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PROBABILISTIC ANALYSIS OF AN ALGORITHM IN THE
THEORY OF MARKETS IN INDIVISIBLE GOODS

BY ALAN Frieze! AND BoOris G. PITTEL?

Carriegie Mellon University and Ohio State University

A model of commodity trading consists of n traders, each bringing to
the market his own individual good and each having his own preference
for the goods on the market. The trade results in a so-called core alloca-
tion, that is, an exchange of goods which cannot be destabilized by a
coalition of traders. Shapley and Scarf, who proposed the model, proved
the existence of such an exchange by means of an algorithm invented by
Gale. The algorithm determines sequentially a cyclic decomposition of the
set of traders into trading groups with equally priced goods that satisfies
the stability requirement. In this paper the work of the algorithm is
studied under an assumption that the traders’ individual preferences are
independent and uniform. It is shown that the decreasing sequence of the
market sizes has the same distribution as a Markov chain {»;} on integers
in which the next state »’ is obtained from the current state v by
randomly mapping [ v] into [ »] and deleting all the cycles. The number of
steps of the algorithm is proved to be asymptotically normal with mean
and variance both of order nl/2.

1. Introduction. Shapley and Scarf[17] discussed a model of commodity
trading which can be summarized as follows: There are n traders and trader
J brings to market an indivisible good y;, say. At the end of trading, trader j
will depart with good v, ;, where 7 is a permutation on [n] ={1,2,...,n}.
The permutation 7 is referred to as an allocation.

Each trader orders the goods v;, j € [n], in some order of preference. Let
m; denote the permutation on [n] induced by the trader j’s preferences. That
is, trader j prefers v, ;, to ¥, ) for i €[n —1].

The main question discussed by Shapley and Scarf was as to the existence
of an allocation with the following property: There does not exist a nonempty
set (coalition) of traders S C [n] who can, by changing their choices, enforce
an allocation in which each of them strictly improves on his own outcome. An
allocation with these properties is said to be a core allocation. Shapley and
Scarf showed that core allocations exist. They also describe a simple algo-
rithm for computing a core allocation. The algorithm’s invention is credited to
David Gale.

Let ¢ stand for a tentative allocation which will be amended throughout
the algorithm. Initially #(;j) = m,(1) for j € [n]. In other words, each trader
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makes a bid for the good at the top of his/her preference list. The functional
digraph (the digraph with vertex set [n] and edges (i, ¢(i)) for i € [n]) of ¢
splits into disjoint (weak) components. Each component contains a unique
directed cycle. We assign 7(j) = ¢(j) for each j which lies on a cycle. The
vertices C of these cycles are then removed and this leaves a rooted forest.
(The traders holding the goods C achieve the best possible results by trading
among themselves, ignoring the rest of the traders and their goods.) If x is a
root of this forest, then #(x) € C, but this good has already been claimed.
Therefore, t(x) is redefined as the good most desired by x in C = [n]\ C.
Thus now ¢ defines a function from C to C. We repeat the process by
removing the new cycles and so on, until all vertices have been removed and 7
has been completely defined.

We will now repeat this description a bit more formally in order to
introduce notation used in the rest of the paper. Thus we consider the
algorithm to proceed in stages. At the start of stage i there is a set N, C [n]
such that if j € N, =[n]\N,, then 7(j) has been determined; initially,
N; = [n]. For j € N, we let

fi(j) = min{u: m,(u) € N},

that is, f;(j) points to the good in N; that is most desired by trader j and
f1(j) = 71 for j € [n].

Now let D, = (N, A;) be the functional digraph of f,. That is, A, =
{(x, f(x)): x € N;}. D, can be described as a collection of vertex disjoint cycles
%, with C; = V(%)), plus a rooted forest F;,; on N,,; = N;\ C,. The roots
K,,, of F, , are precisely those vertices in x € N, ; which have fi(x) € C,.
An iteration consists of assigning 7(x) = f)(x) for x € C; and then replacing
N; by N, ;. The definition of f;,; implies that f;, (x) = f(x) for x € N; ; \
K., and it is only f;,(x) for x € K,,, that needs to be recomputed. The
process continues for r iterations until the first time we find N, , = &.

It is not hard to show that 7 belongs to the core. In fact, 7 is the only core
allocation. (The uniqueness of a core allocation was first observed by Roth
and Postlewaite [15]; see also Roth [14].) The outcome of the algorithm is the
partially ordered set of cycles (trading groups) that allows formation of
competitive prices as follows. The goods eliminated at the same iteration are
priced equally and higher than the goods eliminated at any later iteration.

In this paper we elucidate some of the characteristics of a typical run of
this simple but fundamental algorithm. To do this we define a probability
space on the set QO = S = {(w,, 7,y,...,m,)} of possible sequences of prefer-
ence permutations. We will assume each sample point of () is equally likely,
that is, 7, 7y,..., m, are independent random permutations on [n]. At first
glance this distribution seems highly unrealistic because most traders would
not be expected to exchange expensive champagne for cheap table wine.
~Clearly though, the goods are being traded in the same market precisely
because some of the traders may prefer other traders’ goods to their own. This
makes the uniformity assumption more palatable. Besides, no obvious alter-
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native distribution is in sight. Also our results, especially Theorem 1, are
rather precise and so we hope that what we may lose in reality, we make up
for in depth of analysis.

Our first theorem concerns the number of iterations of the process. So let
X, =X, m,,...,m,) denote the number of iterations in a particular in-
stance. We prove the following central limit theorem:

THEOREM 1. (a) E(X,) = {/8/7n'/2 — (8/m)log n + O(1).
(b) Var(X,) = (56V2 /(87w%/2) — 2/2/m)nY? + o(n'/?).
© X;=(X, - 8/mn'?)/ \/(56\/5/(3773/2) —2y2/m)n'/?  converges

in distribution to the standard normal variable #(0,1) with mean 0 and
variance 1. Moreover, E(X*)") - E(0, D)), forl =0,1,....

Thus, with high probability, there are about /8n /7 classes of equipriced
goods.

Our second result concerns the total number Y, of cycles formed during
the algorithm. In the light of the discussion above, this is the number of
trading groups formed by the allocation process. Our study is not as compre-
hensive as that for X, : as yet we can only obtain the limiting behavior of the
expectation.

THEOREM 2.

E(Y,) = V27n + O(logn).

The proof shows that on average about 7/2 cycles are deleted at each
iteration, except for the terminal iterations. Thus the average number of
cycles deleted per iteration is bounded and this surprising fact deserves a
heuristic explanation. At each stage the average number of cyclic vertices is
O(/v) (v denotes the number of vertices left). The average degree is bounded
and so the average number of trees in the forest left after the deletion of
cycles is O(Yv) too. Now Pavlov [9] has shown that a uniform random forest
on v vertices with O(Vv) trees has giant tree(s). Assuming that most of the
forests produced by the algorithm are close to being uniform, we are led to
the conclusion that in a typical iteration the dangling roots are likely to be
mapped into these large trees. Hence, there will likely be few cycles after the
reselection made by the roots.

Our final result concerns the ranks of the goods chosen by the traders.
Suppose trader i goes away with the good which is the R(i)th on his list. Let
R, =Y ,RG).

THEOREM 3.

(3 +o(1l))nlogn <E(R,) < (1+o0(1))nlogn.
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In fact R, > (3 — &)nlog n with subexponentially high probability, for every
fixed & > 0. That is,

P(R,> (3 —&)nlogn) = 1—exp(—n°), c=c(e)>0.

NoTE. Here (and elsewhere) we use the word “subexponentially” to un-
derscore the fact that the probability of the complementary event {R, <
(0.5 — &)n log n} converges to zero at a rate somewhat slower than, but not
too far from, an exponential rate.

2. Markov chains. The algorithm produces a random sequence
F,,D,,F,,...,F., of forests of rooted trees and their functional digraphs, so
{F} is a “forest-valued” Markov process. Here F, consists of the unique
(trivial) forest consisting of n isolated vertices. Denote the set of roots of F;
by K;, and the vertex set of F; by N;. The process can be summarized:

F, - D;: each vertex v € K chooses a random neighbor ¢,(v) € N,.

D - F " 1- delete the cyclic vertlces C;.

As mentloned previously, F; is trivial and f1 = ¢, is randomly chosen from
the n" functions in [r] = [r]. It would be simpler if we could say “f; is
always a random function, given N,.” This is not true. However, as we shall
see (Corollary 2), the Markov chain {F;} induces a simpler Markov chain
{(n;, k,)}, where n, is the number of vertices of F; and k; is the number of its
components. This is not at all obvious and without this Markovian property it
would be difficult, not to say impossible, to do any nontrivial analysis. Even
more surprising is the fact (see Lemma 2) that the transition probability from
(n;,k;) to (n,,,,k;,,) is independent of k;. This allows us to prove that the
sequence {n,} is also a Markov chain. The study of the transition probabilities
of this final chain throws up a curious interpretation (Remark 1) of this part
of the process as a simple urn model, with an unusual sampling procedure.
Let Fy , denote the set of rooted forests with vertex set N and k trees.

LEmMA 1. Given (N, k), j=1,2,...,i, F; is a random member of Fy ,
for all i > 1. That is, the conditional distribution of F; is uniform.

PrROOF. We prove this by induction on i. It is trivially true for { = 1. Fix i,
\1CN, k=k;, A=k, and denote v =n; = N}, u =n;.; =|N;,,|. We
start by showing that each forest F € %,  arises from the same number
of pairs (F', ¢), where F' € %y , and ¢ maps the roots of F’ to its vertices.
Given F we can construct all such pairs by the following choices:

N.

(a) choosing t old roots from N, for some ¢t € [ ul;

(b) choosing k — t old roots from N;\ N, ;

(c) choosing a permutation of N,\ N,,;, each cycle of which contains at
least one old root from (b);

(d) choosing a mapping of the A new roots to N; \ N,
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This gives a total number of choices as

a(v, k; p, A) K()( “)(K_;(V—u)!

¢ K—1

I
™

(v—w*

HECED IRy
- (223w -w

which is independent of F.

Note. It is known (Lovasz [6], Exercise 3.6) that the total number of
permutations of [a] such that each cycle contains at least one element of
[ Bl clalis (B/a)a!. This explains the third factor in the sum.

If F €4 . 1ki, o then the inductive assumption and the Markov property
of the process {F} 1mp11es (via conditioning on F;) that

P(F,,y = FI(Ny, ky), ..., N, k;)) = Z P(Fz+1 F|F; = F').

Iy le/

Now, let ¢; be the random mapping of the roots of F, into the set N; and let
¢ be a generic mapping of that sort. Since, condltloned on F,=F', the
mapping ¢, is uniform, we get

1
P(Fy=FIF = F) = o n LP(F = FIF, = F', ¢, = ¢).
i ]

IN;

The conditional probability in the sum is 1 or 0, dependent upon whether the
forest F arises from the pair (F, ¢) or not. As we know, the number of such
pairs depends only on %, k,, ;, IN,| and |N,, ,|. Therefore we obtain

a(IMl, kz; |M+ 1|3 ki+l)
(S, 0, LN

P( i+1 Fl(Nl’ 1) (]vi’ki)) =

Thus this probability is independent of F € &, Niiy ki, - HOWever, then so is
P(F,,, = F(Ny, ky),...,(N., 1, k;, 1), since it equals the ratio of the above
probablhty and P(F+l €Iy, ki N1, R, (N, kD). O

+ 1

COROLLARY 1. The random sequence (N,, k;) is a Markov chain.

Proor. Slightly abusing notation,

P((JVHDki+1)|(N1’kl)""’(]vi’ki))
= Z P(Fl(lekl)""s(Myki))

FeZ\’iu,knl
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= E Z P(F’Fll(Nl’kl)""’(]vi’ki))
FEZV;+1»‘?1+1 F,EZV.J%

Z Z P(FI(NDkl)a“"(M—l’ki—l)’Fl)
FE‘7N.+1,k,+1 FIE‘C}TNnk:

X P(F'|(Ny, ky),..., (N, k)

r L |9y, "P(FIF),
Fedy, F'edy

FETLIS

which depends only on N, k,,N;,,k;,;. O

Now, by symmetry, given (n,, k,),(n,, ky), ...,(n;, k;), the set N, is chosen
uniformly at random from among all of the ,fl_ possible sets. So, using both

Corollary 1 and the argument which proves it, we establish the following
result.

COROLLARY 2. The random sequence (n;, k;) is a Markov chain.

We need to determine the one-step transition probabilities
p(v,kspu, ) =P(n; y=p, ki =An, =v, k; = k).
The following lemma does this.

LEMMA 2.
p=A-1 v!

M A
(1) PO ) = e D )

forl<u<v,l1<k<v,1<A<puandpv, ;0,0 =vl/v"

Proor. It follows from Lemma 1 that

A,
p(”’K’M’a ) Ta
where

T = (Z)(KVV_K-I)VK

is the number of ways of choosing a forest in &,, , and then choosing a
mapping from its roots to its vertices. [The middle factor in T is the number
of forests on [v] with k rooted trees, each of which contains one of a
prescribed set of k vertices as its root (see, e.g., Moon [8]).] Furthermore,

gl (19 WA B Py [ (R )

()] < (27 Ao = )

is the number of choices which lead to a forest F with u vertices and A trees.

X
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EXPLANATION. The quantity ® is the number of ways to choose a forest of
A rooted trees on a subset of u vertices and then go back to a forest from
%), « (see the proof of Lemma 1). O

Notice the remarkable fact that the r.h.s. of (1) does not depend on «. This
means that {n,} is also a Markov chain. So now let
b, .= P(ni+l = pln; = V)-

Taking an arbitrary choice for « in (1) and summing over A we obtain

I
Pou= X p(v,k;m,1)
A=1
viub (v—p\ B (u—1)(v— m\*?
@ - Sl BT
v'u! m aop\Aa—1 um

v! ( v — ,u)
B v? Hul v )
As a partial check

v v 1 v—1 1
Epy,,ﬁvl(f.—— Y
n=1 = 0

REMARK 1. As already mentioned, our process is intimately connected to a
curious urn model: Suppose we have v balls numbered 1 to » in an urn. We
repeatedly and randomly select a ball from the urn, note its number and then
replace it in the urn. The process continues until a ball is selected which has
been selected before. Then all balls which have been selected are thrown
away. Let u be the number of balls left. A simple computation reveals that
p,,, s equal to the probability that there are u balls left in the urn. Call the
removal of the » — u balls one iteration of the urn model. We can now apply
the same procedure to the u remaining balls. Let X! denote the number of
iterations before the urn becomes empty. It is clear from our observation
about p, , that X/ and X, have the same distribution.

Some of the mystery may be explained by the fact that since p(v, k; u, A) is
independent of k, we may as well assume k = v and then we see that v — u
is distributed as the number of cyclic vertices in a random functional digraph,
regardless of the number of trees in the forest. So in particular,

v—1
(3) > up, ,=v—cv/?+0(1),
n=1

where ¢ = /7/2; see, for example, Bollobas [1, Theorem XIV.33(vi)].
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So the Markov chain {n,} has the same distribution as a Markov chain {»;}:
Here v, ; is the number of elements of the set [ v;] left when we delete all the
cyclic vertices of a random mapping ¢; from [»;] to [»;], but the cyclic
decomposition of N;\ N,,; in the algorithm and the cycles of the random
mapping ¢, are typically quite different. Indeed, for large v;, the number of
cycles in ¢; is close, with high conditional probability to 3 log v; (Stepanov
[18]. As for the algorithm, the number of cycles deleted in one iteration is
close, on average to /2, and thus is bounded.

3. Proof of Theorem 1. We now introduce the generating function
g,(2) = E(z%+), z > 0. Then, by the Markov property, for v > 1,
v—1
(4) g.(2) =2 X p, .8.(2)
n=0
and g,(z) = 1 by definition. Even though the recurrence (4) does not seem
explicitly solvable, we will be able to find some £,(z) which almost (ie.,
asymptotically as v — =) satisfies it.
Since E(X,) = g.(1), differentiating both sides of (4) at z = 1, we obtain

v—1
(5) E(X,) =1+ Y p, E(X,).
pn=0
A recurrence for E(X, (X, — 1)) can be obtained by twice differentiating (4) at
z=1
v—1

(6) E(X,(X,-1))=2(E(X,) - 1)+ gopMLE(Xﬂ(X# - 1))
Setting

f2) = —g.(2),
we obtain

£.(2) =Z:f()(;)( 2,

14

for v> 1, fo(2) = 1 [(v/w)* = 1 for u = 0, by definition].
Observe that

vl
E(X,) =g,(1) = Fﬂ'(l),
and that the sequence [a, = f)(1)] satisfies
v—1 v\* v — m
av_fv(l) + Z a;{.(_) ( )
, p=1 12 v
(7 )
14

v—1 v\*/ v —
-+ Z%(_) ( ,u,)’ v>1,a,=0.
v! p1 7 v
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Here by Stirling’s formula,
v 1 1
8 R 7 _ -1 4 o(v-2)].
® A N =R T
The shape of this term makes the following lemma appropriate for (almost)
solving (7), whence (5).

LEMMA 3. For a given & € R, there are values {o; , ;} which depend only

s UsJ

on & such that the following is true: Suppose the sequence (y,) satisfies
N
Y, =ew? ) (a;+ B log v)v /2 + O(ew? N+1/2 og v),
i=0

for some (a;, B;). Then provided the following equations in (&, éi),

i—-1
(9) Z‘Tj,o,i—jﬁj= —Bi-1 1<i<N+1,
Jj=0
i-1 .
(10) X 0j0,i-;8; = Y ulg,aBi=-e., 1<i<N+1,
Jj=0 u+j+k=i
u=1;j,k>0
have a solution, the sequence
v! N A .
(11) A, = —ew? V2 Y (&i + B; log V)V_‘/Z
v i=0
satisfies
v! v—1
(12) = =%+ L p,,+ 0" "2 logy).
n=1

The proof of this lemma is given in the Appendix.

There is no error term in the recurrence (5) satisfied by E(X,). Lemma 3
only guarantees that (7,) will solve (5) approximately. The next lemma will
relate the approximate solution to the exact solution.

LEMMA 4. Keeping the notation of Lemma 3, suppose m, satisfies n, = 0
and

v! v—1
(13) n="=%+ X WP, v=L
14
p=1
If6—(N+1)/2 < —38/2, then
lnv - ﬁyl = O(l)'
Proor. Let 6, = n, — %),. It follows from (12) and (13) that
v—1
(14) 6,= X 6p,,+0(v*logv),

pn=1
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where p = 8§ — N/2 < —1. Let A be the hidden constant in the error term of
(14) and let B = |6,|. Let

v
(15) L-B+AY ulog .
. p=1

We show by an easy induction that [6,| < ¢ . The lemma follows as the r.h.s. of
(15) is bounded as v — «. Now ¢; = B = |6,| and then, by induction,

v—1

6l< X p, ¢ +AvPlogv

pn=1
v—1 w
= Y p, |B+AY (#) log | +Av?logv
p=1 w=1
v—1 v—1
<B+A (w)'log | ¥ p, .| +Av°logw
w=1 w=u
<¢,. -

The constants {o; , ;} will be given explicitly in the proof of Lemma 3, but

Lu,Jj

to apply Lemmas 3 and 4 we need the following values:
V2w V2
000 =1, %10 = T G, 01 = T(t—2—26),
(16)
1 4 -3/4 (8=-1/2),
= ——+ -86+08%=
7002773 "3 ~1/3 (5=0).

We first apply Lemmas 3 and 4 to get an expression for a, of (7). Examining
(8) we see that the relevant input valuesare 6 = —1/2, N = 2, a, = 1/ V2,
a; =0, ay = —1/12/27 and B, = B; = B, = 0.

. Equations (9) become

. 27 .

(17) -2 4=,
3.

(18) - ZBO = 0;
R R V2w .

(19) 00,0380t 010,281 + _4_32 = 0.

Equations (17) and (18) are satisfied by B, = 0. Equations (10) become, after
, removing S, .

2'0 V2w 1
( ) - Tao = \/‘2—%‘ s
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(21) S Nl Y
R R V2w 1 R V2w .
(22) 040,300 + 01,998+ ——dy— |01 1+ T015,0]|B — B2
4 2 2
1
T 12V2n

(20) determines &, = 2/w, and (21) determines él = -3/ m/27. The re-
maining equations (19) and (22) are solvable for &, &,, f,, but not uniquely
solvable. Thus there exist A,, A,, B, (whose exact values are not important
to us) such that (Lemma 3)

v\ (2 N N 3 A
ﬁz,,=e"(—y)(— + A V2 4+ Al > V_1/2+B2V_1)10g1/)
v T w2
(23) 8 3 N . ~ B
= ;Vl/z—;logV+A1V27T—Bz\/27TV 1/210gv+‘/mv 172
+O(v! log v)
satisfies
v—1
(24) m,=1+ Y p, M, +0(v32logv).
n=1

[Later /i, will be used as a surrogate for E( X,).] Furthermore, Lemma 4 and

(7) imply
v!
E(X,) =a,—
14

8 3
= V—vl/z— —log v+ O(1).
™ ™

This completes the proof of part (a) of Theorem 1.
To estimate the surrogate variance we let

(25)

14

v v”
b, =£1(1) = —gi(1) = —E(X,(X, - 1).
Then

2 T o2 (75 o E oo 2 1552)

and so
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We now apply Lemma 3 with

v

Y% = 2(V—)(ﬁu -1

v!
26
0 24, — E 172 — 6 V_l/zlogv+0(v'1logv)
1TV m2m

=e”(— +
o
and =0, N=1, ay=4/7, a, =24, —V2/7, By=0 and B, =
—6/m/27 . Equations (9) become

V2m
_—‘2‘_Bo =0,
1. V27, 6
- ‘3‘30 - 4 B: = m/ﬂ s
whose solution is 8, = 0, B, = —12/72 X
Equations (10) become, after removing S,
V2w | 4

Ty %0 T T
1, Vem [ V2w, . 2
3% 7 G- 2[31=—2A1+ g

which has solution &, = 8/m/2w, &, = 84,/ V27 — 4/7 + 56/3n2, B, = 0.
Thus if

v!
27) 3,= e”vl/z(—)

Vl/

8 84, 4 56 12
X + —— 4+ — |- — v 2logv]|,
m/2m V2w T 372 m?

then (Lemma 3)

v—1
(28) §,=2(m,— 1)+ ¥ p, 8 +O(v'/?logv).

n=1
Comparing (28) with (6) makes it natural to define a surrogate variance 4,
by

82 =5, + h, — M2
(29) 56v2 2
= W -2 ; v/2 4 0((10g V)z).

, [Note the fortunate cancellation of terms involving Al.]

Note that (29) suggests, but does not prove, part (b) of Theorem 1. The
proof of this part will be completed in conjunction with the proof of part (c)
and it will be based on (29) and other estimates.
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Our next task is to prove a concentration result for the random variable
X,,, which will in turn be useful in the proof of part (c) of Theorem 1 and also
Theorem 3. To do this we consider the urn model of Remark 1. We will prove
that the number of iterations in this model is highly concentrated around its
expected value.

LEMMA 5. There exists a constant k > 0 such that, for any t > 0,
kt?
(30) P(IXn—E(Xn)| 2t)$2exp{——’;—}.

Proor. Let b,,b,,...,b, be the sequence of ball drawings in the urn
model. Here n + 1 <r <2n. If r <2n we can pad out this sequence to
length 27 by joining the (2n — r)-long tail (b,, b,,..., b,) to its end.

Let X(b,, by, ..., by,) be the corresponding number of iterations and E, =
E(X),). Following a general idea of Shamir and Spencer [16] or Rhee and
Talagrand [13], we will apply a martingale tail inequality to a Doob martin-
gale in a way which has recently proved most useful in probabilistic combina-
torics; see also Bollobéas [2] or McDiarmid [7]. '

Let Z,(b,, b,,...,b;) = E(X,|by, b,,...,b,),0 <i < 2n. This sequence is a
martingale. We show that there exists an absolute constant K > 0 such that

(31) 1Z, - Z, || <K for0<i<2n.
It then follows from [2] and [7] that

P(|X-E(X)|>1t) s2exp{—Kt:n}.

We prove (31) by showing that

(32) |Z;s1(b1, b2, 0;,0) = Z;1(by, by,..., b, b)) | <K,
for all &,,b,,...,b;,b,b". We can assume without loss of generality that b
finishes an iteration and &' does not; otherwise Z,, (b,,b,,...,b,,b) =

Z,, by, by,...,b,0).

Assume that there have been k iterations including the one finished by
using ball b and that there are n’ balls that have not been selected at all
during the whole process b, b,, ..., b;, b. Thus.

(33) Z,, (by,by,...,0,,b) =k +E,.

We observe next that part (a) implies that for some finite absolute constant
L >0,

(34) En1+1 -L SEnl SEnZ +L

whenever 1 < n; < n,.

REMARK 2. One can in fact show that
‘ E, \<E,<E, ,+1,
but (34) is available without effort and will suffice.
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We deduce immediately from (34) that
(35) Z, by, by,... b, b)) <k +E, +L,

because after the iteration that takes b’, there will have been % iterations
and there will now be at most n” < n’ balls left to draw.
To finish the argument we prove

(36) Z,. (b, by,...,b,b) >k +E, — (2L + 1)

and then take K = 2L + 1 in (31).

To prove (36), let m denote the number of balls in the urn which have
previously been selected, immediately after b’ is drawn. Thus m > 1 because
b’ is such a ball. The total number of balls in the urn at this point is
n' — 1 + m, with n’ — 1 being the number of balls not yet selected.

Let Y’ denote the number of balls out of these n' — 1 balls that are deleted
in the kth iteration and let Y denote the number of balls deleted in the first
iteration of a process starting with n’ — 1 balls. Then, for any j > 1,

P(YI Zj|b17b2""’bi’b,)= 1 .

IA

=P(Y =)
and so (conditioned on b,, b,,..., b;,b") Y’ is stochastically dominated by Y.
However,
Zi+1(bl’ bz, ceey bi’ b/) = k - 1 + 1+ E(En'—l—Yllbl’ bz,... N bi’ b,)

>k-1+1+EE,_,_y—L)

=k - 1+En1_1 _L

>k+E,— (2L +1).
The inequality E(E, _,_y/|-) > E(E, _,_y — L) follows from (34) (the right
case), the fact that ' — 1 — Y’ dominates ' — 1 — Y and the observation
that if a random variable U dominates a random variable V, then there exists

a probability space with U,V defined on it in such a way that U > V sample
pointwise. The last inequality follows from (34) (the left case). O

We continue now with the proof of part (c¢) of Theorem 1. Define

. 2
h,(z) =g,(expz) = E(exp(2X,)) and ¢,(2) = exp{zﬁzy + 32—6;,2},

" where i, and 42 are defined in (23) and (29) [with §, therein defined at
(27)], respectively.

Note that 4,(z) and ¢,(2) are the moment generating functions of X, and
the normal random variable with mean 77, and standard deviation g,
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respectively. The proof of Theorem 1 will be completed by showing that if
z = vn~1/4 for fixed v € R, then

(37) ho(2) = (1 + 0o(1)) §,(2)
as n — . Indeed, since 1, — E(X,) = o(§,),

. Xﬂ - E(Xn) Xﬂ - r;lﬂ
lim E{exp|v————= |} = lim E{exp|v—-2>
g, g,

x x
n- n— 2

vZ

=exp(?), Vv € R.

Therefore (Curtiss [3]), X, = (X, — E(X,))/&, —»#10, 1). In addition, since
lx|® < kl(e* + e7%),

convergence of (E(e"*")), _ , implies the existence of (¢}); 1 such that, for all
n>1,

E(1X7 ") <¢,.

Thus,
lim E((X})") = E(#(0,1)"), k>1
n—x
Consequently,
Var( X
lim ———éi—iz = 1,
n—x g,

n

proving part (b), and furthermore the convergence of the moment generating
functions holds if /1, 6, are replaced by the leading terms in their expan-
sions, proving part (c).
We will first show that ,(z) [z = O(n~1/*)] “almost” satisfies—in terms
of relative error—the equation (4) for ,(2) = g,(e?) uniformly for » < n.
We use two constants 5/8 < §<3/4 and 0< 8, < 1/2, and we let
n, = | n®|. We start by noticing that, for v> 1 and v> [ > 0,

1
(38) Zp,,jSAexp{—Z_(,,_lf}’ A=el/2
’ v

Jj=<li

Indeed, by considering our urn model,

v—1-1 j
Jj=1 v

j=<li

Sexp{—Ziy(u—l)(v—l— 1)},

which implies (38).
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Now put ! = v, = |» — v®| and apply (38) to obtain
(39) Y b, <Aexp{—v2°1/2}.

J=<vo

Let us, in our pursuit of (37), deal first with » < n,.
To this end, observe that since 7, = O(»'/2) and §,2 = O(v'/?),

U,(2) = exp{O(n1/271/%)}
=1+ 0(n®/2~A/9) =1+ 0(1) asn — o,

uniformly for v < n, = | n®|. We want to show that A,(z) behaves similarly
for those ». Uniformly for v < n®/2 using 0 < X, < v,

h,(z) = E{exp(zX,)} = exp{O(n~/*v)}
= exp{O(n®/271/%)}
=1+0(1) asn — o,
Suppose n%/2 < v < n®. Pick §, € (1/2,1/(45,)) and write
h,(2) = E(exp(2X,)); {X, < v®} + E{exp(2X,); X, > v%}
=E, +E,, say.

(40)

Here
E, = exp{O(n~*?%)} = exp{O(n~/*n%%)} =1+ 0(1) asn — o,
since 8,8, < 1/4. Further, using (25), Lemma 5, (30) and &, > 1/2,

E, = f(yﬁz’w)exp( zx) dFy (x)

< exp(zv)P(X, > ,,62) + Izl/i exp(|z|x)P(X, > x) dx

< 2exp(f(v®)) + 2|zl[o;exp( f(x)) dx,

where f(x) =|z|x — kx2/(2v).
The function f(x) is concave, and

f(v%) = =5 v (1 + O(lzlv'™))

K
< ——V282_1,

3
for all large n and v in the range under discussion, since
[zlp1™% = O(n~1/*n%1~%)) = o(1).
" Likewise,
' K

fi(v®) =lzl — kv ! < 37

5y—1
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So, using
(41) f(x) <f(v®) +f'(v®)(x — v’),
we arrive at
: K oas,-1)| (7 _ K s
E, <o(1) + 2|zlexp{ rid }/(; exp{ gvTY dy

(42) =0(1) + %(Izlvl"sz)exp{— -gvz'sz‘l}

=o(1),

uniformly over v € [n%/2, n?].
Summarizing, uniformly for v < n®, and §, € (1/2,1/(45,)),

(43) h,,(z) =1+ O(n3182_1/4) =1+ 0(1) as n — oo,
The relations (40) and (43) imply that, uniformly for v < n,,
(44) U(2)/h,(2) =1+ 0(n%%"1/%) =1+0(1) asn — =

We now consider n; < v < n. We know that
v—1

(45) h,(z) =e* X p, ;hi(2)

Jj=0
and so we now estimate

v—1 Yo v—1
e® Epu,jl/lj(z) =e* va,jl/{](z) +e® Z pv,jdjj(z)

j=0 j=0 J=ve+1l
=3, +3,, say.

Now y;(2) = exp{O(/v /n'/*)}, uniformly for 0 <j < v — 1 < n, so using (39)
and & > 5/8 we have

(46) 3, = O(exp{—v?°"1/4}).
Turn to 3,. It follows easily from (23) and (29) that
m, =, =0(v =), 62-32=0(v —j + (logv)’),

uniformly over v, < j < v. Thus, uniformly over v, <j < v,

exp(2) ¥;(2) . 2y g
BTONE = eXP{z(mJ’ =7, + 1) + ?( i T % )}
(47) :

1+ 2y — i, 4 1) + =((y — i, + 1) + 67 - 82)

- 0[120[(/5 =5 + tog m* + (17 — 47 )ctog 7)),
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since (uniformly)
"
|z(\/-17 - \/j)l = O(|z|‘v—1—/—2')

p8-1/2
o5

nl/4

— O(n8—3/4)
=o0(1).
Now by (39),

v—1
(48) = L (=, + 1) + O(Vw exp(~v?*1/2))
j=0
=S, + O(Vv exp{—»v?°~1/2})
and

v—1
z Pv,j((’?‘j — i, + 1) + (67~ 652))

J=Vo

O (e 1) (57 - 7)) + O(wexp(- v 2)

=8, + O(vexp{—v?°"1/2}),
where from (24) and (28) we find

v—1

S; = (m,—m, +1
o = K ol )
=O0(v /2 log v),
v—1 9
S, = L, il(my, —m, + 1) + 62 - 62
o S Bl

=0(v'/2 log v).

[That S, is expected to be small follows from
v—1
2
Var(X,)) = ) py’j[Var(Xj) + (E(Xj) -E(X,)) + 1) ];
j=0

cf. (5) and (6).]
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Furthermore, since

<v (v -j),

‘/—‘/—\/_+\/_

we find that, for-a fixed r > 1,

Z b, J(‘/— ‘/_) <v7/2 va j(V_J)

J=vot+1

_olvrr Et,_l(( > pm))
t=1 Jj<v—t

=0|vr/? Zt"lexp(—tz/Zv))

t=1

= 0| [ x"t exp(—x2/2 dx)
j;) x""texp(—x?/2)
- 0(1).
Then (47)-(51) and z = O(n"!/*) imply
Sy = ,(2)(1 + O((log v)*(n~Y4™3/2 4 n~ V%12 4 n=3/4))),

uniformly in n; < v < n, and together with (46) we obtain that, uniformly in
n,<v<n,

v—1
(52) U (z) = (1 + O((log n)’n ‘(1+51)/2))ez 20p,,,j¢/1j(z).
j=

[Compare with (45).]

The equations (44) and (52) and the optional sampling theorem for (sub,
super) martingales provide the tools for the last step of the proof.

The deletion process produces a random sequence S, Sy,...,S, ..., where
S, = n and 8, is the size of the remaining set after £ deletion steps, if the
total number of deletion steps is at least %; otherwise S, = 0. Introduce a
stopping time T' = min{k: S, < n,}. Now define

Y, =e**hg(2), Y;=etyg(z), k<T

Y, =Y, Y, =Yr, kE>T.
Then if S, S;,...,8S, are such that £ < T,

E(Yk+1|SO’Sl7""Sk) = e(k+1)zE( Sp 1(z)lsk)

S,-1

(53) . = ekt Dz Z Ps,,,jhj(z)
) oy’

=Y,
on using (45). Furthermore, (53) holds trivially for 2 > T.
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Similarly, (52) implies
(54) E(Y}.11S0,8y,---,5,) = (1 + O((log n)*n=0+2/2))y;.

Equation (53) states that the sequence (Y,) is a martingale with respect to
the sequence (S,). Now by the optional stopping time theorem (see, e.g.,
Theorem 4.1 of Durrett [4]),

E(Yr) = E(Y,) = h,.(2).

Applying the same theorem to upper and lower estimates for E(Y;|-) we see
from (53) and (54) that

E(Y;) = 4u(2)E((1 + O((log n)*n=0+72))").
Furthermore, (44) implies
E(Y7)/E(Yr) =1+ 0(1), n — o,
and so
U(2) /ho(2) = (1 + o(1))E((1 + O((log n)*n~0+272))").

We then write
E{(l + O((log n)zn"(“‘sl’/z))T}
= E{(l + O((log n)zn"(“al’/z))T; T < ns}

+ E{(l + O((log n)zn‘(1+51’/2))T; T > n‘s}
- E, + E,.
Here, using Lemma 5,
E, = (1 + O((log n)*n~0+3/2)) " P(T < n?)
=1+ O(exp{—ans‘l/z} + (log n)2n6—(1+61)/2)

=1+o0(1),

for 8 € (5/8,3/4) and 8, chosen sufficiently close (from below) to 1/2. Also
using Lemma 5,

T
E, < E{(l + c(log n)2n=+00/2) " T > nS}
<2 Y exp{c(log n)?n~A*o0/2j — yj2/n},
j>n?
for some ¢ and sufficiently large n, and arguing as in (41) and (42), we obtain
E, = O(nl"aexp{c(log n)2ns—(1+81)/2 _ ans—l}

=o0(1),
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since
6—(1+6,)/2<26-1,

for 6 > 5/8 and 8, > 0. Thus
a(2)
ha(2)

and the proof of Theorem 1 is complete. O

=1+o0(1),

REMARK 3. It is worth noticing that we could have proved the asymptotic
normality of X, via characteristic functions, rather than the moment gener-
ating functions. The advantage of using the latter is that we get a stronger
result (convergence to the normal distribution together with the moments)
which allows us, in particular, to establish the asymptotic formula for
Var(X,), thus reversing the usual course of events in proofs of central limit
theorems.

4. Proof of Theorem 2. We first obtain an expression for c(v, k), the
expected number of cycles produced in the next iteration if the current forest
has v vertices and « trees. Let [x%y®]f(x, y) denote the coefficient of x?y®
in the double power series expansion of f(x, ¥).

LEMMA 6.

v

! 1—x
e(v,k) = _(—,,—)_;—TT[xVyK]{(l — x)exp(v(x + xy))log m}

Proor. Let p(v, k; u, A, m) denote the probability that starting with a
random member of 5, ., m cycles are created and their deletion leads to a
forest with w vertices and A trees. Then

0,0,
p(v,k;p, A,m) = —5—,

where:

Q@ T =(%)cr"? ‘(see Lemma 2) is the number of ways of choosing a
forest in 77, , and then choosing a mapping from its roots to its vertices;

(i) 0, = ,’1) ’/\‘ Au* 2"}y — u)* is the number of ways of choosing a
u-subset of [ v] and then a forest F' with these u vertices and A trees and a
mapping from its roots to the » — u excluded vertices;

(i) @, = ;=0( . )(”‘“)W(V—M, 0, m).

K= p P

EXPLANATION. The symbol p denotes the number of roots of the (v, k)-

. forest which are on one of the m cycles, (K ® p)( g \ " ) is the number of ways

of choosing the « roots in this way and w(¢, p, m) is the number of permuta-
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tions of [ ¢] which have exactly m cycles, each containing at least one
member of [ p]. [Thus 7w (&, p,m) =0,if m > pl]

We must therefore evaluate

1 E-p)! p! e
(&, p,m) = — Y ( ) - — I1(G,+j, -1
m' i+ et =¢—p Ll!'" lm! .]1' .]m' s=1
St U =p
i120,..., i,>20
J1=z1,..., Jm=1

Here the sth cycle has j; vertices from [ p] and i, vertices from [ ¢]\ [ pl.
Thus we can write

1 P m xisyjs ) )

w(&,p,m) = (£-p)lp!l—[257y"] r [T+, +j, - D!

m: i1>0,..., in208=1 1sJs:
Ji1=1,..., Jm=1

i—0 j—1 L4!

1 © 2 iyl "
=(§—p)!p!m[x§"’y”]{ r (i+j—1)!) }
= —PyP i wlt_lt it—im
ol £ (o)

1
= (¢- p)!p![xﬁ-"y"]{

m!\ /2 ¢ t=1

1 1-x \"
=(§_p)!p![x§_pyp]{ﬁ logm) }

Hence
it 1-x \°
mglﬂ(f,mm)zm =(¢- P)!P![xf_”y”]{(m) )
Now define
0,(2) = O,z™

I("5#) £ wto= wopamyz

m=1

m p)(”;“)(v— m— p)!p![x”_“""yp]{(Ti;—:')z}
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1—x ‘ b e
__1 gHTKEPyRp
—x—y

1—x z
=(v< M)![x”_“y“]{(m) (x +y)“}-

Hence (for u > 1)

—(v-w' Y (Kfp)[x”"“y“]{

p=0

h p(v,k;pu, A, m)z™ = &;‘(z—)_
m=1
_04y(2) v'(v—u)( )(V_ e
T (v-—pwiullr-1 '
Analogously,
Y p(v,x;0,0,m)z™ = (;) Y, m(v,k,m)z™
m=1 m=1
vl 1-x \°
=?[xv ny](l_x_y) .

Summing over A, we obtain (for u > 1)

b 0,(2) ¥(v—u)
p(v,k; u, A,m)z™ =
L L pmm)n = =

p—1
’

and summing over u,

Z Z ZP(VKP«,/\m)z + Zp(VKOOm)z
pu=1lAaA=1m=1 m=

e

1—x Fe gy
) ) “v#-l(x+y)“}

1—x—y w0 w!

X

v! 1-x \°
= ?[‘xv—xyk]{(-i—j) exp(V(x +y))(1 - X —y)}.

Differentiating with respect to z and then setting z = 1 gives
|

! 1—x
C(V, K) = W[xV—KyK]{(]_ — x)exp(v(x +y))10g m}

Then replace y by xy to obtain the statement of the lemma. O

Now let C(v, ) denote the expected total number of cycles produced from
the current iteration onwards if the current forest has v vertices and « trees.
Thus

E(Y,) =C(n,n).
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Now
v—1 n
(55) C(v,k) =c(v,k) + #go Aglp(v,f(;,u,, MNC( e, A)

=c(v,k) +S(v),

since the double sum in (55) does not depend on «. However, then (55)
implies

v—1

c(v,k) +S(v) =c(v,k) + Z_:O glp(v,:c;u,/\)(c(u,/\)+S(,u))
or

v—1
S() =5(1) + L p,S(w),
where
v—1 p

(56) s(v) = ;0 glp(v,x;,u,,/\)c(p,, A).

LEMMA 7.

s(v) = g + O(v1/%).
Proor.
plov=1 &
s0) = 5 T 5 () ey
p. 1Ar=1
1-—x
X {(1 - x)exp( ,u(x + xy))log(m }
p! v—1 M v —
A el § vl o 22
G | A-1 u

57 x1 1o

(57) Og(l—x—x((v—u)/#)y }}

- _l Vzl[x”]{(l —x)exp{ (x +x( V;M)l)}

1—x
1-x—x((v—pn)/p)l
pl v— 1

== L [x#]{(l—x)exp(Vx)log( 1_’“ )}

p=1 xv/p

X log(

|
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We now estimate the summand in (567) via Cauchy’s formula:
[x*#] {(1 —x)e”” log(——l)}
1—-xv/u
: ¢ 1 (1-x)e"log((1—-x)/(1—=xv/pn)) dx
c

2mi x ™ x

(58)

where C is the circle of radius r = u/v with center at the origin in the
complex x-plane (x = r is the saddle point of e”*/x*). Here
S(logz) =argze (—m,m).

Notice that log((1 — x)/(1 — x/r)) is analytic in the disk |x| < r, except at
x = r, which is on C. So, to be precise, we apply Cauchy’s formula to a contour
that is C with a small circular dent which leaves the point x = r outside, and
then let the radius of the dent go to 0.

Since the uth summand (times »!/v") is

/\ilp(u, Ky, A)e(p, A) <vp, ,,
the inequality (38) shows that the overall contribution to s(») of u < v —
(log v)Wv is
O(v exp{—2(log »)’}) = O(»"¥) forall K > 0.
So, substituting u = v — ay/v, we concentrate on « < log v. We substitute
x =re'f, -T<6<m,

into the integral in (58).
We will first examine the case of large 6. Now

1-ret r+1 i(1-r) (0)
cot

1-¢° 2 7 2 2
and we deduce that if £ = (log v)/v'/2, then
1 — re't
log(—1~:—e~io—) = O(log v),
uniformly for |6| > ¢ and all u. Further,
(59) expx(:x) = expr(:r) exp{ —u(1 —cos 6)},

where [cf. (63)] uniformly for a < log v,

exp(vr)

1
— =exp{v— §a2+0(a3v_1/2)} <expv,

*if v is sufficiently large. The second factor in (59) is at most

exp{—cpf?} < exp{—cpe?} < exp{—c'(log V)z}
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(¢ > ¢ > 0). So if C, represents the portion of C with |8| > &, then

(60) — 0(ew K),

xt x

(1 —x)e"*log((1 —x)/(1 —xv/u)) dx
560 =

&

for any constant K > 0.
Turn to the dominant contribution that comes from small 6, that is,
16| < &, or (substituting 6 = u/ Vv) from |u| < log v. We have

1-re®=1-r—rig+ 0(6?%)

- % - ;ff—/gui +0(6?)
2 amy ofle)

and
. iu u?
1-¢ef= —— +0|—|,

both estimates being uniform over |u| < log v. Thus

(1- re“’)log(l—_—'iii) _ Lia- iu)log( ‘- iu) + O(M),

1-—ef v —iu v
where
R(a,u) =lul(a + lu)|1 + log( * l-;||u| ))
(61)

<lul(a+ Iul)(l + —la:—l)

< (a+ lul?.

Also, since log x = O(Yx), for x > 1, and log z = loglz| + O(1) (z € O), we
have

a—iu
(a—iu)log( — )l=0(s(“’«“))’
’ where
(o + lul)®?

(62) S(a,u)=—m1—/—2——.
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The other factor in the integral is

exp(vx)
= exp{vx — ulog x}
= exp{ pexp(if) — u(logr +i6)}
(63) = exp{,u —ulogr — 502 +0( M|0|3)}
a?  u? ‘o (a + lul)®
= exp(v —2"- 2 T .
Also
dx . 40 idu
- —ido= ik

So the real part of the integrand in (58) (when the variable of integration is
u, not x or #) can be expressed as

exp(v — a?/2) u? a? + u? a
—————~exp| —— || alog —5— + uarctan| —

2 2 2
(64) TV

o[ 252},

372

Here, using (61)-(63),

t\'>|g

} (R(a,u) +S(a,u)(a+ lul)®)

(a+|u|)9/2))

(Oz+|u|)2 + ul/?

Q(a,u) = exp{v 22——

o a2  u?
= Ofexpiv— — 5
2

O a
= exp V——2"-—

w|=w

}(a2 +u? + a¥?ul™? + ut)).
In particular,
f:Q(a, u) du = O(exp(v — a?/2)(1 + a® + a¥/2))
= O(exp(v — a?/2)(1 + a)).
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Also, since a < log v,

u? a? +u? a
[ exp| ——||lalog}) —— +u arctan(—) du
|u|>1og v 2 u u

0 lul ( u” ) d
= ulex - u
"[ulzlogv P 2

= O(exp{—(igz—y)—}).

Therefore the real part of the integral in (58) becomes

exp(v — a?/2) o u® [ a? + u? a
—p(———/-—)f exp| ——||alog) ——— +uarctan(-—) du
27y — 2 u u

. 0( (1 + a®)exp(v — a?/2) )

,3/2

Summing this expression over v — (log vWv < u < v — 1, we obtain, via the
Euler summation formula,

v! e’ &) a?
s(v) = szﬂﬁL:Oexp 2
& u? a? + u? a
X exp| ——||lalog) —— +uarctan(—) duda
u=—o 2 u u

[By Stirling’s formula, »!= V27v(v/e)*(1 + O(v~1))]
Setting a = pcos ¢, u=psin¢ and duda=pdpdd we see that the
leading term in s(v) is

azlrenl 5]

f"/z (cos ¢ log(lesc @) + lsin 4"(% B |¢|)) d¢) N g’

—m/2

X

and the lemma follows. O
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Consequently
ar v—1
(65) S(r) =5 +007V) + L p,,S(w),
=
but
v—1
(66) E(X)=1+ ) p,,,#E(X”).
un=0
We prove by induction that
T
(67) S(v) = £y -E(X,) + O(log v).

Let A be the hidden constant in (65) and ¢, = [S(v) — wE(X,)/2|. Then (65)
and (66) imply
v—1
g, < E J + Ay 1/2,
n=0
Assume inductively that {, < B log(w + 1), for u < v, where B can be ad-
justed to handle values of v < 2. Then

v—1
{,<BY p,,log(pn+1)+Av 172
w=0
Substituting
1 1) =1 1) + log(1 - —£
+1) = +1) + -
og(p + 1) =log(v + 1) og( V+1)
v—
<1 +1) -
< log(v ) v+1
yields
v—1
{,<Blog(v+1)— Y (v=w)p,, , + AV /2

V+1M o
< Blog(v+1),

if, in addition to the above-mentioned restriction on B, we choose

B v/2 41
> sup - [N
v>2 Z,u,={')( v— M)pv,,u.

That the supremum is finite follows from (3). This completes the inductive
> proof of (67).
‘It remains to notice that

E(Y,) =C(n,n) =8(n) +c(n,n) and c(n,n)=0(logn),
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since c¢(n, n) is the expected number of cycles in a random mapping from [ 7]
to [n]. Indeed,

n n—k
c(n,n) = g( )(k— 1)'
_ = 1(n)
k§1k nk
no1
“EE "

5. Proof of Theorem 3. First of all let D(i) denote the number of
iterations that expose the trader i as a root before i is finally deleted. Let
M(i) denote the number of traders remaining (including i) at the end of the
iteration which makes i a root for the D(i)th time [with M() =n, if
D(@i) = 0]. By symmetry, (D(i), M(i)) are equidistributed for all i.

LEMMA 8.
. ' n—D(i) +1
(68) E(R(i)) = E(D(i)) + E(—mrr)

ProoF. The trader i will go away with the best among the M(i) goods.
This good is preceded (on i’s preference list) by all D(i) goods lost for i and
some of the remaining n — D(i) — M (i) goods. Conditioned on D(i) and M(i),
the latter has the same distribution as an occupancy number of a cell in the
uniform allocation model with n — D(i) — M(7) indistinguishable balls and
M(@) + 1 cells. Thus

n — D(i) — M(3)
M@G) +1

n—D(i) +1

NIGEES

E(R(i)|D(i), M(i)) = 1 + D(i) +
- D(i) +

Now remove the conditioning to obtain the lemma. O

We proceed to estimate the expected values of the quantities in the r.h.s. of
(68).

LEMMA 9. _
limsupE(D(1)) < 1.

n—ow

[In fact, lim, _,, E(D(1)) = 1, but we do not need this.]
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Proor. Let T'(n) = X ;D(i). We prove the lemma by showing that
(69) E(T(n)) <n+0®(n).

Now T'(n) is the total number of trees produced during the course of the
algorithm, not counting the n trivial trees at the very start of the process. Let
t(v, k) denote the expected number of trees produced starting with a random
forest from 7, ., not counting the « trees we begin with. Then if v > 1,

I

v—1
;1 glp(v,lc;,u,)\)()\ +t(p, A))

t(v, k)
(70)

v—=1 M v—1 M
Y Lp(visu, A+ X X p(v, k5 m, ME(p, A).
u=12a=1 u=12a=1

Now the first sum in (70) is independent of k and one can easily check by
direct computation that conditional on v, u > 1, the distribution of A is
1+B(u—1,1— u/v), where B(-,-) stands for a binomial random variable.
Hence

v—=1 M v—1 M
pros VA= L p 1+ (- 1f1-2))
p=121=1 =1 v
(71) v—1
= l-k §:<pwy(v_-u)‘
p=1

We see from (70) that ¢(v, k) is independent of k and so we use #(v) from
now on. So (71) implies

v—1 v—1
t(v) <1+ Y p,(v—n)+ X b, t(n0).
pn=0 p=1

Consequently,
t(v) <E(X,) +v
= v+ O(Vv).
It remains only to notice that E(T'(n)) = ¢(n). O

It follows from Lemmas 8 and 9 that

n 1
E = + El————|.
(72) (R,) =0(n) +n ¥ ( O 1)
Now let M'(i) < M(i) denote the number of members present at the begin-
ning of the iteration which results in the elimination of member i. The upper
bound in the theorem follows directly from the following lemma.
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LEMMA 10. Uniformly in o € ),
En —1 1+ o(1))1
< .

ProoF. Let A, denote the number of members deleted at iteration k.
Then

n 1 A, A, A,
= +
S\M(i) +1 n+l n-A+1 n-A—-A,+1
n+l 1
< X -
-1t
= (1+ o(1))log n. O

For the lower bound we shall assume (following a method of [10], [11] and
[12] that the random preferences are induced by an n X n matrix [x; ;],
where the x; ; are ii.d. uniform [0,1] random variables. Thus member i
orders the goods of other members (including his own) in the increasing order
of the entries of his own row. The core allocation is an ordered sequence of
groups of members of sizes [,l,,...,1,, where [, +1l, + - +l,=n and a
sequence of permutations ,, 7,,..., . on each of the groups which must
satisfy the following necessary condition. If a member i belongs to the sth
group, then i prefers m,(i) to anything in the groups ¢ > s.

Thus, for every m > n and 7> 1,

P(R <m)
1 1 z L;—-1
<n! 1—x;,)"
Z'/;a:1=0 fx"=0il:[1( xl)
(73) N

XP| Y B(n—L;,x;) <m—n|dx,dx, - dx,
i=1

+P(X,=1),

where the B(n — L;, x,),i = 1,2,..., n, are independent, and the sum is over
all<r<r,,ly,...,1, suchthat [, + [, + --- +I, = n and

L +-+1, fl<ic<l,

I lz—l—-"—i—lr, lfll'i‘].slﬁll"‘lz’

l

L, ifly+--+l,_;+1<i<n.

ExpPLANATION. Having fixed r,l;,1,,...,1,, the number of ways to parti-

s bros

tion [n] into the ordered sequence of subsets of cardinality /,,...,/, and then
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to choose a sequence of permutations 7,,..., m., one for each set, is

n
(ll,l2,...,lr)lll”' lr!= nl.

Given the valueés x,,..., x, of the member’s assignments, (1 — x,)*:"! is the
conditional probability that member i prefers his choice to those in the
permutations ;. ,,...,7. and to other possible choices within his group.
Finally, given x,,..., x,,{R(i) — 1:1 < i < n}is distributed as {B(rn — L,, x,):
1<i<n}

Letting I denote the n-fold integral in (73), we estimate it from above by
applying the Chernoff method to bound P(X}_;B(n — L, x;) < m — n). For
any 0 <z < 1,

o T BP0t )

1 1 n L

I< - 1—x,)" - dx, dx, - dx,
[ PR g,
1 1 r L-1 n-L,

= [ e e TT A — )" e + 1 - )" day diy - d,
x;=0 x,=0 i=1

o]

<z" " ﬁ '/;c:oexp{_xi(Li - 1) —x;(1-2)(n — L;)} dx;

=znm lﬁ[(Li -1+ (1-2)(n —Li))_l.

The bound depends on z. Not surprisingly, we select it so as to get the best
estimate. Denoting A, = ¥]__[,, we proceed with

I<z"TI(A -1+ (1 -2)(n—-A))"
s=1
=z" " exp{— I,log(n —1—2(n - )\s))}
s=1

(74) SZ"‘”‘exp{—]:log(n - 1-2(n—x)) dx} (ifz<1-n"1

<z" ™exp{—z }(n - 1log(n — 1) +n +2z"(n — 1 - 2n)
xlog(n — 1 — zn)}
<exp{-nlogn +n—(oc—y+0(n7))n'"?logn + O(log n)},

if z=1-n"7, c€(0,1) and m = ynlogn. Let ﬁs choose 7= |n’|, 8¢
(1/2,1). Then the term P(X, > 7) in (73) is subexponentially small by
Lemma 5. Next observe that the number of terms in the summation in (73) is

z(fj})sm.

r=1
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So n! times the sum is bounded by
nin"exp{—nlogn +n—(oc—y+ 0(n"7))n*"?logn + O(log n)}
<exp{n®logn — (0 — y+ O(n 7))n' " logn + O(log n)},
which is subexponentially small too, if § <1 — o and o> y. If y < 1/2, the
conditions are met by choosing 6§ € (1/2,1) and o € (y,1 — 8) both suffi-

ciently close to 1/2.
This completes the proof of Theorem 3. O

NoTE. It seems reasonable to guess that E(R,) = cn log n, but we are at
a loss as to what the actual value ¢ € [1/2,1] is. It would also be very
interesting to prove that R, is concentrated around E(R,).

Incidentally and importantly, the idea of generating random preferences
via the matrix X = {x; j} makes it clear that the deletion algorithm can be
used as a greedy heuristic for the n X n linear assignment problem with cost
matrix X. The expected value of the assignment delivered by the algorithm is
n 'E(R,); thus it is asymptotically between 2 log n and log n. Is the algo-
rithm better than two classic greedy algorithms which deliver expected
values asymptotic to log n?

APPENDIX

PROOF OF LEMMA 3. We let £, = (v”/v))#, and show
A v v\ v —
(75) E-%— L fy(—) (
n=1 s
which is equivalent to (12). Let

s 2 (352

) — O(euya—(Nu)/z log V)’

r=1 v
Express
v —
log,u=logv+log(1— M) (1<su<v)
(76) : = 1 y— g
=1 — —
og v u§1u( ” )
and
— v a
,u,""=1f“(1+'u )
v
(77) w :
+t—-1 K
- L (=R
t=0 4
Then

e}

(78) S(v,a,u) = ) u+a+t+1(a+;_1)R(v,t+u),

t=0 Y
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where
R(v,7) = ¥ (%)ﬂo-—m’“.

n=1

With this notation, the sum in (75) becomes

N *
(79 Y |&S(v,8,,0) + ﬁi(S(v, 5,0)logv— Y u!'S(v,5s, u))),
i=0 u=1
where §, = (i — 1)/2 — 4.
We now proceed to obtain an asymptotic expansion for R(v, t). First of all
let F(x) = (ev/x)* and G(x) = log F(x). The Taylor expansion of G at x = v
is given by

1 9 i (v—x)
80 G(x)=v— —(x—v - —_— 7.
( ) ( ) 21/( ) r§3 r(r—l)v’_l
Thus

= (v-x)
1+ X xe——1|
r=3 4

(81) F(x) = exp(v)exp{—g—z_jv—)—}

where, in particular,

1 1 1
X3__ga X4__Ei X5__2_0'

Using (81) in the definition of R(», t), we obtain

(82) 1y 1) = exp(s) 5 exp{_@_:_i}(,,_ s

a1 2v

Xi1 ZV: eXp{_(#— d }(V_I-L)HHI'
pn=1

.

exp(v)r§3 " 55
We now need a result from Knuth and Pittel [5, Lemma 1]. For every fixed
y> —1and a >0,

o 2
TR exp{—g—} = 2‘y‘1>/21“(y_;_1),,(y'+1>/2
=1 v
(83) ’ i .
' (-1 ¢(—y —2i)

. ‘ + O(v ).
i—o 2'! vt (v )

Here T is the gamma function and ¢ is the Riemann {-function.
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Now for fixed ¢, r,

v—1 v — 2
Z exp{—( ®) }(V_M)r+t+1

p=1 2v

v—1 2
expl — — \ yrt+l
g p{ 2v

:
&l 2] ofol )

Thus (82) and (83) give that, for every a > 0,
t+2 (- 1) {(— t—1—2l)
R(vit) =e’|22T —— | pt2/2 4
(vt) =e ( ( 3 )V i§0 ST ~
2a+t+5
Xr r+t+2
84 + i 2(r+t)/2r( ) (r+t+2)/2
( ) r§3 1 2 14
a-r+l (-1 r—t—1-2i
+ ( 7 ) {( - ) +O(V—(a+1)))_
—o 24! v
Thus for any A > 0,
A
(85) R(v,t) = eVV(t+2)/2( Y P, v + O(V—(A+1)/2))’
Jj=0

for some constants p, ;. In particular,

V2 3
R(v,0) =e”v(1— il V—1/2__,,—1+0(V—3/2))’
4 4
86 V2m 4
( ) R(V,l) = eVV3/2(T _ §V—1/2 + O(V_l)),

R(v,2) =ew?(2 + O(v~1/?)).

To compute these quantities we needed to know certain values of the gamma
and zeta functions. We remind the reader that, for nonnegative integer n, (i)
I'(n + 1) =n!, T+ 3 =(@2n/n22")W7 and Gi) (-2(n + 1) =0,
(-1 =-1/12.
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It turns out that R(v,¢) is essentially of order e’»**?/2 for moderately
large t’s as well. Indeed, by definition of R(v,¢) and (80),

14 1 f
R(v,t) <exp(v ——(v= )Y (v — )t
(r.0) 2 exp() T exp| =5 (0|0 )

- 0fexp(n)( [ () e + maxfw)| [f(x) - xp(_;_)x]

(t+1)/2
= O(GXp(V)(2t/2F(é + 1) p(E+2/2 4 (t + 1) V(t+1)/2))

(87)

= O(RI(V’ t))’

where R,(v,t) = e +2/2(¢ /o)t +1/2,

We will need yet another bound for R(v,¢) that holds for ¢ > 3v/4. The
function (ev/x)*(v — x)'*!, x € (0, v], attains its maximum at the root x €
(0, v) of the equation

log(v/x) = (t + 1) /(v — x).

Clearly
log(v/z) > (¢ + 1) /v,
so that
(88) X <vexp(—(t+1)/v).
Therefore
(%)x(V—a_c)Hl = exp{’_c +(t+ 1)(log(V_-’_C) i ,,f;c)}
(89) . o (t+1)(F/)?
<v exp{x * 1——(x/>_}
Here

~ (t+1)(3_c/v)2< ( (_t+1)+t+1 exp(—2(t + 1)/v) )
1-(z/v) ~ |\P v 1—exp(—(t+1)/v)
s2exp(—t-;1)v

el 3]

< 0.95v.
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Using (89) and the last estimate,
(90) R(v,t) <Ry(v,t) == v'"? exp{0.95v}, ¢t = 3v/4.
Finally, ¥ < 1 for ¢t > v log v [see (88)]. Therefore, for ¢ > 2v log v we have

R(v,t) < v(ev)(v—1)""!

(91)
<Ry(v,t) =3v'*"3exp(—(t + 1) /v).

We use (85), (87), (90) and (91) to find an asymptotic expansion for S(v, a, u)
given in (78) for fixed a and u. [The reviewer observed correctly that
truncating expansions (76) and (77) via the Taylor formula would allow us to
get the desired expansion by using (84) only. However, the estimates (86),
(89) and (90) are still needed to treat ©, . ;u " 'S(v, @, u). An advantage of our
approach is that it works for this sum in exactly the same way. So we can
afford just to sketch the corresponding derivation that would have been quite
protracted in this more complex case.] Fix T > 1 and write

1 _
Z:“ITZTET(a_Ft I)R(V,t*-u)==0(214-224-23%

t>T V ¢

where

3v/4 1 _
3= X - _(a-l—t 1)Rl(v,t+u),

Py Vu+a+t+1 t )
2v log v 1
a+t—1

22: Vu+a+t+1( t )R2(V’t+u)’

t=3v/4

1
a+t—1

S,= ) ———uﬂ,”“( " )R3(V,t+u).

t>2vlog v

The ratio of the (¢ + 1)st term to the ¢th term in X, is at most
la+t t+u+1 t\"? 1
— v1/2 o5 = | — 1+0|=
vit+1 (¢t +u)" v T

3\? 1
<[5) [1-olz))
< 0.87,
if T is sufficiently large. Then [see (85)]

3, = 0(71—(“ +T - l)Rl(v,T+ u))

ut+ta+T+1 T

(92)
— O(evv—(u+2a+T)/2).
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By (90), the generic summand in 3, is of order

1
0( Vu+a+t+1ta—lvt+u+2e0.951}) _ 0((10g V)a—1e0.95u)’

S0 }
(93) 3, = O(e0.96v)
Finally,
te? t+u+1
3,=0| Y et eXp(————)
t>2vlogv v 14

(94) -

=O(V2f x“_lexp—xdx)

2log v

=0(v).
Consequently,
(95) 3, + 3, + 3y = O(ety (#+2et T2,

Furthermore, using (85), for every A > 0,

> ——1—(“”‘ 1)R(v,t+u)

uta+t+1 t
t<T

(96)
v, —(a+u/2)

=ev ¢
0<t<T, j<A

Y V—(j+t)/2(a +t - 1)pt+u,j n O(V~(A+1)/2))‘
JjH+t<A

So choosing T > A and using (95), we establish that (96) is an asymptotic
expansion for S(v, a,u) (a, u being fixed) for every A > 0. Hence, for any
A > 0, for fixed u,

R

S(V, 8i,u) — evvs—(i+u—1)/2(

Jj=0

where

J .

t—6+ (i —3)/2
Ui,u,j= Z ( (t )/ )pt+u,j—t'

t=0

Thus, in particular, using (86),
27 V27
0i,0,0= 1’ 01'7170:—2“—, O'i’o’1= 4 (l—2—28),

—-3/4, &6=-1/2,
-1/3, 6=0.
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We also need an analogous expansion for Y% _,u"'S(v,a, u), a being arbi-
trary and fixed. Choose B > 0 and write

1 _

Z u- ‘m(a_'_t 1)R(v,t+u)=2’+2”+2’",
u a t

u+t>B

where 3/, 3" and 3" are the sums over u,t such that B <t + u < 3v/4,

3v/4 <u+t<2vlogv and u + ¢t > 2v log v, respectively. Analogously to

(95), we obtain

(97) 3+ 3+ 3 =0(evb/vE/?),
where b is an absolute constant. The estimate (97) shows that we can get a
required expansion for Y7 _,u"!S(v, a, u) by choosing B large enough and
writing—term by term—an expansion for Y2_,u"1S(v, a, u) based on (96).
Let us now consider the 1.h.s. of (75).

Coefficient of e’y 5=~ 1/2 log v:0for i =0,whilefor1 <i <N + 1,

BAi_Bi—l_ Zﬁj‘fj,o,i-j: ZBU 0,i—j*

j=0 j=0
Coefficient of e"v® (@~ 1/2: 0 for i = 0, while for 1 <i <N + 1,

11
A _ A h . —1
o — oy Zaja'j,o,i—j"” > Biu"0; y k-
j=0 utjthk=i
u>1,j,k>0

Equation (75) follows immediately if we can choose (&, 8;), 0 <i <N, to
satisfy (9) and (10) (the cases where i = 0 follow from o; ; , = 1). The lemma
follows by multiplying (75) by »!/»* and using (2) and (8). O
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tors for many constructive comments that helped us to improve the presenta-
tion of our results. In particular, we thank one reviewer who pointed out
some important errors and made numerous valuable suggestions in two
remarkably thorough reports. Especially beneficial were this reviewer’s criti-
cal comments on the formulation and proof of Theorem 1, our main result.

Note added in proof. Don Knuth has recently proved that R, of Theorem
3 is asymptotically equal to n log n in mean and in probability.
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