The Annals of Applied Probability
1995, Vol. 5, No. 3, 603-612

CONSISTENCY OF THE MAXIMUM PSEUDO-LIKELIHOOD
- ESTIMATOR OF CONTINUOUS STATE SPACE
GIBBSIAN PROCESSES
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The purpose of this paper is to show the strong consistency of the
maximum pseudo-likelihood estimator for continuous state space station-
ary Gibbsian processes under fairly general conditions. Besides the maxi-
mum pseudo-likelihood estimator of Besag, we consider its extension, the
maximum pseudo-likelihood of second order. The framework of our study
is Ruelle’s theory of superstable potential functions.

1. Introduction. Although spatial statistics is a new branch of statis-
tics, its progress is remarkable. This progress has been supported by ad-
'vances of probabilistic tools which deal with spatial objects. One of the main
subjects of spatial statistics is the analysis of mapped point patterns which
arise in many application fields. The natural basis of analysis of mapped
point patterns is the theory of Gibbsian distributions, which has a long
history in statistical physics. Gibbsian distributions can yield a variety of
realistic point patterns, but their statistical analysis has suffered from the
complexity of Gibbsian distributions, which gives rise to cumbersome depen-
dencies.

Statisticians are interested in the estimation problem for a parametric
family of Gibbsian distributions. Several estimation methods have been
proposed. Among them is the maximum pseudo-likelihood estimator (MPLE).
Besag introduced the concept of pseudo-likelihood of a Gibbsian model on a
lattice as the product of conditional distributions of sites given configurations
of other sites in order to avoid the numerical complexity of calculating true
likelihoods. Subsequently, the concept was extended to continuous models by
taking a limit of pseudo-likelihoods of discretized models. Attractive features
of the MPLE are that its computation is numerically easy and that it admits
a fairly detailed theoretical analysis.

As to theoretical results for the MPLE, we refer readers to Jensen and
Mgller (1991), Comets (1992), Guyon and Kiinsch (1992) and Jensen and
Kiinsch (1994). Comets proved the strong consistency of the MPLE for lattice
models. Jensen and Mgller proved the weak consistency of the MPLE for
continuous models having finite range potentials. Guyon and Kiinsch proved
the remarkable result that for stationary and ergodic Ising models the MPLE
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is asymptotically normal regardless of parameter values, that is, even if a
phase transition occurs. This result is extended in Jensen and Kunsch (1994)
to continuous models having finite range potentials without the assumption
of ergodicity. In this paper we will prove the strong consistency of the MPLE
for continuous models under general conditions. Our proof is based on the
profound theory of superstable potentials due to Ruelle (1970), which was
recently applied successfully to derive large deviation results for continuous
Gibbsian models by Georgii (1994).

Beside the MPLE of Besag, we will propose and show the strong consis-
tency of the MPLE of second order, which is an extension of the MPLE of first
order, that is, the MPLE of Besag. The MPLE of second order is the
maximizer of the pseudo-likelihood of second order, which is, roughly speak-
ing, a limit of products of conditional distributions of every pair of sites given
other configurations of discretized models. Although the practical usefulness
of the MPLE of second order may be doubtful, its construction shows clearly
that the MPLE of first order is an example of a series of moment-type
estimators and how Ruelle’s theory can be used to prove the consistency of
such estimators.

Finally let us comment on applicability of the present result. The Gibbsian
model was first applied in mathematical ecology in order to characterize
mapped point patterns of plants and animal territories. Geman and Geman
(1984) use the Gibbsian model as a prior of a Bayesian restoration of dirty
images and gave rise to a new and wide interest in the Gibbsian model; see,
for example, Guyon and Kiinsch (1992) and other papers in the same volume.
Besag, York and Mollié (1991) described how this approach can be used in
geographical epidemiology. The Gibbsian model is considered now to be a
central model of spatial statistics. In all these applications, the model con-
tains an extra parameter which should be estimated from data. Hence there
occurs the usual task of constructing estimators and proving their properties
such as consistency and asymptotic normality. Consistency is of first impor-
tance since it guarantees the possibility of statistical estimation of unknown
parameters. Also it is important as a basis for discussing other statistical
properties. For example, the consistency of MPLE proved in Jensen and
Mpgller (1991) and the relevant formulation is the basis of the asymptotic
normality result of Jensen and Kiinsch (1994). The author believes that the
asymptotic normality result of Jensen and Kiinsch (1994) is valid generally
and can be proved using the framework and the result of the present paper.

2. Preliminaries. Let @ be the set of all configurations (locally finite
subsets) of R%. Let ug = u N G for u € @ and G < R% Denote the set of all
bounded Borel sets by B,. The volume of G is denoted by |Gl. We consider the
smallest o-algebra & of & which makes all number functions Ng(u) = #ug,
G € B,, measurable. The set of all configurations of G C R? is denoted by %
and &; is the restriction of & to %,. Consider the partition of R¢ by unit
hypercubes F(r) with center at r = (ry,...,r;) € Z¢ and let, in particular,
F = F(0). The number of points in u N F(r) is denoted by n( u, r). A sequence
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{G,} c By is called regular if there is an increasing sequence {G.} of compact
convex sets with G, € G, sup,|G,|/|G,| < +», and the supremum of radii of
spheres lying in G/, going to .

Let |r| = max; r;. A probability measure on (%,.%) is tempered in the sense
of Ruelle (1970) if it is supported by the set of configurations

S=USy= U {M €#; Y n(w,r)’ <N22l+ 1) forall l}.
N>1 Nx>1 r:lri<i
Let z be a chemical potential, an arbitrary real number, and ®(x) be a
pair potential function which is an even Borel measurable function from R?
to (—, +]. The constant e * is called the activity. The interaction energy of
a finite configuration (x), = (x,..., x,) is defined by

(1) U((x),) = Y D(x; —x;).

1<i<j<n

If there is a constant B > 0 such that, for every finite configuration u,
U(p) > —B#u, @ is called stable. A potential is called hard core if it takes
the value « in a neighborhood of the origin. It is said to be of finite range if
®(x) = 0 except a neighborhood of the origin. For two configurations ¢ and pu,
the mutual interaction energy is defined (if meaningful) by W(c, n) =
Lice ye P(x —y). Let us define U(e, u) = Ule) + W(c, o \ ¢), the energy
of ¢ with the outer configuration u. We also use the quantity E;(u) =
YocuW{x}, w N\ Axh.
We will assume the following four conditions on the potential ®.

(C1) @ is superstable; that is, there are two constants A > 0 and B > 0
such that, for each finite subset R C Z¢ and configuration ¢ ¢ U, . z F(r),

U(c) = Z;?[An(c,r)2 —Bn(c,r)].

(C2) @ is lower regular; that is, there exists a positive decreasing function
¥ on the positive integers such that X, ¥(|r[) < « and, if R and S are two

finite subsets of Z¢ and u (resp. v) is a configuration in U, ., F(r) [resp.
U e gF(s)], then

@ Wwr)z-3 T L ¥(r=sh[a(un)’ + ().

(C3) = ® — |®| is lower regular.

(C4) the following integral exists for some (hence for every) 8 > 0:
f 1 — e AP dx
Rd

and ®(x) - 0 as |x| — o.
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REMARK 1. A nonnegative potential is stable and lower regular. If, in
addition, it is bounded by 0 from below in a neighborhood of the origin, it is
superstable. A finite range stable potential is lower regular. Simple and very
effective criteria for stability, superstability and lower regularity are known;
see Ruelle (1970, 1983).

We assume that the reader is familiar with the definition and basic
properties of (both local and global) Gibbsian distributions; see Preston (1976)
and Ruelle (1970, 1983). For a fixed potential @, let P, ; be a global Gibbsian
distribution with activity e * and potential [3<I> Ruelle (1970) showed that
there exists a tempered and stationary Gibbsian distribution for every pa-
rameter (z, B) if ® satisfies conditions C1, C2 and C4. If z is large enough,
there exists a unique Gibbsian distribution. It is known that the set &, 4 of
Gibbsian distributions for given z and ® may not be a singleton (phase
transition). There exists at least one member of &, ;, which is both stationary
and ergodic. In particular, if it is a singleton, the unique member is station-
ary and ergodic.

In proofs of the next section it is crucial to show the integrability of several
random variables with respect to global Gibbsian distributions. This is possi-
ble if we borrow the results of Ruelle (1970). We collect necessary results in
the following lemma.

LEMMA 1. Let ® be a function satisfying conditions C1, C2 and C4, and
let P be a tempered Gibbsian distribution with activity e * and potential B®P.
Then there are constants y > 0 and & only depending on z and B® such that
the following inequality holds:

(3) IP{ Y n(X,r)" = N%(2L + 1)d} < exp|[—(YN? —e®)(21 + 1)?].

Iri<i

Also there exist constants g > 0 and q = 0 such that if A € B, has diameter
L=>1,

m2

(4) P{N,(X) < m} < exp e

—857 T am|.

The same inequalities also hold for the local Gibbsian distribution Pg if
G € U, < F(r) or G C A, respectively.

The proof of these inequalities for local Gibbsian distributions is given in

Ruelle [(1970), Corollaries 2.8 and 2.9]. The same proof also applies to the
case of global Gibbsian distributions if we start from the inequality

(5) of' (1) < expL[—yn(p, 1) + sn(p,r)]
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[see Ruelle (1970), Corollary 5.3], where o', G € By, m =0,1,2,..., is
defined by

G ((¥)n) = [ exp(=U((x)n, w)) dP(w),

and if the temperedness is taken into account. The constants y and & in (5)
depend only on z and B® and can be used as those in (3).

LEMMA 2. Let ® be a function satisfying conditions C1, C2 and C4, and
let P be a tempered Gibbsian distribution. If  is a positive decreasing
function defined on the positive integers and the sum ¥, 1% (1) is finite,
the following random variable is P-integrable for every positive o:

(6) exp|a). n(X,r)y(r)|.

We can prove this result by the same argument used in the proof of Ruelle
[(1970), Proposition 5.2].

LEMMA 3. Let ® be a function satisfying conditions C1, C2, C3 and C4,
and let P be a tempered Gibbsian distribution. If G € B, and a > 0, Ng(X)"
as well as the following integrals are P-integrable for n = 0,1,2,... and
m=12,...:

meU((x)m’X)" exp(—BU((2) m, X))d(£) -

Proor. Using (4) we can get
E{Ng(X)"} < X [(m +1)" — m"|exp[ —gm?/L? + qm] < .
m=1

Let us next prove the integrability of the integral. Let U*(c, u) and U (¢, p)
be equal to U(c, u), but with ® being replaced by |®| and &, respectively.
Then
|U(c, X)" exp(—aU(c, X))| < (n/ae)" exp(—aU (¢, X)).
If ¢ is a finite configuration with ¢ € U, . g F(r),
U(c,X)2U(c)— Y, Y ¥ (Ir=shn(c,r)n(X,s),
reR sezd
where ¥~ is the function which appears in the definition (2) of lower
regularity of ®~ and U~ is the energy corresponding to ®~. Using Holder’s
inequality, we obtain that the integral .

(7 [exp{a Y YU (Ir - sI)n(c,r)n(X,s)} ap

reR s’

is bounded by the integral
(8) fexp{az%uson(x,s)} dp,
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where we set, with p = max, _ zl7|,
q'_(l—p), ifl >p,

Yo(l) = max,_, V7 (l), otherwise.
This integral is finite by Lemma 2. O

3. Strong consistency of MPLE. The logarithm of the pseudo-likeli-
hood for G is given by the formula

PLy(z,B) = —zNy(X) — BE4(X) - exp(—z)fGexp(—BU({x},X)) dx.

Consider the pseudo-likelihood equations

PL
aazG = —Ng(X) + exp( —z)fGexp(—BU({x},X)) dx =0,

PL

5% = —Eo(X) + exp(—2) [ U((x), X) exp(~BU({2). X)) dx = 0.

Several authors remarked that the MPLE can be interpreted as a moment-
type estimator. Actually it is easy to see from the integral characterization
formula of Nguyen and Zessin [(1979a), Formula (3.2)] that

JdPL dPL
(9). [Ez,B{TG(Z’B)}=[E,3{7(;(2,13)}=0.

Now we will define the (logarithm of) pseudo-likelihood of second order as
follows:

PL(cz;)(Z,ﬁ) = —ZNG(X)(NG(X) - 1) - B(NG(X) - l)EG(X)
(10) - BU(XG)
—%exp(—22)/G2exp(—/3U({x,y},X)) dxdy.

The pseudo-likelihood equation for PL{ satisfies the same property as (9).

PrOPOSITION 1. -

9dPLY dPLY
(11) .y, (2B) = E.p B (2,B)) =0.
Proor. If we apply the integral characterization formula of Nguyen and
Zessin twice to the double sum ©, ., , . .k(x, y, ), then

X k(x,5,X)dP,

x,yeX
x#y

12 -
(. ) =exp(——22)j|;4dxdyfgk(x,y,xu{x»y})

xexp(—BU({x,y}, X)) dP, 4
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Let k(x, y, u) = 15(x)1;(y). Then (12) is equivalent to the first equation of
the proposition. Also let

k(x’ Y, ”’) = lG(x)lG(y)U({x’y}’”' N {x’y})‘

Then (12) is eqﬁivalent to the second equation of the proposition. O

REMARK 2. Actually the pseudo-likelihood of second order is constructed
so that equation (11) should hold. Note that expectations in (11) can be
thought of as expectations with respect to two-point Palm measures P,/,
which are defined by

dPrg o exp(—BU({x, y}, X)) dP, g

The logarithm of pseudo-likelihood PLZX(z, B) is a strictly concave function of
(z, B) with probability 1. Therefore, the MPLE of second order (4, B) exists
a.s.

Now we will prove the strong consistency of the MPLE. We deal with the
MPLE of second order only. However, it can be seen that the same method
yields the strong consistency proof of the MPLE of first order. We need the
following result on convex functions.

LEMMA 4. Let A CR™ be an open convex domain and let {f,} be a
sequence of concave functions defined on A. Assume that a finite limit
f(x) = lim f,(x) exists everywhere and f takes a unique maximum at x,. Let
x, be a point which maximizes f,. Then x, — x.

PrOOF. It is known that if concave functions converge on a dense subset
of A, they converge everywhere and locally uniformly and the limit is also
concave. Let A = {x € A; |x — x,| = &} for each &> 0. Also let § = f(x,) —
max, . , f(x) > 0. For n large enough, |f,(x,) — f(x)| < §/2 and

I;leajilfn(x) —f(x)l < 8/2.
Then
ma;(fn(x) < maj{f(x) +68/2=f(xy) — 6+ 8/2 <f,(xg).

Therefore, f, takes the maximum in the region |x — x| < ¢, thatis, |x, — x|
<e O

We will need the following ergodic results from the spatial ergodic theorem
of Nguyen and Zessin (1979b). Integrability of relevant random variables is
proved in Lemma 3.

LEMMA 5. Let {G,} be a regular and increasing sequence of convex sets
which expands to R% Suppose the potential function ® is superstable and
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lower regular. Assume that the corresponding Gibbsian distribution P is
ergodic. Then, with probability 1,

|G, Ng (X) > E{Np(X))},
(13) IG.[ B (X), 21G,| " U(Xg,) > E{Ep(X)),

(19) GuI™ [ £, X) dx  E{ [ (2, ) de),

IG, |2 szeXP(‘U({x,y},X)) dxdy

= [[E{ [ exp(~U({}, X)) df}r’

where f(x, u) is any nonnegative function such that the expectation on the
right-hand side of (14) exists.

(15)

ProOF. The convergence (13) is proved in Nguyen and Zessin (1979b). Let
us prove (15). By condition C4 there exists r > 0 for each £ > 0 such that
[1 — e B®®)| < g if |x| > r. There is also a constant £ such that |1 — e B
< k for every x. Then

[ exo( BV, 5), ) dxa
- [, exp(~BU((=), w) - BU((5), ) dxdy‘

< a([Gexp( -BU({x}, ) dx)2

+ kadxfb(r’x)exp(—BU({x},M) =~ BU({y}, 1)) dy,

where b(r, x) is the closed ball with center at x and radius r. On the other
hand, from Schwartz’s inequality, the second integral on the right-hand side
of the last inequality is bounded by

|b(r,0)|fG®b(r O)exp(—BU({x},u)) dx,

where the symbol ® stands for the vectorial sum of two sets. Therefore, the
proof can be completed if we use Lemma 5. O

Now we are ready to prove our main result.
PROPOSITION 2. Let a potential function ® satisfy the four conditions C1,

C2, C3 and C4. Let {P,}, 6 =(z,B) € O, be a family of stationary and
tempered Gibbsian distributions corresponding to (z, B®), where © is an open
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subset of (—»,) X (0,). Assume {G,} C B, is a sequence of regular convex
sets expanding to Re. If 0 =(2,, B ) denotes the MPLE of second order
calculated from the observatzon X, it is strongly consistent.

Proor. The set E of tempered stationary Gibbsian distributions for a
superstable and lower regular potential is nonempty, convex and compact
(with respect to the uniform convergence topology of density functions) and is
a Choquet simplex; see Ruelle (1970). Hence, each P € E can be uniquely
represented as a mean of extremal (ergodic) elements Z* of = as

P= f:*@ dJ(Q).

Therefore, if random variables X, converge to 0 Q-a.s. for each ergodic Q,
they also converge to 0 P-a.s.
Let 6, = (2, By) be the true parameter. Define two functions

A(B) = [Eeo{fFexp(—BU({x},X))dx},

B(B) = ~&(B) = £, [ U((x), X)exp(~pU((x), X)) d.

Then from Lemma 5 and the remark above,

G2 PL((%Z( 0) - —zexp(—2z,) A*( B,)
— Bexp(—2z,) A( Bo) B( Bo) — 3 exp(—22) A*( By)

P -a.s. for each 0. We can assume that the last convergence holds for all 6

Wlth probability 1. Let f(6) be the right-hand side of the last relation. Then it

can be shown that

of af
=5 (00) = 35(90) =0.

Furthermore, the matrix of second derivatives of f is seen to be negative
definite. Therefore, f is a strict concave function and has the unique maxi-
mum at 6,. Then the assertion follows from Lemma 4. O

We can prove the strong consistency of the MPLE of Besag using a similar
argument.

PRrOPOSITION 3. Under the same conditions as in Proposztzon 2, the MPLE
of first order is strongly consistent.

.~ The assumption of temperedness in the last two propositions is never too

restrictive. If the potential is hard core, the distance of any two points of
sample configurations cannot be smaller than the hard-core distance with
probability 1. Therefore, it is trivially tempered. We can also show the
following result.
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PrROPOSITION 4. If ® is superstable, lower regular and nonnegative, the
corresponding Gibbsian distributions are tempered.

ProoF. Let G € B, and A( ) be an F;-measurable nonnegative function.
Then from the DLR equation for Gibbsian distributions,

Jr(x)dP < szg h(X) dPg,

where Z is the grand partition function for Pg. It is known that if G = G, =
L, < F(), there is a constant p such that

lim |G,|"" log Zg, — p;
- +=

see Ruelle [(1970), Theorem 3.3]. If we combine this result with (3), we can
show that there is a constant p such that

p{lz n(X,r)* = N2(2L + 1)"} < exp[—(yN? - p)(20 + 1)¢].
rl<i

Hence

P(Sy) =1- Eexp[—(yNZ—p)(2l+1)d] -1 as N > o, |
1=0
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