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RATES OF CONVERGENCE FOR THE MOVE-TO-ROOT
MARKOV CHAIN FOR BINARY SEARCH TREES!

BY ROBERT P. DOBROW2 AND JAMES ALLEN FILL

Johns Hopkins University

The move-to-root heuristic is a self-organizing rule that attempts to
keep a binary search tree in near-optimal form. It is a tree analogue of
the move-to-front scheme (also known as the weighted random-to-top card
shuffle or Tsetlin library) for self-organizing lists. We study convergence
of the move-to-root Markov chain to its stationary distribution and show
that move-to-root converges two to four times faster than move-to-front
for many examples. We also discuss asymptotics for expected search cost.
For equal weights, cn/Inn steps are necessary and sufficient to drive the
maximum relative error to 0.

1. Introduction and summary. The move-to-root (MTR) self-organizing
scheme for binary search trees has been studied in Dobrow and Fill (1995).
They show that the Markov chain for MTR can be derived by lumping the
Markov chain for move-to-front (MTF) on lists and determine numerous char-
acteristics of the MTR chain, including the spectral decomposition of the tran-
sition matrix and formulas for k-step transition probabilities.

Here we treat rates of convergence to stationarity. From lumpability it is
immediate that MTR converges to its stationary distribution at least as fast
as does MTF. In this paper we are able to quantify the speedup under quite
general circumstances.

We refer the reader to Dobrow and Fill (1995) for background on binary
search trees, self-organizing data structures in general and self-organizing
trees in particular, and the move-to-root heuristic.

In Section 2 we analyze the convergence of the MTR chain to its stationary
distribution. Roughly, the results are as follows. For most weight classes, if
k steps are necessary and sufficient for convergence of MTF with respect to
total variation distance, then k/2 steps are sufficient for MTR and k/4 steps
are necessary. These bounds are gotten by common techniques: Sufficiency is
proven by exhibiting a natural coupling of the MTR chain. Necessity is shown
by identifying a specific event from which variation distance can be suitably
bounded from below. We have been unable to bridge the gap between £/4 and
k/2.
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CONVERGENCE RATES FOR MOVE-TO-ROOT 21

In Section 3 we study convergence of expected search cost, the average cost
of accessing a record. In the case of equal weights (p; = 1/n) we show that
cn/1nn steps are necessary and sufficient to drive the maximum relative error
to 0.

2. Convergence rates for MTR. Let 0 < p; < pg <--- < p, be a fixed
ordered list of weights with 3~ p; = 1. Let o € S,, and suppose that y =poo
is such that y; = pg(;) is the probability of requesting record i at any step
of MTR. Let Q';. denote the distribution of MTR at time 2 when the chain is
started at tree T. Let @ denote the stationary distribution of MTR. Note
that for fixed p the quantities Q’; and @ depend on the permutation o.

Our measure for the distance between the MTR chain at time k and its
stationary distribution will be the usual total variation distance. We treat the
worst initial 7'

. . k _ oo _ k A
d(k;y) -—ggj”QT Q llTv—rTne%f E@fIQT(A) QR>(A)l.

For general background on variation distance, see Aldous and Diaconis (1986,
1987). Taking maxima over all orderings of the weights leads to the maximum
variation distance
d(k) :=maxd(k,poo).
oeS,

Given a triangular array of weights p, = (p,;, i =1,...,n), n > 1, say that
k = k(n,c) steps are sufficient for total variation convergence to stationarity
if there exist positive constants a and B such that for each fixed ¢ we have
d(k) < ae™P¢ +0(1) as n — oo. Say that £ = k(n,c) steps are necessary
for convergence to stationarity if there exists a function %, independent of n,
such that d(k) > h(c) and A(c) > O is bounded away from 0. In the case
of uniform, Zipf’s law and generalized Zipf’s law weights (as discussed in
succeeding text), we will even be able to take h(c) — 1 asc — —oo.If k(n,c) =
f(n)+cg(n) steps are necessary and sufficient for convergence to stationarity,
where g(n) = o(f(n)), we say that a “cutoff” occurs.

We stress that, by our definition, if & steps are sufficient for MTR under
a class of weights, then k steps are sufficient for all orderings of the weights
and all initial trees. )

For s > 1,let {(s) := Y 2,i°. Let In” denote the ith iterated logarithm of
n. We will consider the following choices of weights, where each weight class
p; is listed up to the constant of proportionality:

Weights P~
Uniform 1 .
Zipf’s law 1/(n—i+1)
Generalized Zipf’s law (GZL) 1/(n —i+ 1)%, s> 0 fixed
Power law ’ i%, s > 0 fixed

Geometric 0"i 0 < 6 < 1 fixed
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TABLE 1

Weights Sufficiency Necessity
Uniform %n(lnn+c) %n(lnn —c)
Zipf’s law %nln n(lnn —1n® n+c) %nlnn(lnn —~1n®@n —c)
GZL

1 n (2) 1 n 2)

0<s<1 21_S(lnn—ln n+c) 41_S(lnn In*“n-c¢)

s>1 -ggi)ns(lnn —1n® n+c) %ns(lnn —In®Pn— c)
Power law | cnstl cnstl
Geometric co™" co™"

The weights we have chosen are standard examples and cover a very wide
class. See Knuth (1973) for an interesting discussion of the motivation for
using Zipf’s and generalized Zipf’s law weights. For large n, generalized Zipf’s
law with s =1n4/1n5 = 0.86 approximately fulfills the “80-20” rule of thumb
that has often been observed for commercial computing applications; this rule
states that 80% of the transactions deal with the most active 20% of the file.
Generalized Zipf’s law weights with s slightly larger than 1 are suggested
by Schwartz (1963) as a model for word frequencies. Diaconis (1993) treats
uniform, geometric and generalized Zipf’s law weights for MTF. Knuth (1973)
discusses the “wedge-shaped” distribution obtained by letting p; o i, which
we have generalized and dubbed the power law.

THEOREM 1. Table 1 gives rates of convergence to stationarity for MTR.

REMARKS.

1. Because the MTR chain can be derived by lumping the MTF chain, we
know that the total variation distance at time % for MTR can never be
larger than for MTF. However, our results for uniform, Zipf’s law and GZL
weights explicitly quantify the speedup in the rates of convergence: MTR
is two to four times as fast as MTF. In the case of geometric and power law
weights, no cutoff occurs. We have not investigated speedup in this case;
any constant factor can be absorbed in c.

2. Another, more locally sensitive, measure of discrepancy between distribu-
tions is separation, defined here for initial tree S by

Q" (S, T ))
Qx(T) )

For a detailed treatment of separation, which bounds variation distance,

see, for example, Diaconis and Fill (1990).

It is not difficult to show that the worst case (over initial trees and
orderings of the weights) separation for MTR is, for any set of weights,

ss(k) = mjgx(l —
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equal to the worst case (over initial lists) separation for MTF. This follows
from lumpability and Theorem 4.1 in Fill (1995) along with the observation
that II(T') is a singleton when T is the tree corresponding to either of
the permutations id = (1,...,n) or rev = (n,...,1). Thus, for example,
nlnn+ cn steps are necessary and sufficient for separation for MTR in the
case of uniform weights.

For MTF, the lead order terms for the number of steps that are necessary
and sufficient for convergence are the same for total variation distance and
separation. Interestingly, this is not the case for MTR: the discrepancy is
at least a factor of 2 for uniform, Zipf’s law and GZL weights.

2.1. Proof of Theorem 1: Sufficiency. Coupling is a probabilistic technique
that is useful for bounding variation distance. Let X = (X,) and Y = (Y,)
be two copies of the MTR chain such that the X-chain has an arbitrary initial
distribution and the Y-chain is started in stationarity. A coupling time T is
a stopping time such that X, =Y, for all n > T. Total variation distance is
bounded above by the tail probability of a coupling time; that is,

(€))] d(k;y) < P(T > k), k>0.

Before describing the coupling we introduce some terminology following
Dobrow and Fill (1995). For R C [n], write ry < re < --- < ry, for the elements
of R. Define r¢ := 0 and r,,;1 :=n + 1. Let

8i(R)=riy1—ri—1, i=0,...,m,

denote the number of integers in the interval (r;,r;;1). Then g;(R) is called
the ith gap of R.

THEOREM 2. For an n-node tree suppose record i is requested with prob-
ability y;. Under MTR, let T be the first time that the sequence of selected
records has no gap of size greater than 1. Then

n—1

2) d(k;y) < P(T > k) <Y (1-y;— yis1)®

i=1

Before proving Theorem 2 we state a lemma. For T € B,, write T* for the
tree obtained after & steps of MTR.

LEMMA 2.1. Leti €[n] and let ri,ro,... be a sequence of record requests.
Suppose k =min{m :r,, =i}. Then forall S, T € B,, je[n]and k' > k:

@ i <I* jifand only if i <5* j.
) j <I" iif and only if j <5" i.

PROOF. Without loss of generality we can assume that record i is stored
at the root node in S and T and that 2 = 1. The lemma is then an easy
consequence of Lemma 3.1 in Dobrow and Fill (1995). O
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We now prove Theorem 2.

PROOF OF THEOREM 2. Consider the following coupling of the MTR chain:
Begin with X, Y € B,,. Now select records according to MTR. When a record
is selected, move that record to the root in both X and Y. We claim that at the
first time T that the set of records requested at least once has no gap of size
greater than 1 and thereafter, the two processes have the same value. Thus,
by definition, the coupling time T has the property that if record ¢ has not
been requested by time T, then records i — 1 and i + 1 have.

By Lemma 2.1 in Dobrow and Fill (1995), to show that the two trees agree
at time T it suffices to show

i <5T Jj = i <ZT j foralli, jel[n].
We suppose i < j; the case i > j is handled similarly. Suppose i <fT Jj. Let
R = {ry,...,rr} be the set of records requested through time 7.

Ifi e R, then i <ZT J by Lemma 2.1(a). If i ¢ R, then i + 1 € R because R
has no gaps of size greater than 1. If j € R, then i <ZT Jj by Lemma 2.1. If
J ¢ R, we will derive a contradiction. Because j ¢ R and i + 1 € R, we have
J # i + 1. Thus there exists i < m < j such that m € R. Suppose that m is
first requested at time & < T'. Then %fk( Jj. Because i ¢ R, it follows that
i #X¥ j for all integers k" € [, T]. In particular, i £X" j.

The first inequality in (2) follows because T is a coupling time. Let A; be
the event that neither of the records i and i + 1 has been requested by time
k. Then

n-1
3) P(T > k)=P(UA,-)
i=1
and the second inequality in (2) follows from subadditivity. O
REMARKS.

1. In the case of MTF, the first time 7" that all but one of the records has been
requested is a coupling time. Note that the distribution of our 7', unlike that
of T", depends on the order o of the weights.

2. Our coupling time is not a fastest coupling time, for which the inequality
in (1) would be an equality. For example, stopping when both trees agree
is faster (but still not fastest).

THEOREM 3. For weights 0 < py < --- < p,, suppose there exist positive
constants a and B such that .

n—1

4) Z(l — pi)2k < ae Pe.
i=1

‘Then k steps are sufficient for MTR.
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PROOF. Recalling the notation set forth at the beginning of Section 2, in
particular y = p o o, the proof is a direct consequence of Theorem 2 via the
following chain of inequalities:

n—1

d(ky) <Y (1—yi — yi1)*
‘ i=1

n—1
<Y IA-y)A-yir)]*
i1
n—1 1/2 /n—-1 1/2
< (Zu - yi)z’*) (2(1 - ym)%)
i=1 i=1

n—1
<> (1-p)*
i=1
The third inequality here is from Cauchy-Schwarz. O

For a fixed class of weights, let £ be the number in the sufficiency column of
Table 1 corresponding to that weight class. To prove sufficiency in Theorem 1,
it is enough to show that

n—1
Y (1-pi)** < ae
=1

for positive constants « and B. For uniform, Zipf’s law and GZL weights,
Diaconis (1993) showed that

n
(5) Y (1—p)* <ae P

i=2
for positive constants a and B. It is easy to see for these weights that if %
steps are sufficient, then kp; — co. Thus

n—1 n
YA-p)?* <Y (1-p)?*+ (1 - p)*
i=1 =2

<Y (1 - pi)** + exp(—2kp1)
=2

= 31— p)* 4+ o0(1)
1=2

< aexp(—Bc) + o(1).

A similar analysis can be done for geometric and power law weights. Dia-

conis treats the former. In the latter case it follows from Diaconis’s Theorem 3

"that cn®t! steps suffice. In both cases kp; is approximately a constant times
¢, which does not alter the results.
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REMARKS.

1. Diaconis (1993) gives general conditions on a triangular array of weights
in order for the cutoff phenomenon to occur for MTF. For such weights the
inequality (5) is satisfied and kp; — co. At this level of generality, if & steps
are sufficient for MTF, then k/2 steps are sufficient for MTR.

2. Given the factor of 2 discrepancy in Theorem 1, it is natural to investigate
the source of error in the two inequalities in (2). We show that in the
case of uniform weights the second inequality, at least, is quite sharp. For
uniform weights it is not difficult to determine the exact distribution of T
of Theorem 2. By considering a variant of the coupon collector’s problem, it
follows that

©) P(T > k)= Y. Py(u)P(E,),

u=1

where P(u) is the probability that throwing % balls into n urns leaves
exactly u urns empty and E, is the event that picking ¥ numbers at ran-
dom from [n] leaves a gap of size greater than 1. The probability P(E,) is
easily computed, whereas P;(u) is well known from ordinary coupon col-
lecting. We have made a careful asymptotic analysis of (6) and find that
the subadditive bound on (3) gives the correct lead order term.

2.2. Proof of Theorem 1: Necessity. From the definition of total variation
distance, it follows that for any event B and any starting tree T, d(k) is
bounded from below by |@%(B) — Q< (B)|.

Let T' = t(rev), where rev is the reversal permutation. That is, 7" has record
n at the root, and record i + 1 is the parent of record i fori =n—1,...,1. For
l1<i<n-1,1etY;:=y;+ v;41 and define A; to be the event that i is an
ancestor of i + 1. To compute Q’;,(Ai) note that record i is not an ancestor of
i+1in T. To become an ancestor by time &, record { must be requested. After
its last request, record i + 1 cannot be selected. Conditioning on when record
i is last requested, we find

k-1

Qh(A) =3 Y (1-Y) = F(1-(1-Y)h).
=0 i
Letting £ — oo shows that
(7 Q7(A;) =vyi/Y:.
Now let N := )", 49 1(A;), where 1(A) is the indicator of the event A. Then
) E*(N)=) Q™(A) =) /Y

iodd iodd
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and

©) EL(N) =Y Z(1-1-Y)h).
iodd Y;

For |i — j| > 2, Q®(A;NAj) = @*(A;)Q>(A;). Hence

100 Var(V)= ¥ Q¥(A)(1-Q¥(A)) = ¥ T < T
iodd iodd i

To compute Q’fw( A; N Aj), we condition on the times records i and j are last
requested:

k—2-1
(A ﬂA)—yzy,Z(l Y)li(l Y, -Y)"
m=0

k2 k—2-1
+yiyiy (A=Y Y (1-Y;-Y)"
=0 m=0
_ YiYj Y, . Y. )k Y k
= ¥ [vy, 0o g Yy
YiYi Y; 1 2 Y
+Y~Y[Y+Y A=Y+ v 37,0 Y Y)]

yiy; k k k
=y - (=Y - (A=Y + (=Y =¥

< %? [1-(1-Y)*-Q-Y) +1-Y) A -Y)"]

= QL(A;)Q4(A)).

Thus Covi(1(4;),1(A;)) < 0 and

Varp(N) < Y- @5(A)(1 - Q7(A)

iodd

—Z(———,—,—(l Y))(y;,“ -;V—,i_(l—Y»k)
iodd 4 i

- (yiy;+1 . yilyi — yi+12)(1 - Yi)k)
vz Y2

2
YiYiv1 | Vi k
< +=5(1-Y) )
iodd< Y? Y?
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We have
y2
Var'}-(N) —Var®(N) < Z —‘2(1 —Y;)*
iodd Yi
11) i1 _v.k
: =2 7A=Yy

todd ~ ¢
= E®(N) — EL(N) =: As.

Now let B := {N < E®(N)—A/2}. Once we determine appropriate values
of k, we will show that the probability of B is small in stationarity and large
until % steps of MTR.

From Chebychev’s inequality,

(12) Q*(B) < LY (V)
Ak
and
4 Vark(N
(13) QL(B) = QL(N — EA(N) < Ay/2) > 1 - —Ag(—)
From (11),
Varf(N) _ Var*(N)+ 4, _ Var™(N) = 1 (Var°<>(N))1/2
A, T A% A, Va4
Hence
d(k) > d(ky) > Q&(B) — Q*(B)
(14) 4 (VMW(N))”2 _ 8Var®(N)
JVar®(N)\ A Y
Now choose o = rev, so that y; > ya > --- > y,. Further, assume for

definiteness that n is odd. We then have
YiYi+1
Var®(N) = e
i% (yi + yit1)?
_ Pn+1-i Pn—i
(15) iodd (Pns1—i + Pn-i)?

. . 2 . 2
le(pn—z) 22 min (pl).
4 S5\ Pr1-i 8 1<izn-1\ pit+1
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Also,
A= 3 Y (1-yi—yir)*
iodd
= % (1- pny1-i — pn—i)k
iodd
=1 (1-pjo1—pp)k=33(1-2p)k,
Jodd jodd
which, in combination with (10), gives
o0
(16) VarAZ(N)S n .
k [¥o0aa(1—2p;)*]

To make further progress in bounding (16), we need some conditions on
the weights. The following theorem, following roughly along the lines of The-
orem 2 in Diaconis (1993), gives a general result for obtaining a lower bound
on variation distance.

THEOREM 4. For a triangular array of weights 0 < pp1 < -+ < Pnn With
Y7<1 Pn,j = 1, suppose that the following conditions are satisfied:

Al. maxi<j<n-1(Pn,j+1/Pn,j) = O(n'/?).
A2. There exists a function f with f(n) — oo such that

Prni 9 2<j<f(n).
Pna

A3. There exists a function g with g(n)/n? — oo such that

. —1
Prj _ 14 (1 +o(1))J——, uniformly in 2 < j < f(n).
pn,l g(n)

Ad. g(n)/(b(n,c)f(n)) = 0(1) and b(n,c)pp1 =o(1) as n — oo, where

b(n,c) := ln(‘%j?) - lnln(%) +c.

Then k(n,c) = b(n,c)/(2pn1) steps are necessary for convergence to station-
arity for MTR.

REMARK. For our weight classes it is easy to check whether these condi-
tions are satisfied. Condition Al is very weak and holds, even with O( nl/2)
reduced to O(1), for all our weights. The condition A2 fails for geometric and
power law weights, and condition A3 fails for uniform weights. All of the con-
ditions are satisfied for generalized Zipf’s law weights for any s > 0, with
" f(n) = (1-2"Y%)n and g(n) = n/s. The result of Theorem 1 for generalized
Zipf’s law weights is then straightforward.
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We now prove Theorem 4. As indicated in the foregoing remark, this will
conclude the proof for necessity in Theorem 1 for Zipf’s law and GZL weights.
After the proof of Theorem 4 we will treat the cases of uniform, power law
and geometric weights.

PROOF OF THEOREM 4. For ease of notation, we write p; for p, ;. Assume
that conditions A1-A4 hold. Let 2 = b/(2p;).

From condition Al and (15) it follows that there exists a constant § > 0
such that Var®(NN) > & for all n. Combining this with (14), we obtain

Var°°(N))1/2

an d(k)>1-4(872 + 2)( 3
Alz

provided Var®(N)/A2 < 1. The remaining course of the proof is clear. We need
to make Var™(N)/ A% suitably small [using (16)] in order to ensure that d(k)
is close to 1.

By condition A2, for 1 < j < f(n) we have 0 < 2p; < 4p;, and p; = o(1)
follows (for example) from A3. Hence, uniformly for 1 < j < f(n),

—kIn(1-2p;) = k(2p; + O(p})) = 2kp; + O(bpy) = 2kp; + o(1),
where the last equality is from A4. This gives

Y (1-2p)F= ¥ (1-2pj)f=(1+0(1) Y exp(—2kp)).
jodd 1<j=f(n) 1<j=f(n)
Jodd Jodd

At the same time, by A3,

Y exp(=2kpj)= ) eXp[_b(%)]

1<j<f(n) 1<j<f(n)
Jodd Jjodd
(18) = Y exp{ [1+(1+o(1)) 20 )]}
1<j<f(n)
jodd

_ exp(=b)[1— exp{—(1+0(1))bf(n)/g(n)}]
- 1 —exp{—(1+0(1))2b/g(n)} .

From A4 and (18) it follows that

(19) Y. exp(—2kp;) = (1+0(1)) exp(— b)g(n)

1<j<f(n)
Jjodd



CONVERGENCE RATES FOR MOVE-TO-ROOT 31

for some positive constant . We conclude from (16) and (19) that

Var®(N) w 20 \°
=g = (L+oLne (%)

b 12
_ 1/2 b
_(1+o(1))[2n e sg(n)]

= (1+o(1) =%,
£
the last equality holding by A4. O

Uniform weights do not satisfy A3, but from (16),

Var®(N) _ n 4 2
A2 T [(n/2)(1-2/n)F2 — Z( ‘E> '
Setting £ = (n/4)(Inn + ¢),

Var™(N)
A7
and thus d(%k) > 1 — 8e® + o(1).

The proof of Theorem 1 for geometric weights follows from Theorem 3 in
Diaconis (1993). For completeness we give essentially the same argument for
power law weights.

Suppose record i is requested with probability y; = p; and record i + 1 is
requested with probability y; 1 = pe. Let B = {i <, i +1}. As we have shown
[recall (7)], @*°(B) = p1/(p1+ p2) < 1/2. If we start from a tree in which 7 is
an ancestor of i + 1, then B necessarily occurs if i + 1 is not requested. So

d(k) > |Q*(B) - Q°(B)| = (1 - p2)* - 1/2

> exp<—4k/(n ; 1)) —1/2=e-1/2>1/2 asc\0

<e‘+o(1),

for & = (c/4)("}"), where we have used the bound 1—x > e~2* for 0 < x < 1/2.
REMARKS.

1. In Diaconis’s treatment for MTF, the “bad” event B is the event that record
i is to the left of record i + 1. Our event B is the lumped version of this in
the context of trees.

2. In the case of uniform weights we can show that £ = (rn/4)(Inn — c) steps
are necessary regardless of the starting state. For initial tree T' define the
event A; by

A {i is an ancestor of i + 1}, ifi+1 <7 i,
" | {i + 1is an ancestor of i}, ifi <I i+ 1.
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With this event A;, the necessity part of the proof of Theorem 1 goes
through similarly.

3. Expected search cost.

3.1. General weights. In his Section 5, Fill (1995) obtains rates of con-
vergence and explicit upper and lower bounds for the discrepancy between
expected search cost at time % and in stationarity for uniform, geometric and
Zipf’s law weights under MTF. There are two difficulties in extending these
results to MTR: First, expected search cost for MTR depends heavily on the
order of the weight vector y; second, there is no monotone relationship be-
tween the weights and the discrepancy at time % and in stationarity. These
are in marked contrast to MTF for linear lists.

In this subsection we make some observations about the behavior of ex-
pected search cost for general weights. In the next subsection we analyze the
case of uniform weights.

Given T € B,, the cost of accessing record i in T is equal to the number of
comparisons used in searching for i in 7. This is just 1 greater than the level
of the node containing record i (where we define the level of the root node to
be 0). Let L1 (i) denote the level of record i in T'. The average search cost for
T, denoted ASC(T), is defined to be

n
ASC(T) :=1+)_ y;Lr(i).
i=1
We denote by ESC*® the expected search cost over B, in stationarity:
ESC*® = E[ASC(T)] with T' ~ Q.
Denote by ESC* the expected search cost over B, at time & when the initial

distribution of the MTR chain is 7. Allen and Munro (1978) show that

YiYj
(20) ESC*=1+2) ————~——,
Lyt

Fori < j,let Y;; :== y;, +--- + y;. To calculate ESCﬁ, let 1(A) denote the
indicator of A and note that
Lr(i)=1+Y 1(j <T D),
J#i
i

QG <a /) =10 <g NA-Yi)*+5-(1-(1-Y;)"
iy .

and

Qb <a i) =107 <L DA -Yi)* + (1= 1= ¥)h).
ij
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We now have

ESCE =1+ yELL()

i=1
=1+ Y w(T>Z[yiQ’5~<j <a i)+ ;@7 (i <a J')]
TeB, i<j

=14 3 w0 Y] (i < D+ 310 <E D)= TY)*
TeB, i<j

2YiYj 1 1 vk
1) Ty, 4T E Y
YiYj
=1+2
ZJ Yy
.o 4(: _T 2yiyj
+ Y (DY (910G < D +3,26G <F ) -
TeB, i<j ij
x(1—Yij)k]

= ESC* +D(m, k)

with

Dl 1) = Y(51Qel7 <o 1)+ 3,Quli < ) = 2 ) 1=Vt
u

i<j

Note that we recover (20) by letting £ — oo.
We will focus on the case for which the initial state is a deterministic tree

T, and write

(22) D(T,k) = Z(yil(j <Ti)y+y1G <L j)- %&)(1 - Yk
i<j 2

Note that the quantities ESC®, ESC?« and D(T, k) depend on the ordering
of the weights. We will sometimes write ESC*(y), ESC;“«(y) and D(T, k;y) to
indicate this dependence.

In studying convergence rates for expected search cost, we would like to
bound the relative error D(T, %)/ ESC® in a fashion similar to Fill (1995)
for MTF. However, the dependence of (22) on both the initial tree and the
permutation o appears to make such a study, in general, intractable.

On the basis of intuition and Fill’s results for MTF, it might seem a rea-
sonable guess that D(T, k) is largest when the initial tree is the degenerate
tree #(id) (corresponding to the identity permutation) and the weight vector
is taken in increasing order, but this is not the case. For example, for n = 3
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take y') = (0.1,0.1,0.8) and y® = (0.1,0.8,0.1). Then
ESC®(y") = 1.437 > 1.375 = ESC™(y?).

Letting T1 = #((1,2,3)) and T3 = t((1,3,2)), one can show by direct cal-
culation that D(T4,k;yV) < D(Ts, k;y?) for all £ and hence also that
D(Ty, k;y™M)/ ESC®(yM) < D(Tq, k;y®)/ ESC*(y®).

Numerical experiments with n = 4 show that min, ESC®(p o o) is not
uniformly achieved for all p by any particular permutation o.

Nor is it true that max, ESC®(p o o) is achieved by taking the weights to
be equal. Letting y = (0.255,0.235,0.245,0.265) gives higher expected search
cost than y = (0.25,0.25,0.25,0.25). Interestingly, numerical experiments
suggest that max,.s, ESC®(p - o) is achieved at the two lists (ps, p1, P2, p4)
and ( p4, p2, p1, p3). However, we do not know how in general to characterize
the ordering, if any, which maximizes ESC™(y).

3.2. Uniform weights. In the case of general weights, the observations in
Section 3.1 dampen hopes of getting reasonable bounds for the relative error in
approximating ESC® by ESC];. In the case of equal weights, however, we show
that £ = cn/Inn steps are necessary and sufficient to drive the maximum
relative error to 0.

THEOREM 5. For T € B,, let E(T,k) := D(T,k)/ESC® be the relative
error in approximating ESC® by ESC]%. Let k =cn/Inn with ¢ > 0. If p; =
1/n, then for n > 5 sufficiently large that ¢ > (In2)(Inn)/(n — 4),

1

1 6¢
e <_Eg) < max B(T, k) < -

PROOF. For equal weights, it is clear from (22) that D(T, k) is maximized
by taking T to be any tree having the property that for all i < j either i <7 j
or j <Z‘ i. In particular,

max D(T, k) = D(t(id), k)

IA
S| =

S exp(—jh/n)
-1 j=2
exp(—’2k/n)
~ 1—exp(—k/n)’
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From (20) we have

(23) ESC*™ = 2(

n+1>Hn —3>1nn,
n
where H, := Y[, i~! is the nth harmonic number. Thus

exp(—2k&/n)
exp(—k/n))Inn’

m?xE(T,k) = E(t(id), k) < a_

It is straightforward to show that e2%/(1 — e~*) < 1/x for x > 0. Thus for
¢ > 0, taking k = cn/Inn gives

max E(T,k) < 1
T c

For the lower bound, assume, for simplicity, that n is even. Then

Dy = 1S f(l - g_) (1 - %)k

i=1 j=2 J
1 n/2< 2) (—2jk)
> — 1—-)ex
21.;2 Jj P n
132 (—ij)
>~ ) exp
6= n

for n > 5 and k£ > (nIn2)/(n —4), where we have used the bound 1 —x > e™2*
for 0 < x < 1/2. We have ESC® < 2Inn for n > 3. Taking k£ = cn/Inn gives

1 —6¢

I
= 18¢ “P\1n5
forn>5and ¢> (In2)(Inn)/(n—4). O
REMARKS.

1. Asymptotically, the only lack of sharpness in the upper bound of Theorem 5
comes from (23). Indeed, it is not hard to show that

. 1
lim mTa'.x E(T,cn/Inn) = %

n—oo
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2. A perfect tree on n = 2™ — 1 nodes is a binary search tree in which all
leaves have the same depth. A complete tree of height & is formed from a
perfect tree of height 2 — 1 by adding one or more leaves at depth #; these
leaves must be filled in at the leftmost available positions. We can show for
uniform weights that the complete tree (call it T';) on n nodes minimizes
D(T, k) of (22) over T € B, for every k > 0. Furthermore, for n = 2™ — 1
we have

n =\ R
D(T, k) = _(1 + 1) St - 2—“°gz<f-1>l)<1 - l) ,
n/) i n

from which one sees that & = n!~1/¢ steps are sufficient to make

mqu[—E(T, k)]=—-E(T,,k)>0

small. We have not investigated necessity, but (for n = 2™ — 1) this result
shows that Theorem 5 gives a worst-case rate for convergence (measured
by absolute value of relative error) for expected search cost.

3. For MTR with equal weights, expected search cost converges to stationarity
much faster than does the distribution of the tree, which takes of order
nlnn steps. This discrepancy in rates was observed by Fill (1995) for the
linear list case for uniform, Zipf’s law and geometric weights. As for those
examples for MTF, expected search cost for MTR using uniform weights
exhibits no cutoff phenomenon.
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