and U;. O

l

With a little additional effort, we can establish an interesting regenerative
property of the travellers’ process. Let y;: I — I be the (random) nondecreas-
ing mapping that shrinks the interval (6 — 6¢(Y}), 6 + (1 — 6)t(Y})) to 6 and
expands linearly [0, 0§ — 6¢(Y})] to [0,6] and [0 + (1 — 0)#(Y}),1] to [6,1].

PrROPOSITION 2. For any i =1,...,n — 1, the distribution of the vector
(v(Y;4 1), .-, 7(Y,) conditioned on the values of Yy, ...,Y; does not depend
on these values and coincides with the distribution of the (n — i) point
travellers’ process, with the same starting point 6.

Proor. Use the above representation through the H;’s and U/’s and the
following fact: The distribution of n — i top order statistics of (X,,..., X,)
conditioned on the values of i bottom order statistics coincides with the
cumulative distribution of the order statistics corresponding to a uniform iid
sample. O

We can say that the travellers’ process starts anew at each discovery, with
a reduced number of points. In particular, the future of the process depends
on its prehistory only through n — i and #(Y)).

Note that each Y, is either the greatest or the smallest point among
Y,,...,Y,, depending on whether Y, > 6 or Y; < 6. Equivalently, the ith
relative rank assumes the value 1 or i. Indeed, the traveller moving in the
positive direction reports an increasing sequence located over 6, whereas the

other traveller reports the points below 6 in decreasing order. We have

(5) R,=J,+i(1-J,) and R, ,=R,+ Y J,

j=i+1
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(for shorthand notation, the dependence on Y is omitted). By Lemma 1, the
distribution of the forthcoming relative ranks (hence also of absolute ranks)
conditioned on the history of the process coincides with their unconditional
distribution. Observing the travellers’ process provides no information about
the ranking of future items.

5. A solution. The argument of Section 3 shows that ¢, is always an
optimal counterstrategy against 7,. Our principal result is essentially an
answer to the reciprocal question regarding the optimality of the threshold
rule as a counterstrategy against ¢,.

THEOREM 3. The pair of strategies ¢,, 7, provides a solution of the game iff
0 = 6* and (in addition to the required monotonicity) the payoff function
satisfies the inequalities

. n—i n_i\(1- 9*\*

I G [y
X(q(k+1i)—q(k)), i=2,...,n—1,

where 0% is found from (2). In this case, the value of the game equals f(6*).

ProOOF. Consider the problem of optimal stopping of the travellers’ process
Y,,...,Y,, with fixed starting point 6. By Lemma 1 and by (5), the expected
payoff for stopping at the ith observation is

E(q(R;,) | Yy,....Y) =ad; + b(1-J),

where

n—i .
(”k_ ‘)(1 — ) omikq(k + 1),
k=0
n—i o )
b, = (”k ‘)(1 —0)*0mikq(k + ).
k=0
Define stopping rules
(i) - |

All 7(7) are relative-rank-based rules, except 7(1) = 7,. Arguing as above we
show that the conditional payoff for exploiting 7(7) is

E(q(RT(i),n) | Yl""’Yi~1) = w,,

min{k: k >1i,Y, > 60},
n, if there is no such k.

where

n _]i + 1)(1 _ 0)k0n4i+1ﬂkq(k) + 0”‘i+1q(n).
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Now assume that 7, minimizes v(:, ¢,). Then
E(q(R; ) |Yy,....Y,) <E(q(R,;.1,) | Yy,...,Y;) on{g =i},

because stopping with 7, should be better than proceeding with 7(i + 1), and
also

E(q(R.gin,n) | Y1, V) < E(q(R;,) | Yy,..., %) on{7,>i},

because proceeding with 7, should be better than stopping and 7, = 7(i + 1)
on {7, > i}. Because 7, accepts any of the values from 1 to n with positive
probability, we have

(7) aiSleSbi, i=1,...,n_1.

In particular,
(8) a; =b; =w,

whence the rule 7(2) and the constant rule r = 1 are both optimal as well.

Conversely, assume (7). Letting i run backward from n — 1 to 1 we prove
the optimality of each 7(i) among the rules always passing the first i — 1
observations. This implies that all three rules = = 1, 7(2) and 7, are optimal,
with Eq(R,) = Eq(R,) = a,.

We have proved that (7) holds iff 7, is optimal. Substituting the formulas
for a; and w, into (8) we arrive at the familiar equation (2). Hence optimality
can take place only if § = 0*. Further, for i = 2,...,n — 1, the inequalities
a; < w;,, can be readily written as

1

n—i . 1—-06 k

amy —a() = T (") (552 otk + 1 - a(h)
k=1

and are always satisfied for 6 = 6*, by (2). Thus (7) is equivalent to the

system

a1=w2, blZwl+1 f0ri=2,...,n—1.

Transforming the last inequalities, we obtain (6).
To complete the proof recall the upper bound (3). O

REMARK. We have seen that if 7, is optimal against ¢,, then there are
also other optimal rules (in fact, infinitely many of them). Similarly, there are
infinitely many optimal counterstrategies against 7,. This, however, in no
way answers the question whether the solution of the game is unique.

ExampLES. For the two classical payoffs the problem is solved.

For the payoff function q(k) =1, ,, the optimal threshold value is
. 0*=1-1/n and (6) is obviously satisfied. Consequently, the minimax
probability of stopping at the largest observation is

1-7(6%) =1 -1/n)""",
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tending to the famous e~! as n — ». Thus asymptotically the probability of
the best choice is the same as in the standard problem, though for finite n
these values are different.

For the expected rank problem, where q(k) = k, we have §* = n=1/~D It
is easy to reduce (6) to the inequality i/¢~ D > n!/»~1D which holds by the
monotonicity of the function z/~1 for z > 1. The minimax expected rank is

1+(n—-1)(1—-nt""D) ~logn.

The analogy with the standard problem of minimizing the expected rank is no
longer the case [the classical asymptotic value is 3.8695..., as found in
Chow, Moriguti, Robbins and Samuels (1964)].

It is easy to check that our solution works for all payoff functions for
n = 2,3 and, with more effort, also for n = 4.

6. Bernoulli pyramid. In what follows we establish a link with the
results of Hill and Kennedy (1992). This will be done by exploiting the
travellers’ process to solve a more general optimal stopping problem.

Let Y,,...,Y, be an arbitrary sequence of continuous random variables
that has the same rank properties as the travellers’ process with starting
point 6, that is, the associated relative ranks satisfy

(99 R;,:..., R, areindependent of Y;,...,Y], i=1,...,n—1,

and
(10) P{R,=i}=1-P(R;,=1} =9, 1=2,...,n.

These properties guarantee that there exists a stopping rule based solely on
the relative ranks, which minimizes Eq(R, ,) among all stopping rules based
on the Y’s, as it follows from a well-known fact of the stopping theory about
randomized rules. Thus the upper bound

inf Eq(R,,,) < f(6%)

holds in general because it is valid for the travellers’ process [recall (3)], and
the infinum depends only on ¢(-) and 6. The same idea works in the extreme
case.

THEOREM 4. Assume the variables Yi,...,Y, satisfy (9) and (10) for some
0. The following are equivalent:

@) inf, Eq(R, ,) = f(6®).
(i) 6 = 6* and the payoff function satisfies (6).

PrOOF. Assume (i). Then 7;. is the optimal stopping rule for the trav-
ellers’ process with starting point 6, and (ii) follows by Theorem 3. The
converse is similar. O
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Denote
G(y) = P{max(Yy,...,Y,) <y}

the distribution function of the maximal observation. Extending our old
definition of the threshold rule set,

minf{i: y;, > G (™)},
n, if there is no such i,

(y) = {

where G ¢ (-) denotes the generalized inverse.

Consider the following game. Player 2 selects the distributions Fy,..., F,
of independent random variables Y;,...,Y, and tells the distribution of the
maximum, G = [] F,, to Player 1. Player 1 selects a stopping rule and applies
itto Y =(Yy,...,Y,). The expected loss of Player 1 is

def
v(Fy,...,F,;;7) =Eq(R, (Y)).

(Using the transformation technique we can reduce the game to the case
where G is some fixed distribution, known to both players, and Player 2 picks
the Fs subject to the constraint G = [1 F,. A particular form of G does not
matter.)

Theorem 1.1 by Hill and Kennedy (1992) asserts that

(11) sup v(Fy,...,F,;7.) <f(0%),
F,

providing an estimate of the upper value of the game.

Extending the original construction of Hill and Kennedy (1992), we define
the Bernoulli pyramid with parameter 0 € [0, 1] to be a sequence of indepen-
dent random variables satisfying (9) and (10). For example, take independent
variables such that Y, is uniformly distributed on [0, 1] and Y; is uniformly
distributed on

[1+ (i—2)0,1+ (i—1)0]U[-(i—2)(1-0),—(—1)(1-0)]

fori=2,...,n.

Combining (11) with Theorem 4 yields the following result: The pair
(Bernoulli pyramid, threshold rule) provides a solution of the game (when
Player 2 selects the distributions of independent observations) iff the parame-
ters of both strategies equal to 0* and (6) holds.

As was shown by Hill and Kennedy (1992), a solution is of this form for the
exponential payoff g(k) = —z*, z € (0, 1), and for q(k) = 1, ,, (maximizing
the probability of picking one of the m largest items). It follows that these
payoff functions satisfy (6).

It follows from Hill and Kennedy (1992) that there is no solution of this
form for (g(1),...,q(5)) =(0,1,1,1,2); hence, (6) does not hold in this case
(this can be checked directly).
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A posteriori, these examples apply, via the travellers’ process, to the
problem of optimal stopping and order selection.

7. Final remarks. Hill and Kennedy (1992) allow for the possibility to
pass all the observations without stopping, in which case Player 1 pays an
amount g(0) [the interesting case is when ¢(1) < ¢(0) < ¢g(1)]. This general-
ization can be treated by our methods after appropriate modification of (2)
and (6).

The referee suggested the following version of the game. Player 1 selects a
stopping rule. Player 2 selects distributions of independent variables, with a
fixed distribution of the maximal value and the order to present the values to
the opponent. Under (6) the threshold rule is again minimax, whereas Player
2 has two surprisingly different minimax strategies: the travellers’ process
and the Bernoulli pyramid.

It is interesting to compare these results with the rank game, in which
Player 2 can arrange the sequence. It is known that the value is always
(g(1) + --- +q(n))/n, the (randomized) minimax strategy of Player 1 is stop-
ping at random with equal probabilities at any of the observations and there
is an optimal arrangement inducing independent relative ranks [cf. Samuels
(1991), Section 4.2.1].

If Player 2 is not limited at all in the choice of distributions of the
observations, then stopping at random happens to be minimax also in the
analogous unrestricted game. A worst-case sequence can be taken Markovian,
with the same rank properties as in Samuels (1991).

A number of intriguing questions require further attention. Is the above
solution ungiue, and how does it look like if (6) violated? Is the threshold rule
optimal under the assumption that the induced rank process satisfies (9) and
(10), and (6) holds?
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