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For a wide sense stationary random field (D = {?(x): x E R2}, we 
investigate the asymptotic errors made in the numerical integration of 
line intergrals of the form ft f(x)0(x)do(x). It is shown, for example, 
that if f and F are smooth, and if the spectral density p(A) satisfies p(A) 
kIAI-4 as A -+ oo, then there is a constant c' with N3EI fr f (x)4(x)dcr(x)- 
E(p,~(Xj)12 > c'N-3 for all finite sets {xj: 1 < j < N} and all choices 
of coefficients {/38}. And, if any fixed parameterization x(t) of F is given 
and the integral fJ f(x(t))0(x(t))Ix'(t)Idt is numerically integrated using 
the midpoint method, the exact asymptotics of the mean squared error is 
derived. This leads to asymptotically optimal designs, and generalizes to 
other power laws and to nonstationary and nonisotropic fields. 

1. Introduction. This paper presents a detailed analysis of the asymp- 
totic mean square errors that arise when stochastic line integrals of the form 

(1.1) f (y)b(y) do(y) 

are computed by means of a generalized midpoint method. In (1.1) and 
throughout this paper, (D = {+(x)} is a continuous random field, F is a 
simple smooth curve of finite length, do(y) denotes arc length and f (x) is a 
continuous function defined on F. 

Our attention was drawn first to problems of this type that arose in the 
theory of least mean square prediction for Gaussian Markov fields that satisfy 
linear elliptic partial differential equations. See [9], [11] and [15]. When such 
a field {+ (y)} defined on R2 is observed in the complement of a domain D 
with smooth boundary F, the prediction {+(x) x E D} may be identified 
with the solution of an associated Dirichlet problem with stochastic boundary 
values. As such, these predictions have representations as generalized Poisson 
integrals over the boundary curves F. Problems of optimal sample design and 
computation of the predictions thus reduce to problems of optimal design and 
computation of these integrals. 

This paper contains a nearly complete analysis of the errors in several 
distinct settings, and is organized as follows. 
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First, in Section 2, the simplest and most illustrative example, the Whittle 
field on R2, which satisfies 

(1.2) (I - A)+(x) = W(x), 

where W(x) is a two-dimensional white noise, is introduced together with 
the associated prediction problem. This is followed in Section 3 with the in- 
troduction of a generalized midpoint method for evaluating line integrals of 
parametrized curves F = {x(t): 0 < t < 1}. Theorems 3.1, 3.2 and 3.3 contain 
statements of our main results for the W7hittle field. In particular, Theorem 3.3 
asserts that the mean squared error that arises when (1.1) is evaluated using 
an n point generalized midpoint method equals 

(1.3) cn-3 + o(n-3), 

where 

(1.4) c = (2X)-2;(3) 1 If(x(t))121x'(t)14 dt, 

and ;(.) is the Riemann zeta function. We remark in passing that we were 
surprised by the occurrence of the zeta function here and in the extensions of 
Theorem 3.3 that we present in Sections 7 and 8. 

These theorems are proved in Sections 4 and 5. The exact constant in (1.4) 
allows for the comparison of methods, and Section 6 discusses the improve- 
ments obtained with the generalized midpoint methods over the classical mid- 
point method. 

Section 7 extends the results obtained for the Whittle field to a class of sta- 
tionary nonisotropic and nonstationary second-order Gaussian Markov fields. 
Finally, Section 8 extends these results to non-Markovian stationary Gaussian 
fields satisfying asymptotic spectral power laws at infinity. 

Subsequent papers will extend this analysis to surface integrals that arise 
in predicting solutions of stochastic elliptic problems in higher dimensions and 
to the line integrals arising from the parabolic stochastic heat equation. 

Our work here is related to earlier work on centered sampling for one- 
dimensional integrals, especially Matheron [7], Schoenfelder [12] and also 
Stein [13]. Our ongoing work on multidimensional integrals is closely related 
to [13]. 

2. The Whittle field. Letting {W(x)} denote a white noise field on R 
the stationary mean zero Gaussian field (D = 4F(k, /3) = {?(x)} satisfying the 
stochastic partial differential equation 

(2.1) (k2 _ -A)(x) = l3W(x), x E R2, 

was introduced by Whittle [15] and will be referred to as the Whittle field. (D 
is perhaps the simplest continuous autoregressive spatial field, and it arises 
naturally when the Poisson equation 

(k2 _ A)Uo(X) = f(X) 
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is perturbed with a white noise forcing term f3W(x), 

(k2 - A)u(x) = f(x) + 3W(x). 

The resulting perturbation u(x) - uo(x) of uo, that is, the field b, will thus 
naturally occur wherever the Poisson equation occurs. 1D and related fields 
have been widely used to model variations of spatial fields from trend sur- 
faces. For examples in the context of hydrological and geological data, see [5] 
and [6]. 

The covariance function 

R(x, y) = E+(x)+(y) 

of { 0(x) }, when interpreted as the kernel of an integral operator R acting on 
L2(R2), is easily seen to satisfy 

(2.2) R 2(k2 - A)-2 

Scaling arguments can be used to reduce this to the special case when k = 1 
and /32 = 41T, for which 

(2.3) R(x, y) = X 1 f exp{i(x - y, A)}p(A) dA, 

with p(A) = (1 + 1A12)-2. 
The integral (2.3) for R can be explicitly evaluated ([1], page 376, 9.6.25) 

and gives 

(2.4) R(x, y) = Ix - yJK1(Jx - yl), 

where K1 is the modified Bessel function of the second kind and order 1. From 
(2.4) the asymptotic expression 

(2.5) R(x, y) I -Ix -y log( x)) -Ix- 0, 

follows ([1], page 379, 9.8.5), and it is easily deduced that with probability 
1 the field +(x) is nondifferentiable a.e., but that for each a E (9, 1), +(x) 
satisfies a locally uniform Lipschitz condition of order a. 

For purposes of illustration we include a simulated graph of +(x) in 
Figure 1. 

The prediction problem for (. See [11] and [16]. Given a domain D C R2 
with smooth compact boundary F and complementary domain DC, the least 
mean square error prediction of +(x) for x in D given the ou-field o-{ (y) y E 
DC} is the conditional expectation 

OD(X) EE{4(x) I 0{4(y): y e DC}}. 

The field (D enjoys a germ field Markov property [9], which implies that OD iS 
identifiable with 

ODD(X) = E{+(x) I g(F)}. 
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FIG. 1. Whittle field with k = 1 and 132 - 4v. 

The "germ field" g(F) occurring here is defined as 

g(Fr)= n fa (y): y E }. 
8>0 

The function D(x) is characterized as the solution of the boundary value 
problem [11] 

(I - A)2 SD(x)O, x E D2 

(2.6) D(YP=k(y), y Er, 

d9nSD(Y) = dn4(Y), y E r. 
Here the normal derivative dn+(Y) is a distributional derivative defined by 

(2.7) f(y) dn,f(y) da(y) = lim h' f(y)[(y+hn)-+(y)]do(y), 

where n = n(y) is a smooth unit vector normal to r at y. It follows from (2.6) 
that OD has a Poisson representation, 

(2.8) bD(X) = fpo(x,y)b(y) da(y) + j pf(x,y) dn0(y) da(y), 

in which the Poisson kernels po(x, y) and pi(x, y) are smooth functions of 
x E D and y E r that are, in principle, computable. 

Thus, the effective numerical computation of OD(x) reduces to the nu- 
merical computation of these two integrals, and although the integral 
f pi(x, y) d.4(y) da(y) involves the normal derivative, it is operationally 
defined in (2.7) as a limit of integrals of the form f f(y)44y)da(y). This 



ERROR ANALYSIS FOR CERTAIN RANDOM INTEGRALS 175 

leads to a design problem of a familiar type. Let the field f be observed 
at a finite number of sites {Ik(xj) : j = 1,... , n}, xj 0 D, and let weights 
{Aj} be given. Then form the sum LJ1 Aj b(xj) as an approximation to the 
integral fr f (y)o(y) do-(y). The basic questions here are: Where should the 
observation sites {xj} be located and what should the coefficients {Aj} be to 
minimize the expected square error 

E{J 

f 

(y)k(y) 

d 

r(y) 

-E 

Aj1(xj) 
3. On the midpoint method. It is known that when computing a wide 

variety of random integrals, midpoint methods are asymptotically optimal, or 
are nearly so; see [2]. That this is so in the present case follows by combining 
the next two theorems. Theorem 3.1 was established in [15] and [11]. 

THEOREM 3.1. Let F C R2 be a smooth curve of length 1, and let f (x) be a 
smooth nonzero function defined on F. For each fixed n, divide F into n disjoint 
arcs of length 1/n and let {xj} denote the midpoints of these arcs. Then for each 
smooth function f (x) defined on F, 

(3. 1) E[j f (y)(y)do(y) - ln- E f (xi)(xi)] = O(n-3) as n -* oo. 

THEOREM 3.2. Let F C R2 be a smooth curve of length 1 > 0 and let f (x) 
be a continuous nonzero function defined on F. There exists a constant c > 0 
so that: Given any collection of points {x;: 0 < j < n} and constants { Aj: 0 < 

j < n}, 

(3.2) Ej] f(y)>(y) dcr(y) - Ajf(xxj > cn-3. 

Our main results in this paper are refinements of Theorem 3.1. In particu- 
lar, for the midpoint method and for a class of generalized midpoint methods, 
we calculate an exact asymptotic constant in place of the "big 0" condition of 
(3.1). 

The generalized midpoint method. Let {x(t), 0 < t < 1} be a C2- 
parameterization of F, and assume that u(t) = x'(t) is continuous and never 
vanishes. For n fixed and 1 < j < n, we denote the arc x[(j - 1)/n, j/n] 
with Aj. Dividing Aj into two segments of equal length, we let xj = x (tj) 
denote the midpoint of Aj. Finally, we let Aj be the length of Aj and 
we set 

n 

(3.3) I(f , 4, F, n) = E f (xj)(xj)Aj. 
j=1 
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THEOREM 3.3. For each smooth curve F of finite length 1 > 0 and each 
smooth function f defined on F, 

(3.4) lim n3EjI(f, ), F, n)-j f(y))(y)yd)(y) = cj If (x(t))121x'(t)14 dt, 

where c is the constant c= (2=)-2;(3). 

4. Proof of Theorem 3.2. The Markov property of 4 will be used to re- 

place the approximation lAj4(xj) of f f (y)4(y) do(y) with an approximation 

for which the errors made in approximating fr f (y)O(y) do(y), which result 

from disjoint subarcs of F, are independent, or nearly so. We begin by intro- 

ducing some notation. Let D = D(y, r) = {x: Ix - yI < r} be a disk containing 

an arc A = D n F. Write +(x) for the conditional expectation 

+(X) = PD(X) = E{+(x) I o-{4(y): y ? D}} 

and observe that 

EjJ f(x)4)(x) do-(x) I o-{<4(x): x ? D} } = J f(x)+)(x) dur(x). 

The error fA f (x)o(x) d((x) - fA f (x)4(x) du(x) will be denoted with 
e(f, 4, A, D). 

We will also find it convenient to denote with -9 the class of all disks D( y, r) 

that are centered at points y E F and that are dissected by F, that is, D \ F 

consists of two components. Finally, for D E 9, we let A' stand for the diameter 

of D that is tangent to F at the center y. 

The following technical results will be essential. 

LEMMA 4.1. There exists a constant k with 0 < k such that for all D = 

D(y, r) in 29, 

(4.1) E{e(l, 0, A' D )12 > kr 4 

and 

(4.2) E{e(f, 4, A, D)}2 > kf2(y)E{e(l, 4, A', D)}2. 

Assuming momentarily the validity of Lemma 4.1, we now proceed with 

the proof of Theorem 3.2. Let {Dj = D(yj, rj): 1 < j < n} be any finite 

collection of disjoint disks in -9. By the Markov property of (F, the errors 

{ ej = e(f, 4, Aj, Dj) } are mutually independent and are independent of the 

a-field G = o-J{(x) x ? UDj}. Thus, if {4(xj)} is a set of observations for 

which the points { x} lie outside of UDj and if { Aj } is any set of constants, we 
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have 
f ~~~~~~~~~~~2 

Ejj f(x) b(x) do-(x) - YAj0(xj) 

> Ej f(x)b(x) do(x) - E{f f(x)b(x) do-(x) I 4(xj), 1I j < nj } 

> E{j f(x)b(x) do(x) - E{j f(x)(b(x) do-(x) I G} 

n ~~2 n 

> E Ee(f ,A1,PDi )j = DjEe(f, .b, A, Dj)2. 
j=l - 

However, from Lemma 4.1 we have for each j that 

Ee(f,f,A, Dj)2 > kf2(yj)E{e(1, b,A7,Dj)}2 > k2f2(yj)ri 

and thus 

(4.3) EJ/ f(x) b(x) do-(x) - AjA i(xj)} > k2 Yf2(yj)rj4 
j=1j= 

To complete the proof we will use Lemma 4.2. 

LEMMA 4.2. Let F c R2 be a smooth, bounded simple curve of length I > 0. 

There exists an integer N > 0 such that for any n > N and any collection of 
points {x;: 1 < j < n}, there are disjoint disks {D(yj, rj)} = {x Ix - yij < 

rj I 1 < j < 2n} in 9 which are disjoint of the set {Xk: 1 < k < n} and are 

such that the sum of the radii rj satisfies 

2n 1 
(4.4) E rj > 3r . 

j=1 

Because the minimum of the sum 

2n | 

r4, with Yrj > 
j=1 

occurs when rj = 1/6n holds for each j, the desired inequality (3.2) holds for 
n > N with c = 2k2 min{f(x)2: x E F}6-4. 

This completes the proof except for Lemmas 4.1 and 4.2. 

PROOFOF LEmMA 4.1. Webeginwith(4.1).Let RD(X,y) and RD,O(X,y) be 
the Greens functions of (I _ A)2 and A2, respectively- It is known [11] that 

E{e(l, k, A', D)}2 = I I RD(X, x') dor(x) do(x) 
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and that there is a constant K such that for all r < 19 

IA IA' RD(X, x') do(x) do(x') 1 1 RD,O(X, x') do(x) do(x') 

< K fA' RD(X, x') du(x) du(x'). 

An elementary scaling argument shows that the inner integral is homogeneous 
of degree 4 in r, that is, 

IA' IA' RD,o(x, x') du(x) du(x') = const. r4, 

which proves (4.1). 
For the proof of (4.2), it again suffices to consider the case of an arbitrarily 

small radius r. We write 

I f (x)+(x) do(x) = f (y) f 
+(x) dou(x) + J[f (x) - f (y)]4(x) dou(x) 

? f(Y)j (x)d do(x) IA' (x) do(x)h 

From this and (4.1), together with the fact that conditional expectations de- 
crease L2 norms, it suffices to show that 

(4.5) Ej [f(x) - f(y)]O(x)du(x)} = O(r ) as r -- 0, 

and 

(4.6) Ej f Wxdo(x)-f (x')do(x')} = O(r4) as r-- 0. 

However, 

2 
E [f (x) -f (y)b](x) do(x)} 

(4.7) AJ 
= IA| [f (x) - f (y)][f (x') - f (y)]RD(x, x') dou(x) dou(x'). 

Because for all x and x' in D, IRD(x,x')l < const. r2 (see [11]), l[f(x) - 
f(y)][f(x') - f(y)]I is uniformly o(1) and o-(A) = 0(r), (4.7) is seen to be 
uniformly 0(r4) as r -- 0, and (4.5) is thus established. 

To establish (4.6), we note that our assumption that F has bounded curva- 
ture implies there is a constant c such that for all D in 9, the curves A and A' 
may be simultaneously parametrized so that x'(t) maps [0, 2r] linearly onto 
A' with do-/dt = 1 and x(t) maps [0, 2r] onto A with Ix(t) - x'(t)l < cr2 and 
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h(t) = d/dt satisfying Ih(t) - 11 < cr2 hold for all t. Then 

E +(x) do(x) - I (x') do(x')J 

2r 2 
= EJ -(x(t))h(x (t)) (x'(t))] dt t 

< 2E{j 4(x(t))[h(x(t)) - 1] dt 

2r 2 
+ 2Ef [(x(t)) - +(x'(t)] dt 

Applying Schwarz's inequality to each of the last integrals gives 

2r 2 2r 2r 
Efj (x(t))[h(x(t)) - 1]dt} < EJ ((x(t))2dt [h(x(t)) - 1]2dt 

< 8c2r6 

and 

(4.8) E{j [ (-(x'(t))] dt} 

2r 2r 
<f| ldtf e[k(x(t)) - O(x'(t))]2dt 

(4.9) < const. r 2r Ix(t) - x i(t)l2log( 1 

Jo Ixt) - '(t)Idt [by (2.5)] 

< const. r6log( ), 

thereby completing the proof. O 

REMARK. Although it will not be pursued here, the preceding proof may 

be modified to extend Theorem 5.2 to a broad class of locally nondeterministic 

fields. Definitions and related arguments using local nondeterminism occur in 

[10] and [8]. 

5. Proof of Theorem 3.3. The proof turns on the fact that if f is constant 

and the curve F is a line segment parametrized by arc length, then an exact 

integral expression may be obtained for E{I(f (k F, n) - f f(y)(y) dou(y)}2, 
and this expression is amenable to a precise analysis. By approximating F 

with a polygonal curve and then replacing the integral along F with one along 

the approximating polygonal curve, we may obtain (3.4). 

We now describe this approximation. We begin by extending the function 

f (x) onto a domain Fo that contains the curve F and for which the condition 

dnf (y) = 0 holds on F. For each of the arcs Aj defined in the modified midpont 
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method, we let Lj be the line segment joining the ends of Aj. The midpoint 
of Lj will be denoted with yj. We choose an N so large that each segment Lj 
is contained in Fo whenever n > N. Finally, we set F' = ULj, and we let ,utj 
equal the length of Lj. The sum that corresponds to the midpoint method as 
applied to the polygonal curve will be written as 

n 

aI(f, b, F, n) = E f (yj) (yj) j. 
j=l 

The accuracy of this approximation is estimated in Lemma 5.1. 

LEMMA 5.1. With the foregoing notation there are constants K1 and K2 
depending only on the length and the curvature of F and on the C2-norm of 
the function f, such that for all n > N, 

(5.1) E{aI(f, 0, F, n) - I(f, 0, F, n)}2 < Kln-4 log(n), 

(5.2) Ejff(y)k(y))do(y) - f (y))b(y)do(y)} < K2n-4log(n). 

Assuming the validity of Lemma 5.1, Theorem 3.3 is seen to be equivalent 
to Theorem 5.2. 

THEOREM 5.2. 

lim n3E{aI(f, k, F, n) - f (y)4(y) do-(y)}2 
(5.3) n-> 1 r1 

= Cf If(X(t))121x'(t)14dt, 

where c = (2iT)-2%(3). 

PROOF OF LEMMA 5.1. To establish (5.1), we first break the quantity 
aI(f, , F, n) - I(f, 9, F, n) into three sums: 

aI(f, , F, n) - I(f, 9, F, n) = l{f (yj)k(yj)Aj -f (yj)4(yj)Aj} 

+ E{f(yj)k(yj)Aj - f(xj)k(yj)Aj} 

+ E{f (xj)k(yj)Aj -f (xj)0(xj)Aj} 
J 

= Sl + S2 + S3, 

where, of course, 

Si = E{f (yj)0(yj)j-f (yj)-(yj)Aj}, 

S2 = E{f(yj)4(yj)Aj - f(xj)0(yj)Aj} 
j 
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and 

S3 = -f(xj)f(yj)Aj-f(xj)4(xj)Aj}. 

Then 

{aI(f, , F, b) - I(f,, rF,n)}2 - 3[S 2 + s2 + s2]. 

We estimate each piece on the right. First, ES2 < sup If(yj)12Ek(yj)2 
En_ 1( ,j - Aj)2. However, EO(y )2 = 1 and because F has bounded curvature, 
there is a constant K so that 0 < Aj - j < K ( ,j )3, provided only that FLj is 
sufficiently small. Because x(t) is continuously differentiable with a nonvan- 
ishing derivative, Lj - n-1 so we have ES2? O(n-5). 

Second, ES2 < -jff (yj)-f (xj)]2 Ej A2 = O(n-4), and finally, 

ES2 < E - +(yj)_ (xj)}2 {f (xj)Aj}2 
j j 

< const. n-1 El 0(yj)- (xj)}2 

< const. n1 IYj - xj 12log( iN) 
j \I~~~Yj -XjI 

< const. n - 1 n-4 log(n) = const. n-4 log(n). 
j 

Here we have used Schwarz's inequality between the first and second lines. 
The proof of (5.2) is similar: 

E{ f (y)b(y) d(y) - f (y)b(y) d((y)} 

= EjE f(y) (y)du(y) - f f(.yPk(y) d(y)} 

Setting e(j) = JA, f (x)P(x) doa(x) -fLj f (y)(y) da(y), we have by Schwarz's 
inequality that 

(5.4) Ejf f (y)(y) du(y) - f (y)P(y) d(y) }< n L Ee(j)2. 
J=1 

Fixing the index j, stationarity and isotropy of 'P may be used to replace 
Lj with a segment [0, h] of the real line. Parametrizing this segment with t 
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and the corresponding curve Aj with t -? (t, x(t)) gives 

rh 

e(j) = f [f (t, x(t))k(t, x(t)) - f (t, O)P(t, O)] dt 

h 

= fh[f (t, x(t)) - f (t, O)]4(t, x(t)) dt 

h 

+ f (t, O)[4(t, x(t)) - k(t, 0)] dt. 

However, F has bounded curvature and there are constants {Kj } for which 
Ix(t) - tI < Klh2, If(x(t)) - f(t)12 < K2h4 and [f(t)]2Ekb(x(t)) -(t)12 < 
K3h4log(h-1) hold for all n > N and all 0 < t < h. Then 

Ee( j)2 < 2E{ j[f (t x(t)) -f (t, O)]k(t, x(t)) dt} 

h 2 

+2E{j f (t, O)[4(t, x(t)) - 4(t, 0)] dt}9 

and by Schwarz's inequality we have 

h 

Ee( j)2 < 2h [f (t, x(t)) -f (t, 0)]2E[4(t, x(t))]2 dt 

+ 2hj [f (t, 0)]2E[O(t, x(t)) -_ (t, 0)]2 dt 

< 2K2h6 + 2K3h6 log(h- 1) 

< K4h6log(h-1). 

Substituting into (5.4) gives the desired result. O 

We now turn our attention to 

E{J f (t)O(t) d(y) - aI(f, 4F, n)} 

( E {E f (yj)[(y)-0(yj)] d]o(y)} 

, E Jf (yj)[k(y) - (y)j] d u(y) 
j k 

x I f (Yk)[O(Y) - k(Yk)] do(y). 

We derive an explicit Fourier representation for the summands in (5.5). We 
observe that the correspondence, 4(x) -? exp i(x, A) extends by linearity to 
a unique unitary U map from that subspace of L2(fl, P) that is spanned by 
the random variables k(x) onto the space L2(R2, p(A) dA). Here, as before, 
p(A) = (1 + 1A12)-2. 
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To compute the image 

U JL (y) - (yj)I d (y) 

we introduce the following notation: The endpoints of the segment Lj are Xj 
and xj+i, and we let Uj = (xj+l - xj)lxj+l- xjl be the unit vector giving the 
direction of Lj. Then yj = (xj+?+xj)/2 is the midpoint of Lj and ij = Ixj+i-xx 
is the length of Lj. Thus, 

UJ [P(y)- (yj)] d(y) = {exp i(y, A) exp i(yj, A)} d(y) 

= exp i (yjiA) sin(uj Alj/2) _ 1i} = eXleYjA)l 
uj .A/2 

J 

and 

EJ f (yj)[O(y) - b(yj)] do(y) f (Yk)kb(Y) -(Yk)] do(y) 

(5.6) = f (Yj)f (Yk)9Rf2 exp i(Yj - Yk, A) {su A/2 - 

sin(Uk * 
Alk/2)-lkpAdA X Uk A/2 

kp()dA 

For notational convenience we denote this integral with Cov(j, k, n). Making 
the change of variables 6 = ljA transforms (5.6) into 

Cov(j, k, n) = l3lkT- exp i Yj- Yk 96sin(uj. 
- 

/2) 

(5.7) 
JR 2 (Ij uj -J 1/2 j 

x jsin(Uk . 6k/21j)1 }(1j + 1612)-2 d6. 

To proceed, we fix a point x = x(t) on F and let j be chosen so that x lies on 
the arc Aj. Then fixing the value of m = j - k and noting that as n -> oo 

nlj - Ix'(t)I, Uj --*u(t) = (x'(t))/Ix'(t)I, Uk -- u(t) and (Yj-Yk)/lj - mu(t), 
it follows that 

lim n4Cov(j, k, n) 

= Ix'(t)14r1T I exp im(u(t), ( sin(u(t) /2) _ 1 
2 

d . 
J2 M ut). - /2) j 
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However, this last integral is independent of the direction of u(t) and may 
be written as 

ITJ cos(mP)[ S(/ )-1 jp2+q21-2dpdq 

=(2ir)1f I1i+r2i2drI cos(2mp){s - p1]p3dP 
-00 op 

=4j; cos(2mp)[ (P)-1] p-3dp. 

We summarize the result of this argument with Lemma 5.3. 

LEMMA 5.3. Fix a point x = x(t) on F and an integer m > 0. Let x belong 
to the arc Aj. (Note that Aj and j both depend on n.) Then, for k = j -m, 

lim n4f (yj) f (yk) Cov(j, k, n) = x(m), 
n->oo 

where 

(5.8) X(m) = f (x(t))21x'(t)14- f cos(2mp) [ p) - p3 dp. 

We now consider the sum n3 E> 1n=, f (Yi) f (Yn) Cov(j, k, n), which we 
write as 

n n 
n-1 E E n4f(Yj)f (Yk) Cov(j, k, n). 

j=1 k=1 

Fixing a t in (0, 1) and the corresponding j for which x(t) is in Aj we write 

n 

S(t, n) = n4f (yj)f (yk) Cov(j, k, n) 
k=1 

n-j 

= E n4f(yj)f(yj+m) Cov(j, j+m, n). 
m=1-j 

Because n4f (yj )f (Yk) Cov(j, j + m, n) - (m) as n -? oo, it is reasonable to 
expect the next lemma. 

LEMMA 5.4. 
00 

lim S(t, n) = YZx(m). 
n->c0o 

-00 

PROOF. By Lebesgue's dominated convergence theorem it will suffice to 
show there exists a sequence r(m) satisfying Yr(m) < oo and satisfying 
ICov(j,m,n)I < r(m) for all j, m and n. We will in fact show there is a 
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constant such that 

(5.9) I Cov(j, m, n)l < const. m-2 log( Iml) 

holds. 
From our hypotheses on F and the construction of the sequence {yj}, it 

follows that there is a finite positive constant c for which, 

(Yj Yk) >clj-kI and c-1< lk <c holdforallj,kandn. 

The desired result will thus follow from the formula (5.7) and the next lemma. 

LEMMA 5.5. For each constant c > 1, there exists a constant C such that 

|t/exp i (y()| si(u e() - 1 si(v e) _ (12 + ll2)-2d 
(5.10) J2 I sin(u) si(v ' ) 1}l?I2)d 

< Clyl-2log(lyl-1) 

holds for all scalars 1 with 0 < 1 < 1, for all y in R2 and for all vectors u and 
v with c-1 < lul < c and c-1 < ivi < c. 

This inequality (5.10) follows from laborious but elementary computations 
that we present only in outline. First, we introduce the function 

si(u.f sin(v .a) - F(u, v, 1, ) = s(u 6) _1si(u* 6)_ (1+1) 

Denoting the L1(R2) norm withl IIll, it can be shown that there are constants 
kl and k2 so that each second derivative g(e) = d dF satisfies 

(5.11) 11 g(6) Ill < ki log(l-1 

and 

(5.12) Il(F(u, v, 1, -F(u, v, 1', .)II, < k212 log(l1-), 

provided only that 0 < 1' < 1 < 1, c-1 < lul < c and c-1 < lvl < c. From (5.11) 
it follows that the Fourier transform F(l, y) of F(u, v, 1, ) satisfies 

(5.13) IF(l, y) 11 < kl log(i1)y2 

which gives 

(5.14) IF(l',y)l < k1y2log(yyI) provided IYI > (l/)-1. 

If IYI < (I')1 we note that (5.12) implies that 

(5.15) IF(l', y) - F(l, y)l < k212log(U1) provided that 0 < 1' < 1 < 1. 

Then, choosing 1 = lyK-1 and applying the inequality 

IF(l', y)l < IF(1, y)l + IF(1', y) - F(l, y)l 
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we observe that (5.12) together with (5.14) implies the desired inequality 

IF(l', y)j < ki log(jyj)jyfl2 + k2IyL2 log(IYI), 
thereby completing the proof. l 

The sum l4i(m) may now be evaluated using the Poisson summation 
formula, [4]. Namely, fo cos(2mp)[sin(p)/p - 1]2p-3 dp = 1h(2m), where 
h(p) = [sin(p)/p - 1]21pl-3. Thus, 

00 00 00 

2>IZh(2m) = - E h(nv) = I E(nw)-3 = V-2;(3) 
-0oo2 -0o n=1 

Applying this to Lemma 5.3 gives 

lim S(t, n) = IX'(t)14f2(X(t))i-1'(3) ?- 0.385f2(X(t))IX'(t)j4 n->oo 

and, by Lemma 5.4, this convergence is uniformly bounded. Hence 
00 00 

lim n3 E E f (y)f (Yk) Cov(j, k, n) 

n n 

= lim n-1L E E n4f(yj)f(yk) Cov(j, k, n) 
nl-> o j=1lk=1 

= (2X )-2;(3) 1 f(X(t))2Ix'(t)14 dx, 

which completes the proof of Theorem 3.3. L 

6. On the constant f f(x(t))2 Ix'(t) 14 dt. The constant fJ f(x(t))2 
Ix'(t)14 dx that determines the asymptotic error for the modified midpoint 
methods is a function of the spacing chosen for the points {xj} or, what 
is the same thing, the parameterization chosen for the curve F. Ideally, a 
parameterization should be chosen that minimizes this integral. That is, we 
seek the parameterization {x(t): 0 < t < 1} for which 

1 ~~~~~~~~~~1 
(6.1) 1 f(X(t))2Ix'(t)14 dt < ] f(y(t))21y'(t)14 dt 

holds for all parameterizations {y(0): 0 < t < 1}. 
This is an elementary variational problem for which the Euler-Lagrange 

differential equation (see, e.g., [3]) reduces to 

(6.2) d f(X(t))2 I x(t)14 = 0. 

Thus f(X(t))21x'(t)14 must be a constant, and the problem (6.1) is soluble with 
elementary means. In fact, Ix'(t)I = cIf(x(t)) -1/2 with c such that 

1 

(6.3) j Ix'(t)I dt = L = length of F. 

This can be readily implemented numerically. 
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REMARK. We observe that the optimal spacings for the {xj} depend upon 
the particular function f (x) that is being integrated. A choice that is optimal 
for a particular f will be far from optimal for a different function g when the 
ratio (f (x))/(g(x)) varies substantially along F. 

In particular, because the Poisson kernels po(x, y) and p1(x, y), which arise 
in the solution of our original prediction problem, become singular when x 
approaches the boundary curve F, it will be impossible to choose the {xj} to 
provide simultaneous near-optimal estimation of the +(x) for all x in D. 

As a simple illustration, consider the curve F = [0, 1]. When f (x) = 1 the 
optimal choice for the {xj} is the uniform spacing on [0, 1]. However, when 
f (x) = 1 + x, the differential equation (6.3) is 

(1 + X)1"2 dx = cdt. 

The general solution is 

2(1+x)312 =ct+a, 

where a is a constant. However, x(0) = 0 and x(1) = 1 imply that a =2 and 
c = 3(23/2 - 1) = 1.219. Hence, 

Jo1 
f(X(t))21X'(t)I4 dt = c4 = (1.219)4 = 2.208. 

If, on the other hand, corresponding to the standard midpoint method, one 
simply parametrized F with y(t) = t, then 

p1 7 J f(y(t))21y'(t)14 dt = 1 (1 + t)2 dt = - = 2.333. 
3 

The ratio of the standard deviations of the errors associated with the opti- 
mal generalized midpoint method and the standard midpoint method would 
thus asymptotically equal (2.333/2.208)1/2 = 1.025. A 2.5% decrease in effi- 
ciency is, in this case, not significant. 

7. Extensions of nonisotropic Markov fields of order 2. This section 
extends Theorems 3.2 and 3.3 first to general nonisotropic stationary Gaussian 
fields that are Markovian of order 2, and then to the nonstationary case. 

If the stationary mean 0 Gaussian field T on R2 is Markovian of order 2, 
then it is known [9] that T has absolutely continuous spectrum with a spec- 
tral density p(A) = p(A1, A2) that is the reciprocal of a nonvanishing elliptic 
polynomial of order 4: 

2 2 

(7.1) p-'(A) = A(A1, A2) = E LaijA4A, 
i=0 j=0 

with 

(7.2) k'1 < A(A1, A2) < k(l + Al2)2, 
for some constant k > 0 and for all A in R2. 
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If (D denotes the Whittle field, then condition (7.2) implies there is another 
constant K for which the inequality 

(7.3) K-'E[Ybj2(xj)2] < E[Ybj1q(xj)]2 < KE[Ibj4(xj)]2 

holds for all finite linear combinations lbj4(xj) and lbjqf(xj). 
That Theorems 3.1 and 3.2 hold for the field T follows directly from con- 

dition (7.3). The extension of Theorem 3.3 to 4, however, requires that the 
directional dependence of T be explicitly accounted for. This may be done as 
follows. 

Define the function p0(O) as 

po(O) = lim r-4 p(r cos(O), r sin(O)). 
r-->oo 

Observe this limit exists uniformly in 0 and that po is the trigonometric poly- 
nomial 

4 

po(o) = La4-j,jcosi(0)sin4-i(0). 
j=O 

The proof of Theorem 3.3 given in Section 5 can remain largely unchanged 
except for details. In particular, the technical estimates given in Lemmas 5.1, 
5.3, and 5.4 all remain valid. The explicit Fourier calculations in the derivation 
of constant the c in Theorem 3.3 remain unchanged until (5.7), which becomes 

Cov(j k n) = lkl- exp i( (Y ) )(sin(u1.U2) -i 
(7.4) 

j 2 
ij (uj -(k12) 

x {sin(Uk lk/2lj) -lp de. 
The subsequent limit argument gives 

lim n4 Cov(j, j + m, n) = x(m, x'(t)), 
n-->oo 

where 

X(m,x'(t)) = I ~ ~ ~~si(u(t) . e/2) 
2 

4 X(M, x (t)) = Ix 
(t)14_ 

|2cos (m (u(t), 4) t (()),/2) )1} jj-4po(1 
e d(. 

Note that X(m, x'(t)) contains an explicit dependence on the direction 
u(t) = x'(t)/lx'(t)l that was absent in the isotropic case. The integral for 
X(m, x'(t)) can be evaluated using a change of variables adapted to the 
direction of u(t). In particular, if u = u(t) = (cos(O(t)),sin(O(t))) and 
v = v(t) = (- sin(O(t)), cos(O(t))), we set e = pu + qv and define T and t by 
tan(T) = q/p = t. Then as a function of the angle a, po(f/ItI) = po(a + 0) 
and X(m, x'(t)) becomes 

x(m, x'(t)) 

= jx'(t)14 j? f0 cos(mp) sin(p/2) - 1J IP-3(l + t2)-2po(r + 0) dp dt. 
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Introducing 

c(6) = f(1 + t2) 2po(T + 0) dt 
-00 

or 

(7.5) c(0) = 1 COS2(r)po(r + 0) dr 

and the sequence 

(7.6) g(m) = cos(2mp) (P) - 1} PI-3dp 

we have 

X(m, x'(t)) = 1x'(t)j4c(0(t))g(m). 

Using the same estimates used in Section 5, this formula leads to Theo- 
rem 7.1. 

THEOREM 7.1. Suppose the spectral density p is continuous and satisfies 
condition (7.2). Then for each smooth curve F and each smooth function f (x) 
defined on F, the modified midpoint method gives 

lim n3jI(f i frIF, n) - J f (y))r (y) da(y)} 
(7.7) nr>o 

= K j c(O(t))If(x(t))12Ix'(t)14 dt, 

where K is the constant K =1T-2;(3). 

REMARK. The formula 

r2i 

c(0) = 2 cos2(T)po(T + 0) d 

leads to several useful expressions for c. First, in terms of the Fourier series 
of po, if 

Po(T) = ao + la2n cos(2nr) + b2n sin(2nr), 2 

then 

(7.8) c(0) = {ao + a2 cos(20) + b2 sin(20)}. 
4 

This can also be calculated in terms of singularity of the covariance function 
R(x, y) of T; see the next lemma. 
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LEMMA 7.2. For each unit vector u = (cos(6(t)), sin(6(t))) and for all x in 
R21 

(7.9) 2c(6) = limE Ifr(x + tu) - i,f(x) 2/t2 log(ij. 

PROOF. For each nonzero t, 

Eli(x + tu) - i'(X))I2 = J I exp it(u, A) -112p(A) dA. 

Breaking this integral into integrals over { A: A I < 1/1tI} and { A: AI > 1/ t 
we have by (7.2) that 

J|:IAI1/II 
I exp it(u, A) -112p(A) dA = o(jt3 1). 

{A:jAj>1/jtj} 

For the integral over { A: I AI < 1/It I } we use a Taylor approximation to obtain 

j|<1/t} 
I exp it(u, A) - 2p(A) dA 

=t2 (u, A)2 p(A) dA + 0(t4) (u, A)4 p(A) dA, 

which by (7.3) equals 

t2 (u, A)2 p(A) dA + 0(t2). 
{IAI<l/ltll 

However, 

|(u A)2p(A) dA = j|~ f/~ r3 cos(a - 6)2p(r cos(a), r sin(a)) dr da, 

and, from the definition of po, this is asymptotic to 

log it) cos(a - 0)2po(cos(a), sin(a)) da, 

which completes the proof R 

Translating (7.9) in terms of the covariance function R(x, y) = Eqi(x)qi(y) 
gives Corollary 7.3. 

COROLLARY 7.3. For each unit vector u = cos((6(t)), sin(6(t))) and for all 
x in R2, 

(7.10) c(6) = lim 2 {R(x, x) - R(x + tu, X)}/t2 log 
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The nonstationary case. We conclude this section by stating an extension 
of Theorem 7.1 for nonstationary Markov fields. 

THEOREM 7.4. Let A{A(x) = lYaj(x)Dj} be a linear fourth-order elliptic 
operator with smooth real coefficients defined on a domain D in R2. Assume 
that A is formally symmetric on L2(D, dx) and satisfies for some k > 0 the 
inequality 

I Af (x)f (x) dx > k I If(X)12 dx, 

whenever f is in C"O(D). Then Friedricks' extension of A is an invertible, pos- 
itive, self-adjoint integral operator R on L2 (D, dx), and the kernel R(x, y) 
of R is the covariance operator of a continuous mean zero Gaussian field 
T = Pfq(X): x E D}. For each x in D and each unit vector u = (cos(6), sin(O)), 
the limit 

c(x, H) = lim 2{R(x, x) - R(x + tu, x)}/t2 log 

exists and is jointly continuous in x and u. Moreover, for each smooth 
parametrized curve F = {x(t): 0 < t < 1} in d and each smooth function f (x) 
defined on F, the modified midpoint method gives 

2 

lim n3E I(f,F,Fn)- f(y)4(y)do(y) 
(7.11)n--o 

= K f c(x(t), 0(t))If(x(t)) 121x(t)14 dt, 

where K is the constant K 2X-3; 

Sketch of the proof. The existence of the field T is discussed in [12]. To 
prove (7.11) the essential idea is to localize by breaking F into short segments 
on which the coefficients of A are almost constant. Errors that arise from 
disjoint arcs may be seen to be asymptotically independent. On short arcs the 
field can be approximated with a stationary field, and it is easy to use (7.10) 
to derive upper and lower bounds for the expected squared errors in terms of 
the principle part of the operator A. A passage to the limit then yields (7.11). 

8. Non-Markovian fields. The spectral methods used to prove the ear- 
lier results for stationary Markov fields may easily be adapted to derive analo- 
gous results for non-Markov stationary fields when the spectral density satis- 
fies an appropriate asymptotic power law at infinity. We outline this extension 
here. We only consider fields defined on R2, but this restriction is not essential, 
as the interested reader will easily be able to establish. 
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We assume that a E (1, 5) is fixed and that (D is a weakly stationary field 
on R2 with covariance function 

R(x, y) = Cov(o(x), +(y)) 

= JR2 exp{i(x - y, A)}p(A) dA, 
where p(A) = p(Al, A2) is a continuous spectral density such that the limit 

(8.1) lim r-2ap(r cos(6), r sin(O)) = po(o) 
r ->oo 

exists uniformly in 0. The restrictions on a will be discussed later in this sec- 
tion, but we note here that the Markovian case discussed earlier corresponds 
to a =2. 

The results of Section 7 are modified by defining the function c,(0), 

c(0) = Ca() = (1 + t2)-apo(( + 0) dt 

(8.2) 
00 

= 1 j Cos2(a-1)(r)po(7 + 0) d7, 

where again tan(r) = p/q = t. 
We can now state the principle result. 

THEOREM 8.1. Suppose the spectral density p is continuous and satisfies 
condition (8.1) with 1 < a < -. Then for each smooth curve F and each smooth 
function f (x) defined on F, the modified midpoint method gives 

lim n2a-lE{II(f, 0, F, n) - f (y) (y) dua(y)}2 
n -.oor 

(8.3) 1 

= K c(0(t))If(x(t))121x1(t)12a dt, 

where K is the constant K = 23-2a ,.2-2a ((2a - 1). 

PROOF. The proof follows that of Theorem 7.1 closely, but it is necessary 
to modify several of the approximation lemmas to account for the fact that 
a : 2. The essential changes are given in the following text. 

With the same notation as used in Section 5, Lemma 5.1 must be replaced 
with Lemma 8.2. 

LEMMA 8.2. There are constants Kj depending only on the length and cur- 
vature of F and on the C2-norm of the function f, the density p and the constant 
a such that for all large n: 

If 1 < a < 2, then 

(8.4) E{aI(f, 4, F, n) - I(f, 4, F, n)}2 < Kln-4(a-1) 

(8.5) Ej f(y)4(y)du(y)- t f(y)0(y)da(y)} < K2n-4(a-1) 
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If a = 2, then 

(8.6) E{aI(f, 4, F, n) - I(f, 4), F, n)}2 < Kln-4 log(n), 

(8.7) Ejff(y)sb(y)d((y) - ff(y)k(y)d(y)} < K2n-4log(n), 

and if 2 < a, 

(8.8) E{aI(f, 4), F, n) - I(f, b, F, n)}2 < kln-4 

(8.9) Ejf f (y)4(y) d(y)- f (y)4)(y) du(y) < K2n-4 

We define, in addition, the sequence g(m) = ga(m): 

(8.10) g(m) = 22a3 f cos(2mp) sin(p) - 1} ipl-2a dp. 

Proceeding, the analysis in Sections 5 and 7 can go forward until (7.4), 
which we multiply by (lj)-2a, and note that Ij is asymptotic to Ix'(t)l/n to 
obtain 

lim n2a Cov(j, j + m, n) = X(m, x'(t)), 
n-+oo 

where 

x(m, x'(t)) 

= IxI(t)12a expim(u(t), )jin(j(t) /2) - 1}1612apo (AL d6 

= jX'(t)j2aC(0(t))g(M), 

with 

c(0) = f(i + t2)-2po(a + 0) dt 
-00 

2iT 

-= j21r cos2(a)po(a + 0) da 

and 

g(m) =22a-3 cos(2mt) i(t -1 iti1-2adt. 

In Sections 5 and 7, the proof was completed with a dominated convergence 
argument, in which the key ingredient was Lemma 5.5. This route is not 
directly applicable in the present case because the decay estimate (5.9) was 

derived from smoothness properties of p that are not available in the present 
case. To overcome this, we first proceed with a substitute technical lemma. 
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LEMMA 8.3. Let a E (1, 5), fix c > 1 and suppose that the spectral density 
p(A) is twice continuously differentiable and satisfies 

(8.11) p(A) = 0 for JAI < 1 

and 

(8.12) p(A) = ( 09) for JAI > 2, 
(1?1 A12)a frA 2 

where po(0) > 0 is a function of the angle 0. Set 5 = min{2, 6- 2a}. Then there 
is a constant C for which the inequalities 

exp i(y, 6) sin(u- ) -1 sin(v) _ -2ap( d6 

(8.13) < CIyl8 if a# 2 

(8.14) <CIyV-2log(lyl-1) if a = 2 

hold for all scalars 1 with 0 < 1 < 1, for all y in R2 and for all vectors u and 
v with c-1 < Iul <c and c-1 < IvI < c. 

PROOF. The proof is unchanged for a = 2, and for a < 2, the proof follows 
simply by noting that there is a constant for which 

llglll < K 

holds for each function g = d dF that is a second derivative of the function 

Fu ve) s1 s __in(v_ e)_IVI 1-2ap(Ii,)I 
u - e/1)(v .a) 

The proof for a > 2 follows the same outline used in Lemma 5.5. Namely, for 
g = d dF it is elementary to show that 

(8.15) 11lg(e )lll < k,14-2a 

and 

(8.16) I[F(u, v, 1, -F(u, v, 1', )I< k216-2a 

provided only that 0 < 1' < 1 < 1, c-1 < Jul < c and c-1 < lvl < c. Following 
the route mapped out in the proof of Lemma 5.5 completes the proof. O 

Applying this as Lemma 5.5 was used in Section 5, for each t E (0, 1) we 
fix j with j/n < t < (j + 1)/n, 

n 

lim n2a E f(Yj)f(Yk) Cov(j, k, n) 

n-j 

= lim n2o E f(yj)f(yj+m)Cov(j, j+m,n) 
m=1-j 
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00 

= f2(x(t)) E x(m, x'(t)) -f( 

00 

= f2(X(t))lX,(t)12a MM(t) E: g(m). 
-00 

As occurred earlier in Section 5, the sum >g(m) is evaluated using the Poisson 
summation formula, to give (8.3). 

This also completes the proof of Theorem 8.1 in the special case of densities 
of the form given in (8.11) and (8.12). To complete the proof of Theorem 8.1 in 
the general case we use Lemma 8.4. 

LEMMA 8.4. For fixed a E (2, ), let F1, F2 and iF3 be continuous stationary 
Gaussian fields on R2 with spectral measures R1(dA), R2(dA) and R3(dA), 
respectively. Suppose, in addition, that 

(8.17) f IA14R3(dA) < oo. 
R2 

If 

(8.18) R1(dA) + R3(dA) > R2(dA), 

then for each smooth curve F and smooth function f on F, 

lim inf n(2a-1)FED1 IfI f,9 1, F, n) - f (y)1 (y) do-(y)1 
n--ooo 

- Eo2 jI(f, 02 F, n) - f (Y)02(Y) d(y)j] > O. 

PROOF. Assuming as we may, that 'F1 and F3 are independent, it follows 
from (8.17) that 

E41+D3 jI(f, k ? 103, n) - f f(y)[(1(y) + 03(y)] do(y) 

> E-;N Iff,02, F, n)f- f(Y)02(y)do-(y)} 

holds for all n. However, the assumption (8.16) implies that the process if (t) = 
f(x(t))03(x(t)) is twice mean squared differentiable, and in this case it is 
elementary to show that 

lim sup n4E{I(f, 4k3, F, n) - jf (Y))03(y) du(y)} 

64 i1ff 1 E&' "(t)&'"(s)dtds <oo. 
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Thus 

liminf n(2a-1Eq,1 lI(f,,rF,n) - f (y)01(y) do(y)l 
n -*oor 

= liminf n(2a-1)Eq1+43 I(f, (1 + 43 F, n) 

- j[f(Y)&k(Y) + +3(Y)]do(Y)}, 

and the result follows. FI 

The proof of Theorem 8.1 is completed by observing that for any spectral 
density p satisfying the conditions of Theorem 8.1, for each e > 0 it is possible 
to find smooth functions pl(6) and P2(0) and g1(A) and g2(A) satisfying the 
following conditions: 

(8.19) 0 < P1(0) < PO(0) < P2(0) < P1(0) + 0 < g1(A) and 0 < g2(A), 

and 

(8.20) JR2 'A4[g1(A) + g2(A)] dA < oo, 

(8.21) (1 ? (02) < p(A) + g1(A), 

(8.22) p(A) < (1?1A12) +g2(A). 

Condition (8.17) implies that the fields with spectral densities gj(A) and 
g2(A) are twice mean square differentiable. By Lemma 8.4 and (8.18) and 
(8.19), we can sandwich the asymptotic errors 

n(2a-l)E I(f, 4), F, n) - f (y)4)(y) du(y) } 

for the field (D with spectral density p between the errors for the fields with 
densities (p1(0))/( 1 + A12)a and (P2(0))/(l+ 1+A12)a. These last two asymptotic 
errors are computable from Lemma 8.3, and by (8.16) the resulting bounds 
are arbitrarily close to the right-hand side of (8.3). L 

REMARK. We conclude with a remark concerning the restriction 1 < a < 5 

The condition 1 < a is simply a reflection that the density p(A) must be 
integrable unless (D is a generalized field. The condition that a < 5 is, however, 
an expression of the fact that all of the technical estimates in Lemmas 8.2-8.4 
break down at a = 52. This represents an essential transition. When a = 2, a 
closer analysis will show that midpoint methods give an asymptotic error of 
the form const. n-410og(n); for a > 2 the midpoint methods can be shown to 
be less than optimal. In fact, they produce asymptotic squared errors of the 
order of n-4 for all a > 2 
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To optimally approximate integrals of the form fr f(y) (y) du(y) when a 
is greater than 5 it is necessary to make more refined approximations of F 
than the piecewise linear approximations used here, and it is necessary to 
adjust the weights used at the ends of F, in a manner analogous to those 
used in Simpson's method. With these adjustments it is possible to extend the 
statement and proof of Theorem 8.1 to include values of a greater than 2. A 
similar situation with multidimensional integrals is discussed by Stein [13]. 
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