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STATE-DEPENDENT BENES BUFFER MODEL
WITH FAST LOADING AND OUTPUT RATES

By Y. KoGgaN, R. LIPTSER AND M. SHENFILD

. Technion—Israel Institute of Technology,
Tel Aviv University and Technion—Israel Institute of Technology

We consider a state-dependent generalization of the exponential Bene§
model of single-source buffer system in which the source process consists
of alternating transmission and idle periods. Martingale methods are
applied for analyzing limit nonstationary behavior of the buffer content
process, when the buffer is loaded and depleted, with rates proportional to
a large parameter N. Depending on traffic conditions, defined by parame-
ters of the model, different types of approximations are established for the
buffer content. We show that in heavy traffic the buffer content grows
linearly in N, whereas the deviations of the order \/J_\’— from the determin-
istic limit are approximated by the Gaussian diffusion process. In moder-
ate traffic the buffer content grows as VN, and the normalized buffer
content is approximated by a diffusion process with reflection at zero. In
the case of normal traffic, we show that the buffer utilization tends to the
ratio of “the input-to-output rate.” Moreover, we show that the main
contribution to the utilization comes from arbitrary small buffer content.

1. Introduction, method and main result. We consider a model of a
single-source buffer system in which the source process consists of alternat-
ing transmission and idle periods. The buffer forms the interface between
input and output (source and sink) processes. The information is received at
one rate from a given source and retransmitted at another rate to a given
sink. Arriving messages are characterized by a probability distribution gov-
erning their sizes, which corresponds to the service time distribution in the
usual queueing system. In general, it is necessary to assume that it takes
time to load or transmit a message, a process that typically requires a time
interval proportional to the message size or length. The constant of propor-
tionality is the source transmission rate. Thus, a size of arriving messages
will determine both the time it takes to load them and the space they occupy
in the buffer. We consider loading with flow-through that refers to the process
whereby the output of an arriving item begins the moment that it has
nothing ahead of it, as opposed to having to wait until the entire message has
been loaded. The sizes of transmitted message are assumed to be random
variables, having mean 1/u. After completion of loading, the next message
can arrive in random time interval with mean 1/A. For the sake of simplicity
we consider a buffer with infinite capacity. If the transmission rate is R and
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98 Y. KOGAN, R. LIPTSER AND M. SHENFILD

output rate is C < R, then buffer content grows with rate R — C during each
loading period and decreases with rate C during each idle period until the
buffer becomes empty. The principal objective of the analysis is the buffer-
occupancy process, that is, the amount of the buffer occupied by messages as
a function of time. A steady-state analysis of such a model has been done by
Benes [1, 2] in the case when message sizes and arriving times are generally
distributed independent random variables.

In this paper, following [2], we consider a state-dependent generalization
of an exponential version of the Benes§ model. In other words, message sizes
are exponentially distributed whereas the idle periods are conditionally
exponentially distributed with rates dependent on the buffer content. The
output rate is also assumed to be state dependent.

To reflect the properties of modern high-speed communication systems, all
rates are to be assumed in proportion to a large parameter N. More precisely,
we assume that the rates have the following representation:

R=Nr, A=Nxgq,/N), C=Nc(q,/N),

where g, is the buffer content at time ¢, whereas A(-) and ¢(-) are smooth and
positive functions.

Let &, be a process that takes the value 1 when a message is loaded and 0
otherwise. If a message is loaded and the buffer is not empty, then the buffer
content grows with rate Nr¢, — Ne(q,/N). The nonempty buffer decreases
with rate Ne(q,/N). Because ¢(0) is assumed to be positive, it is convenient
to use Ne(q,/N)I(q, > 0) for the decreasing rate, where

I(z>0)={(1): z:g’

Thus, the buffer content is described by the differential equation
dq, q;
(1.1) Ti_t— =N[7‘§(t) —C(N)I(qt>0)].

The buffer content g, depends on N. Our goal is to study asymptotic
behavior of the process q, as N — «. So it is important to find a bifurcation
point that allows different types of asymptotic regimes to be distinguished. To
explain how to find the bifurcation point, assume that at time zero the buffer
is empty: g, = 0. For asymptotic analysis, it is convenient to operate with
normalized buffer content

9
1.2 N =
( ) xt N
Using (1.1) and taking into account that I(q, > 0) = I(xtN > 0), we get the
differential equation for x¥
. de
(1.3) : =r§ —c(x))I(x) > 0)

dt
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subject to x{’ = 0. The function c¢(z) is assumed to be positive and bounded:
c(z) < r.Put

yN = ]:[cfs —c(xM)] ds
and
= g N —
v, [oc(O)I(xs 0) ds.

Because I(xY = 0) = I(yY <0, dy" /ds = —c(0)) the function ¢, is defined
as ¢, = —inf, _, yN. Then

(1.4) . xN =yN — infyN = @,(yM).
s<t

It is known [10] that the function ®,(V), ¢ > 0, is the normal reflection at
zero of continuous (or right continuous, having limits from the left) function
V, with V; = 0. Thus, x/ is the normal reflection of y”, and what is more,
¥ is the solution of a past-dependent differential equation

dyN
d; =r§ — c(th(yN)).

The central role in asymptotic analysis plays a stochastic equation for the
loading process ¢,. For A(z) = A, the process &, is Markovian with intensities
NA and Nur of transitions 0 = 1 and 1 — 0, respectively. It is known ([8],
Volume 1, Chapter 9, Lemma 9.2) that a Markovian process with countable
space of states obeys a semimartingale decomposition, which is

& =& + fO‘N[A(l — &) — prg) ds + my,

where m, is a square integrable martingale. For our past-dependent model,
¢, is a non-Markovian process. Nevertheless, it obeys the same type semi-
martingale decomposition [with replacing A on A(xM)]:

& =& + /OtN[A(xiv)(l - gs) - urfs] ds + my,

1

t t /\(xf’) B Mt St
j;)fsds—fo)\(x:,) +p,rds_ N + N’

which implies

where M, and S, are square integrable martingale and semimartingale,
respectively [see (2.21) and (2.22)]. Then y, satisfies
N _ ft I‘)\((Ds(yN)) _ C(q)( N)) ds = _r_]Mt + r_St
YT\ N, (5)) + sy N "N
We show (Lemma 3.1) that the right-hand side of this equality converges to
zero and so an approximation for y} is given by solution of the past-depen-
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dent differential equation
dy, rA(@,(y))
@B F A c(®(y))
subject to y, = 0. It obeys two types of solutions, depending on parameter
rA(0)

(1.5) = TN0) + mr)e(0)’
namely,
d rA(y,)
Ye= LGy s ~c9|ds p> 1
c(0)[ p - 1]z, p<l.

The parameter p, which could be named “the input-to-output rate,” defines
the bifurcation point. It is natural to expect that different types of asymp-
totics hold under the respective conditions

p<1, p=1, p> 1.

These types are referred to as normal, moderate and heavy traffic, respec-
tively.
In heavy traffic (p > 1), the function y, is a solution of equation

t r/\( ys)
o= [|m— —e(y,) | ds
! fo A(ys) + wr ()
It is positive for any ¢ > 0. Due to (1.4) and —inf,_, y, = 0, x’ converges to

Y-
For moderate traffic (p = 1), x converges to ®,(y) = 0, that is, asymp-
totic information on the buffer content is loosened. Therefore, another type of

normalization is used:

(1.6) X,N—T_——\/—xt.

The process XY is also obtained from the process Y = VN, ytN by normal
reflection at zero: XN = ®,(Y"). By virtue of the deﬁmtlon of yN, we get

rA(D,(y™)) rM, rS,

D (yM))]|ds = ——= + —=.

ERRCUA Preyers el CICR)] Elr e

Now, only rS,/ VN converges to zero (Lemma 3. 1) Therefore, the limit
behavior for Y is the same as for

M@, (y™)) rM,
®(yV))|ds — —.

Y- (@, (yN)) v (@O ds - g
To find it, we use the diffusion approximation result for semimartingales ([9],
Chapter 8, Section 3). Roughly speaking, in our case only two conditions have
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to be checked: convergence of the predictable quadratic variation {(rM /N ); of
square integrable martingale rM,/ VN and convergence of the drift

rA(@,(y"))
M@, (y")) + pr

We show that the predictable quadratic variation converges to 2¢uc®(0)/A%(0)
(Corollary 3.2) and the drift tends to

W/: —c(D,(y™))| ds.

L (X(©)[e(0)/NO]* = ¢(0)) @, (YY) ds

(for more details see Section 4).
Thus, the diffusion approximation for Y~ is given by solution of past-
dependent It6’s equation (w.r.t. a Wiener process W,):

Y, = [{(X()[e(0)/XO)]" = ¢/(0),(Y) ds + ['V2uc*(0)/X(0) dW,.

Then X} obeys the diffusion approximation for the limit ®,(Y) [in the
Appendix it is shown that ®,(Y') has the distribution of absolute value of the
Gaussian diffusion Z,].

Asymptotic analysis for normal traffic (p < 1) is different from that for
both heavy and moderate traffic because x¥ and X} converge to zero [the
latter by the collapse property: YV — —x (see Lemma 4.1)]. The following
relations are implied by convergence x} to zero and (1.3):

/:rfs ds — ¢(0) pt
and
fOtI(qs > 0) ds — pt.
Therefore,
fotl(qs =0)ds » [1-p]t.
The next important asymptotic result is, for any ¢ > 0,
/:I(qs >¢g)ds — 0,

the proof of which is more artificial. It uses semimartingale decomposition for
x¢,, xNG(¢&,) with a specially chosen function G(z), and representation

(XtN)2 =’2j:qs[r§s —c(xM)] ds,

which is implied by (1.3).
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Summing all results, we arrive at different types of asymptotics (as
N - ). For any ¢ > 0 and £ > 0:

1. P0O<qg, <e)xp,Plg,=0x1-p, p<1;
2.q,=<|1ZWN, p=1,
3. ¢, xy,N, P? 1,

where Z, is a nondegenerate Gaussian random variable and y, is positive. It
is clear that in normal traffic large loading and output rates lead in the limit
to a deterministic model, where the buffer is always empty because the
output rate is more than the input rate. In type 1, the first relation shows
that the fraction of time when the buffer is empty is defined by the input-to-
output rate, whereas the second relation shows that the main contribution to
the buffer utilization comes from the arbitrary small buffer content.
All these asymptotics are formulated in the following theorem.

THEOREM 1.1. Let functions X z) and c(z) be positive and bounded:

0<A(z) <const., O0<ec(z)<r

and continuously differentiable. Their derivatives X(z) and ¢'(z) are bounded
and Lipschitz continuous. Then the following three types of asymptotics hold.

1. Normal traffic (p < 1): For any 0 <t, <t, and > 0,

t
li P(q,=0)ds=1-p,
llj\rfnt2_t1“/;1 (qs ) S p

. t
1 P(0 < g, < £) ds = p.
llgntrtlftl (0<g,<e)ds=p

2. Moderate traffic (p=1): XN converges weakly (in the local uniform
topology) for limit |Z,|, where Z, is Gaussian diffusion process defined by
It6’s equation (w.r.t. a Wiener process W,):

dz, = (X (0)[c(0) /A(0)]* — €'(0))Z, dt

(1.7)
+v/2uc3(0)/22(0) dW,

subject to Z, = 0.
3. Heavy traffic(p > 1): For any T > 0,

P — lim suple" -yl=0,
N <1

where y, is defined by the differential equation

dy, rA(Y:)

(1.8) RO c(y:)

subject to y, = 0.
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REMARKS.

1. Because ¢(0) > 0, a diffusion parameter in (1.7) is positive and so for any
t > 0, Gaussian random variable Z,, having EZ, = 0, is nondegenerate:
P(Z,| > 0) = 1 for any ¢ > 0.

2. Due to p > 1, we have

]
dt

and so for any ¢t > 0, x, is positive.

>0
y:=0

For heavy traffic, the diffusion approximation for centered buffer content
xY -y, holds too. Under assumptions of Theorem 1.1, X" = VN («) —y,)
converges eakly (in the local uniform topology) to the Gaussian diffusion
process X, defined by Itd’s equation (w.r.t. a Wiener process W,):

(19) Xt_'/(;li[)l(ys) +/.Lr]2 (ys)]Xsd +j;) [A(ys) +[.Lr]3

where y, is defined by (1.8). The proof is similar to Lemma 4.2 and is omitted.

The main contribution of this paper is twofold. First, we obtain asymptotic
results, where a direct approach fails. Although the pair (q,, ¢,) forms a
Markov process, state-dependent rates and the degeneracy of the first compo-
nent make it analytically intractable. From a more general point of view we
are interested in the asymptotic properties of the pair (xY, &) [or (XY, £)],
where ¢, is the “fast” component, depending on x), whereas the “slow”
component x" averages the influence of ¢,. This fact leads to the Bogolubov
averaging principle and to fluid and diffusion approximations. For the diffu-
sion case, the Bogolubov averaging principle as well as the second order
approximation (diffusion approximation) have been studied in [4]. For a
discontinuous process in the semimartingale setting, the corresponding result
for the Bogolubov averaging can be found in [7]. In contrast to [4] and [7], the
fast component in our model is discontinuous, whereas the slow component is
reflected at the zero degenerate process. However, both approximations (fluid
and diffusion) are also valid for this model.

Our approach exploits only the fact that all examined processes are special
semimartingales that obeying the decomposition “predictable drift + square
integrable martingale.” In Section 2, all required decompositions of such kind
and formulas for “predictable quadratic variations” of martingales, which are
involved in proof Theorem 1.1, are presented. The method of proving Theorem
1.1 is based on some asymptotic relations that are derived from semimartin-
gale decompositions and asymptotic properties of predictable quadratic varia-
tions. These results are gathered in Sections 3 and 5. The diffusion approxi-
mation for VN yY is given in Section 4. In Section 6, we derive the statements
of Theorem 1.1 from previous results. In the Appendix, we give a solution for
Gaussian diffusion reflected at zero.

8?
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The Markovian property is not used anywhere in this paper. Therefore, the
results can be generalized to the case of arbitrary transmitted message size.
However, in this case, all calculations are more tedious and their volume will
increase.

2. Semimartingale decompositions.

1. Throughout this paper, the following identities are used: I(g, > 0) =
I(xY > 0)and X = VN« (X¥)? = ¢2/N.

By assumption of Theorem 1.1, ¢(0) > 0 and so function c(z)I(z > 0) is
discontinuous at point z = 0, and what is more, ¢, depends on xN. Neverthe-
less, differential equation (1.3) has the unique solution that is convenient to
consider separately on time intervals: {¢: x¥ > 0, & =1}, {t: xN =0, & = 1},
{t: xN¥ >0, ¢ = 0} and {t: xY = 0, & = 0}. From (1.3), it follows that

(2.1) (va)2 =2j:x£"[r§s —c(xl)] ds
and then
(2.2) (XtN)2 = 2_/:qs[r§s - c(xf’)] ds.

2. Here, we derive semimartingale decomposition for £,. We assume that
some stochastic basis (see [9)]) is fixed and all random processes are defined
on it. We do not define concretely a filtration on this basis and only assume
that NA(xY) and Nur are intensities of counting processes A, and B,
generated by positive and negative jumps of ¢,. As any right continuous
random process values in the space ({0}, {1}), &, can be defined by an It6 type
equation

t t
(23) ‘ft = §0 + _/;(1 - gs—) dAs - Lfs— st’

where £, is the limit from the left. In accordance with given intensities,
counting processes A, and B, have compensators

(2.4 AP = fOtNA(xf’) ds,

BP = Nurt,

respectively, that is (see, e.g., [5] or [8]), the processes A, — A and B, — Bf
are square integrable martingales, having the predictable quadratic varia-
tions '

; <A_Ap>tEAf,
(2.5) (B - B?), =B/,
(A—-AP,B-BP),=0
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(the last equality follows from the disjointness of jumps A, and B,). The
martingales A, — A? and B, — B have paths of the local bounded variation
and so the Stieltjes integral [{(1 — & _)d(A, — AP) [and [(&,_d(B, — BP)]
coincides with the It6 one. Then the process

(26)  m,= [(1-&.)d(A, - A7) - ['¢ d(B, - BY)

is a square integrable martingale whose predictable quadratic variation is
given by the formula

(my = [{(1-&_)dCA - AP), + ['&_d(B - B»),
0 0
(2.7) t
=Nj0[(1 — &)MxY) + & pr] ds.

Hence, a semimartingale decomposition for &, is
¢
(2.8) §t=§0+Nj;)[(1—§s))\(x§V)—fsp,r] ds + m,.

3. Let G(z), —1 <z <2, be a continuous function. A random process
G(¢,) has values in the set ({G(0), G(1)) and has paths of the local bounded
variation. So, it is a semimartingale. We need its semimartingale decomposi-
tion for the proof of statement 1 (normal traffic) of Theorem 1.1.

Let

(2.9) G(&) = G(&) + G,(€) + P(¢&)

be its semimartingale decomposition with a predictable drift ét(f ) and a
local martingale P,(¢). Applying Itd’s formula to G(&,) and taking into
account (2.3), we find

G(&) = G(&) + [[[G(&-+1) = G(&-)] dA,

(2.10)
+ [16(6 — 1) - G(& )] dB,.
Then
(2.11) G(£) = N[{[G(& + 1) - G(&)]A(=)
+[G(& — 1) = G(&)] pr}ds
and

P(£) = [16(&-+ 1) — G(§.)]d(4, - A7)

+ [[6(&~ 1) - G(&.)]d(B, - BY).
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Evidently, P,(¢) is a square integrable martingale with predictable quadratic
variation

(P(£). = N[{[G(& +1) - G(&)]"N(=)

+[G(& - 1) — G( §s)]2ur} ds.

(2.12)

4. Here, we give semimartingale decompositions for x¥¢, and xNG(¢),
which also are used in the proof of statement 1 of Theorem 1.1.

Applying It6’s formula to x/¥%, and taking into account (1.3) and (2.8), we
arrive at the semimartingale decomposition

£ = [ [(1 = £)M(=) — g ur] ds
(2.13) +[t§s[r§s —c(xM)I(q, > 0)] ds
0
E N
+_/;xs dm,.

The last integral on the right-hand side of (2.13) forms a square integrable
martingale whose predictable quadratic variation is {[;xN dm,); =
[E(x)2d{m);. Then, due to (2.7), we get

2.14 ' Nd - ¢ XN 2 1 _ A N\ _ d )
(2.14) <f ms>t L&) - &)M=) - &ur] ds
Analogously, due to (2.9) and (1.3), by Itd’s formulas we find

£NG(&) = [=) dG,(&) + [l dP,(£)
+['G(&)[rg, — e(x)I(x > 0)] ds.
0

Hence, by virtue of (2.10) and (2.11), the following decomposition for xNG(¢,)
holds:

=G(&) = [0 {[6(4 + 1) - G(&)IN=)
+[G(& — 1) - G(&)] pr}ds
(2.15) +_/:G‘( §s)[r§s - c(xf’)I(x;N > O)] ds

+ [} dP,(£).
0
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Moreover, a square integrable martingale [{xYN dP,(¢) has the predictable
quadratic variation

< f= dPs(§)>t = [(=) K P(eN,
(2.16) ‘ - fot(XsN)Z{[G( &+ 1) — G(&)]M(=x))}ds

(64 - 1) = G(&)] wr) ds.

5. Time intervals {¢: N > 0, & = 1}, {t: 2N =0, & = 1}, {t: ¥ > 0, ¢, = 0}
and {t: x¥N =0, ¢ =0} decrease to zero as N — » and so, due to the
discontinuity of c(x)I(x > 0), any kind of asymptotic results would be diffi-
cult to get. Thereby parallel to (1.3), we give here another description for x7.
For any right continuous process having limits from the left function V =
(Vt)tzo’ VO = 0, put

(2.17) ®,(V) =V, - infV,.
s<t

®,(V) is Lipschitz continuous in the following sense: |®,(V') — ®,(V")| <
2sup, _, V] — V| (see, e.g., [6]). Consider a past-dependent differential equa-
tion

dy
o e e(@(5V))

subject to y)Y = 0. Analyzing the solution of both equations (1.3) and (2.18),
one can conclude that

(2.19) x) = d,(y7),

that is, x is the normal reflection for y" (see [10]). Now, we give more
detailed description of y}. Putting

(2.20) v(2) = [M2) + ur] Y,

define a semimartingale S, and a square integrable martingale M,:

S, = /;)ty(xév)dfs,

(2.18)

(2.21)
M, = foty(xiv) dm,.

From (2.8) and (2.21), it follows that

t ¢ /\(xiv) Ml St
(222) j;fsds—j;)mds—WﬁF N,
~ and so, from (2.18), we find .
Mxl) v rM, rS,
m—c(d)s(y )) ds — N +W.

(223) = [
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6. Here we introduce a semimartingale
(2.24) YN = VNyp,
which plays an important role in proving diffusion approximation because

(YY) = @,(VNy")

(2.25) = ‘/Nq)t(yN)
= VN xN
=XN.
We derive from (2.23) that
(I) (y )) rM, rS,

(2.26) YN = \/_f

Gt )

Show that the predictable quadratic variation of the square integrable mar-
tingale rM,/ VN is given by the formula

M\ 2ur(a))
<W>z_j;)[)t(xN +,ur]3 as
(2.27) f ) + 3ur - Lft Mx)) + 3ur IM
‘N [A N)ﬂ"] NYo [A(xd) + wr]”

From the definition of rM,/ VN VN , it follows (rM/ VN, = f(fyZ(xﬁv)d<m)s. On
. the other hand, (2.7) and (2.8) imply

(e Ny t
(m), Nfo[(l E)MxN) — & ur]ds + 2N,u,rfofs ds

B CAV

= (& - &) —mt+2Np,r/ )t N)+ ds — 2urM, + 2urS,.
Thus, (2.27) is implied by (2.21).
3. Asymptotic relations for y», S, /VN and rM, /VN. In this sec-
tion, asymptotic relations, that play an essential role in proving the main
result, especially for heavy and moderate traffics, are gethered and formu-

lated as lemmas. Throughout this section all assumptions are presupposed.

LEMMA 3.1. Let S, and M, be defined in (2.21). Then for any T > 0,

1
— supl|S,/ =0
N
P - lim ‘i—t—T
N
—suplM,|=0

NtsT
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Defined in (2.17), the function ®,(V') is Lipschitz continuous (see Section
2). Therefore, a past-dependent differential equation

dy, ")‘(q)t(y))

(3.1) &N + e c(®,()),

subject to y, = 0, has the unique solution:

solution of (1.8), p>1,
3. = : .
(2 v {0(0)[0—1]1!, p=<1
Then
. _ | solution of (1.8), p>1,
(3:3) f= a0 - [ om

LEMMA 3.2. For any T > 0,
P'l' - = 0,
1m|yt ytI

where y) is given by (2.18).

COROLLARY 3.1.

P-lim sup|x¥ — %,/ =0 vT>0,
N 4<T

where xY is defined by (1.3).

Let {rM/ VN ), be the predictable quadratic variation [see (2.27)] of the
square integrable martingale rM,/ VN.

LEMMA 3.3. Foranyt > 0,

M 2uri\ %
P-lim<r——> =ft_'ur_(L3ds,
N VN [ Yo [A(&,) + wr]

where %, is defined by (3.3).

COROLLARY 3.2. For p=1,
rM 2ur(0) 2tpuc3(0)
P-lim = = =——
N AVN [, [A0) + pr] A%(0)

COROLLARY 3.3. rM,/ VN converges weakly (in the Skorokhod—-Lindvall
topology) to a Gaussian process defined by Ito’s integral w.r.t. a Wiener

process W,:
2urdA(E
/‘t I ( s) - dw.,.
of [A(&,) + pr]
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In proving these lemmas, we always use the following fact ([9], Problem
1.9.2): If LY is a sequence of square integrable martingales with the pre-
dictable quadratic variation ( LV ); such that for any T > 0, (L" )7 converges
to zero in probability as N — o, then the same convergence holds for
SuptsTILyL

Proor oF LEMMA 3.1. To check the validity of the first statement, we
apply Itd’s formula to y(xN)¢,. Taking into account that the function y(2) is
continuously differentiable, with bounded derivative y'(z), we find

(3.4) y(xN)é = v(0)& + S, +/y(xN)—e ds.

By virtue of (1.3) one can conclude that dxY /ds is bounded. Then the result
follows from (3.4).

To check the second statement in (8.1), it has to be shown that for any
T > 0,{M/N )7 converges to zero in probability. This follows from

M 1 T
<ﬁ >T = Z—V_/;)T[(l —E)MxN) g ur] ds < const.—ﬁ. O

ProoF OF LEMMA 3.2. Put A, = sup,_,|yY — y,. By virtue of (3.1) and
(2.23), we find

A< [ N@(Y)  M®(9)
SO T K@) +
¢ S,
+f0,c(fbs(yN)) —c(fbs(y)),ds +|— +l—z—\—,—‘

Making assumptions and under the Lipschitz property of ®,(V), there exists
a positive constant, say [, such that for any ¢ < T,

1 1
A, <l/A ds+1—V_§BIT)ISI+ Nil};IMsl

and so, by the Gronwall-Bellman inequality,

1 1
Ap < exp{lT}[Z—v— sup|S,| + N sup|M,]|.
s<T s<T

Thus, the result is implied by Lemma 3.1. O

ProOOF OF LEMMA 3.3. By Corollary 3.1, the first term in the right-hand
side of (2.27) converges in probability to relevant limit, whereas two other
terms converge to zero in probability. Proofs for these convergences are
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similar to those in Lemma 3.1 because, due to (2.21) and (2.20),
2uri(xY)

t Z[Lr)t(xév) o
'/0 [)t(xév) + /.Lr]2 43 —/;) [)\(xév) + ,U«T']3 dé¢;,
e
fo [)l(xév)+,u,r]2 ° j;) [)‘(xév)+,u,r]3d s

and the function %(z) = 2urA(z))/[Mz) + ur]® is continuously differen-
tiable, having bounded derivative. O

PROOF OF COROLLARY 3.2. It follows from %, = 0 and (2urA(0))/[ A0) +
wrl® = 2p%uc?0)/M0)2. O

ProoF OF COROLLARY 3.3. The square integrable martingales rM,/ VN,
N > 1, have jumps bounded by const./ VN . Then the result is implied by [9],
Theorem 7.1.4. O

4. Collapse and diffusion approximation for Y;'. In this section,
only moderate and normal traffic are studied. As in Section 3, all results are
formulated as lemmas, provided that all relevant assumptions are presup-
posed. Let Y,V be defined by (2.24).

LEMMA 4.1 (Collapse). If p < 1, then for any t > 0,

P-limY/ = —.
N

COROLLARY 4.1. Let XN be defined by (1.6). Then, due to (2.25), for any
T>0,
P-lim supX}Y = 0.
N <1
By the Lipschitz property for ®,(V), the past-dependent It6 equation (w.r.t.
a Wiener process W,)

Y, = [{(X(0)ulc(0) /A(0)]* = ¢'(0))®,(Y) ds
(4.1) 0

+ [V2uc3(0) /A%(0) dW,
0
has the unique strong solution.

LEMMA 4.2 (Diffusion approximation). If p = 1, then YN converges weakly
(in the Skorokhod—Lindvall topology) to the process Y, defined by (4.1).

PROOF OF LEMMA 4.1. Note that YN obeys decomposition (2.26). By Lemma
3.1, sup, oIS,/ VN|, T > 0, converges to zero in probability. By Corollary

32,rM,/ VN converges weakly to a continuous Gaussian process. Thereby, it
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has to be shown that the drift in (2.26) converges to —o. This drift is
absolutely continuous w.r.t. Lebesgue measure with density VN H(®,(y™)) =
VNH (x}), where

ra(z)

—c(2).

So, the result holds, if for each s > 0, P-hm v sup, ., H(xY) < 0. For p<1,
by Corollary 3.1, we get P-lim  sup, _, xY = 0, s > 0. On the other hand, due
to the definition of p [see (1.5)], we have

rA(0)

HO =30y + ur

~¢(0) = c(0)[ p— 1] <0
and the result is done. O

PrOOF OF LEMMA 4.2. Put YV = Y~ — S,/ VN . Because by Lemma 3.1,
for any T >0, sup,.,|rS,/ VN| converges to zero in probability by [9],
Problem 6.2.2, both processes Y, and Y have the same weak limit. So only
the weak convergence of Y,V for the hmlt Y, has to be checked.

At first, explain why Y could be con51dered as a weak limit for Y,V.
Following (2.26) and (4.2),

(43) TN - VN [‘H(0.(y !

VN

Due to Corollary 3.3 and p =1, rM,/ VN converges weakly for limit [¢
V2uc?(0) /A2(0) dW, and we obtain the “diffusion part” of Y,. By virtue of
p =1 we have H(0) = 0 and, what is more, H(z) is a continuously differen-

tiable function and its derivative H'(z) is bounded and Lipschitz continuous.
Then we get

WH(CDS(yN)) ~ H'(0)VN &,(y")
= H'(0)®,(VN yV)
= H'(0)0,(Y")
~ H'(0)9,(Y)
and so the drift of Y,V can be “approximated” by [{H'(0)®,(Y") ds, where
(44) H'(0) = X(0)p[c(0)/A(0)]” — ¢(0).

For exact proof of weak convergence, apply [9], Theorem 8.3.1(c) and
Problem 8.3.3. Because the process Y is continuous, jumps of Y> coincide
with jumps of #M,/ VN that are no more than const./ VN .

Therefore, only conditions

fot[x/]vH(cbs(yN)) ~ H'(0)®,(7V)] ds

have to be checked.

=0 vT>0,

4.5) P-lim sup
N i<t
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To this end, taking into account the Lipschitz property of ®,(V) and
Lemma 3.1, one can conclude that (4.5) is equivalent ot the same relatlon by
replacing YN on YV. According to the Lipschitz property of H'(z), say, with
Lipschitz constant I, we find (0 < 0 < 1)

VN H(®,(yV)) — H'(0)®,(YY)|
=[VNH (00,(y¥)),(yV) — H'(0)®,(YV)|
= VN[H'(62,(y")) - H'(0)[@,(y")
<N ®Z(yV)
=INo,(YN).
Consequently, (4.5) holds if

T
4.6 P-li Np (YN)ds =0.
(4.6) im [ 60, (YY) ds

Due to p = 1, we have by Lemma 3.2 that sup,_, xN converges to zero in
probability and so (4.6) holds on any of the sets {sup, _, ®,(Y¥) < K}, K > 0.
Thus, (4.6) holds if a family {sup, ., ®,(Y") < K}, K > 0, is tight, that is,
lim hmsupP(sup(I) (YN) > K) =0.
Koo s<T
Because
sup® (YY) = sup[YSN - ianuN] < 2sup|Y¥|
s<T s<T us<s s<T

it has to be shown that
(4.7 hm lim supP( sup|YN| > K) =0.

s<T
According to (2.26) and (4.2) and taking into account H(0) = 0 and boundness
of H'(2),say |H'(2)| <1, for t < T, we get

N N rM, rS,
ilg)lY I<[\/_,H(<I> (»™)) [ds+ sup Wi + flslg I
<lf (P (YY) ds + sup M + sup il
\/N s<T \/—1\7
< 2lf sup|YN|ds + sup M, + sup S,
v<s s<T ‘/ﬁ s<T ‘/_
and so, by the Gronwall-Bellman inequality, we obtain
sup|YN| < sup[ M, + sup S, ]exp(2lT)
s<T T s<T W s<T ‘/N

'This estimate implies (4.7) because by Lemma 3.1, sup,_, |S,/ VN| con-
verges to zero in probability and by Corollary 3.3, rM, / VN converges weakly
in the Skorokhod-Lindvall topology, and so sup, _ » |rM,/ VN| is tight in the
sense of (4.7). O



114 Y. KOGAN, R. LIPTSER AND M. SHENFILD

5. Asymptotic relations for normal traffic. The following two lemmas
are stated provided that all assumptions are presupposed.

LEMMA 5.1. Foranyt > 0,

.t
P-lll\r,nfol(qs > 0) ds = pt.

LEMMA 5.2. For anyt > 0,
P-lim [‘q,ds = 0
N Yo

PRrOOF OF LEMMA 5.1. For brevity, — is used to designate convergence in
probability. Because p < 1, by Corollary 3.1, we get sup,_, x — 0. Then

MxY) A(0)
[)\(xN)+/.Lr ” MO) + pr

Due to Lemma 3.1, M,/N — 0 and S,/N — 0. Hence, from (2.22) and for-
mula (1.5) for p, it follows that

(5.1) ftrfs ds — ¢(0) pt.

By Corollary 3.1 we get [{[c(x¥) — c(0)]I(q, > 0)ds — 0. Then (1.3) and
Corollary 3.1 imply

c(O)[tI(qs > 0)ds — ftrfs ds -0
0 0
and the desired result follows from (5.1) and ¢(0) > 0. O
ProOF OF LEMMA 5.2. First, we show that
(5.2) [‘&1(q, > 0) ds - pt.
0

To this end, we use decomposition (2.15) for G(z), which is chosen to satisfy
the recursion

63) [GUG+ 1D -GPIN) - [GG - D - G(PDlpr=0, j=0,1,
provided that G(1) # G(0). For such G(z), we have

=6(4) = [[a.[6(& + 1) - G(&)][A(=l) - A0)] ds
(5.4) +j:G( £)re, - e(xM)1(q, > 0)] ds

+ [« dP,(£).
0
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By Corollary 8.1, xNG(&,) — 0. The first term on the right-hand side of (5.4)
is evaluated by const.sup,., [X(2)lsup,., (¢g,xY) and so because
sup, ., (g, xY) = sup, ., (XN)?, it converges, due to Corollary 4.1, to zero in
probability. The same arguments imply convergence to zero in probability for
Itd’s integral on the right-hand side of (5.4) because due to (2.16),
(foxY dP(£)); < const.sup,_, (X¥)2. Also by Corollary 3.1, we have
JEG(EN e(xN) — c(0)]I(g, > 0)ds — 0. Providing all these asymptotics, we
find that

(5.5) /:G( £)[ré, — c(0)I(g, > 0)] ds — 0.
The integrand in (5.5) can be transformed as
G(&)[ré —c(0)I(g, > 0)]
= G(1)&[r —c(0)I(g, > 0)] — G(0)(1 = £&)c(0)I(q, > 0)
= G(1)rg, — G(0)c(0)I(g, > 0) +¢(0)[G(0) — G(1)] £1(g, > 0).
Then

[6(&)[r& — c(0)1(q, > 0)] ds
= c(0)[G(0) - G(] [ §1(q, > 0) ds
+ ¢(0)G(0) fo I(q, > 0) ds — G(2) [O ‘re, ds
and, as a consequence of (5.1) and Lemma 5.1, we obtain
e(0)[6(0) - G(D)] ['&1(g, > 0) ds — ¢(0) p[G(0) — G(D)],

that is, (5.2) holds.
The second step consists of showing the vector convergence

NO)  —[M0) + ur] || [q,ds 0
(5.6) t" -1 |
—c(0) r /;)gsqs ds 0

To this end, decomposition (2.13) is used. Due to Corollary 3.1, the left-hand
side of (2.13) converges to zero in probability. Formula (2.14) and Corollary
4.1 imply {[;xY dm,); - 0 and so the Itb integral on the right-hand side of
. (2.13) converges to zero in probability. Also by Corollary 3.1, [{£&[e(x) —

c(0)]1(g, > 0)ds — 0 and by (5.1) and Lemma 5.1, [{£[ré, — c(0)I(g, >)0] ds
— 0. These relations imply that the second integral on the right-hand side of
(2.13) converges to zero in probability. So the first integral in the right-hand
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side of (2.13) converges to zero in probability too. Using the estimate

/tqs|)t(x£’) - A(O)|ds <tsup|X(2)|supg,x¥
0 x>0

s<t
— tsup X(2)| X (2)|sup (XN,
z>0 s<t

Corollary 4.1 and taking into account all previous asymptotic relations for the
terms from decomposition (2.13), we arrive at

t
(57) j;)qs[(l - gs)A(O) - gs/"'r] ds = 0.
Analogously, due to (2.2) and Corollary 4.1, we find
(5.8) [alre - c(0)] ds - 0.
0

Evidently, (5.7) and (5.8) are equivalent to (5.6).

For normal traffic, the matrix in (5.6) is nondegenerate and so the desired
statement follows from Lemma 5.2. O

6. Proof of Theorem 1.1.

Normal traffic. Due to homogeneity of x7, &,, it is enough to consider only
the case t; = 0, t, = ¢ > 0. Then from Lemma 5.1, it follows that

;/Otl(qs=0)ds= 1- ;/:I(qs<0)ds—+ 1-p.
Thus, we get
) 1 . R
hlxvnE(?jOI(qs =0) ds) = hlxvn?[OP(qs =0)ds=1-p.
To check the second statement, note that
;[Otz(o <q,<é&)ds— %/:I(qs > 0) ds — %[Otl(qs > g).

The second integral on the right-hand side of this equality goes to zero in
probability because by Chebyshev’s inequality

¢ 1 .
I(q,>¢e)ds < — | q,ds
fo (g > ¢) . fO q
and by Lemma 5.2, [/q, ds — 0. Therefore, by Lemma 5.1,
1 .
?/:I(O <g,<¢e)ds > p.
Thus, we get

limE( 2 [*1(0 ds| = lim = [*P(0 ds =
im 7/0( <g,<¢) s)— 11{7117/(‘) (0<q, <€)ds=p.
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Moderate traffic. Due to (2.25) and Lemma 4.2, X" converges weakly (in
the Skorokhod-Lindvall topology) to X, = ®,(Y), where Y, is defined by the
past-dependent It6 equation (4.1). Because X' and X, are continuous pro-
cesses, weak convergence in the local uniform topology holds too.

So it remains to show that the same distribution is shared by random
processes ®,(Y) and |Z,|, where Z, is Gaussian process defined by Itd’s
equation (1.7). For brevity, let
b = X(0) u[c(0) /A(0)]* - ¢(0),

o =2uc3(0)/A%(0) .

Then, (1.7) and (4.1) can be rewritten as

dZ, =bZ,dt + o dW,,

dY, =b®,(Y) dt + o dW,.

According to the definition of ®,(V') [see (2.17)], we find from (6.2) that

(6.1)

(6.2)

(6.3) X, = ['oX,ds + oW, + [— infY,|,

0 s<t
s<: Y] is the functional of the normal reflection at zero. The
process X, is normally reflected at zero process Y,. Consider this process on
the stochastic basis with the filtration generated by X,. Then by [9], Theorem
10.2.1, there exists on this basis a Wiener process W, and a functional ¥, of
the normal reflection at zero such that

where [ —inf

(6.4) X, = ['bX,ds + oW, + ¥,
0

and, what is more, (6.4) has the unique strong solution (see, e.g., [9], Theorem
10.2.2). In the Appendix we show that the process |Z,| is defined by the same
differential equation and so the result is done.

Heavy traffic. The result follows from Corollary 3.1.

APPENDIX

Let Z, be Gaussian diffusion process defined by Itd’s equation (w.r.t. a
Wiener process W,)

(A1) Z,=b[Z,ds + oW,
0

where o # 0.

If 5 = 0 and o = 1, then Z, is the Wiener process and it is known that the
process |Z,| has the same distribution as the normal reflected at zero Wiener
process. We show that this result remains true for the general situation
(o> 0, b # 0), that is, distributions of |Z,| and normal reflected at zero of Z,
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coincide. To this end, we show that there exists a new Wiener process W, such
that

(A.2) 1Z) = b[1Z,lds + oW, + ¥,
0

where V¥, is a functional of the normal reflection at zero.
Due to (A1), Z, = eb'U,, where

(A.3) U, = [e o dW,.

The process U, is a square integrable martingale with the predictable
quadratic variation

(A4) U); = /te‘”s(r2 ds.
0

Due to the Jensen inequality, process |U,| is a submartingale. Then by the
Doob—Meyer decomposition for submartingales (see, e.g., [9], Theorem 1.6.5),
we have

(A.5) Ul=A,+ M,,

where A, is an increasing predictable process and M, is a local martingale.
Because |U,| is a continuous process by [9], Theorem 2.1.2, both processes A,
and M, are continuous and so M, is a square integrable martingale (whose
predictable quadratic variation is denoted by (M ),). Applying It6’s formula to
U2, we derive from (A.3) and (A.5),

Uz = thUs du, + (U,
0

U? = 2]:|Us|dAs + (M), + zfotlUsldMs.

The process U, is a special semimartingale. So, both its decompositions
coincide ([9], Theorem 2.1.1(b)), that is,

2['v,dU, = 2 [0, aM,,
0 0
(A.6)
t
2folUs|dAs + (M), = (U,

The first equality in (A.6) implies [(U2d(U), = [(U2d{M )s; and so

t
(A7) [1(U, > 0)a<m), = [T(U,] > 0)d<U,.
0 ) 0
’ Because U, is a Gaussian random variable with positive covariance, we have
P(|U,| = 0) = 0, s > 0, which implies [{I(|U,| = 0) ds = 0. By virtue of (A.4),
(U); is an absolutely continuous function and so [{I(|U,| = 0)d{U ), = 0.
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From the second equality in (A.6), it follows that
[0‘1(|Us| = 0)d(M), = fOtI(lUsl = 0)d(U), — 2]:|USII(IUSI = 0)dA, = 0.
Thus

(A.8) M), =(U), Pas.,t=0.
This and the second equality in (A.6) imply

(A.9) A, = [I(U)| = 0)dA,, Pas.,t>0.
0

Applying Itd’s formula to e®(A, + M,) (= |Z,)), we obtain
d|Z,| = blZ,| dt + e dM, + e®I(IU,| = 0) dA,.

The process [{e®® dM, is a square integrable martingale with the predictable
quadratic variation

<f'ebs dMs> = [fe*ed(m),

0 0

(A].O) _ j'te2bsd<U>s
0

= ot
Consequently, a Wiener process W, can be chosen such that [{e®* dM, = o W,.
Taking into account (A.9) and I(|Z,| = 0) = I|U,| = 0), put
(A.11) v, = [e?I(1Z,| = 0) dA,.
0

Thus, |Z,| satisfies (A.2) if ¥, is the functional of the normal reflection at
zero. Following [10] (see also [9], Chapter 1, Section 1)), ¥, has to satisfy the
following two conditions:

1. For any continuous bounded function f(z), z > 0, such that f(0) = 0,
/Otf(lzsl) d¥,=0, ¢>0.
2. For any nonnegative continuous process Zt,
[0 (2, - 1z,l) d¥,
is a nondecreasing process.

Evidently, both conditions are fulfilled and the result is complete.
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