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THE GROWTH AND SPREAD OF THE GENERAL
BRANCHING RANDOM WALK!

By J. D. BiGGINS
University of Sheffield

A general (Crump-Mode—-Jagers) spatial branching process is consid-
ered. The asymptotic behavior of the numbers present at time ¢ in sets of
the form [#a, «) is obtained. As a consequence it is shown that if B, is the
position of the rightmost person at time ¢, B,/t converges to a constant,
which can be obtained from the individual reproduction law, almost surely
on the survival set of the process. This generalizes the known discrete-time
results.

1. Introduction. This is a companion paper to Biggins (1996), which
should be read for background information, additional motivation and exam-
ples, for the application of the results to m-ary search trees [a data-storage
algorithm, see Devroye (1990)], for the multitype and d-dimensional exten-
sions and for some discussion of the connections with the corresponding
deterministic theory, as represented by van den Bosch, Metz and Diekmann
(1990).

A general spatial branching process is considered, and the principal aim is
to establish that if B, is the position of the rightmost person at time ¢, then

Bt
(11) 7 -,
when the process survives, almost surely. Furthermore, a simple formula for

v is given.

The branching process is built up in the usual way. First the life history of
.an individual is described; then the process is constructed by letting each
individual have an independent life history.

Life-histories consist of a triple (Z, M, x), whose components describe the
individual’s reproduction, movement and importance, respectively. Here Z is
a point process on R X R*, with each point corresponding to a child; the first
coordinate gives the child’s displacement from her parent’s birth position and
the second gives the parent’s (strictly positive) age at that child’s birth. The
movement of the parent is described by the real-valued stochastic process M;
a person that is born at position z will, at age a, be at z + M(a). Finally y is
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a nonnegative stochastic process (usually, in this context, called a random
characteristic) giving the importance in “counting” the population of the
individual as she grows older. Both M and y are assumed to have paths in
Skorokhod D-space.

In the Ulam-Harris sample space, individuals are labelled by their line of
descent, so xy is ‘the yth child of x, and an independent copy of the basic
triple is attached to each individual. Denote x’s copy of Z by Z,, with points
{(z,,,7.,)}. Let (p,, 0,) be the position and birth time of the person labelled
x; the basic recursion defining these quantities, and therefore describing the
population development, is

pxy =px + zxy’ ny = Ux + Txy‘

Thus x’s offspring, relative to x’s own position and birth time, have positions
and birth times given by the appropriate independent copy of Z.

Let U be the set of individuals that are born. Ignoring the spatial compo-
nent, a general branching process counted by the characteristic y, denoted by
&%, can be defined by

f)((t) = Z Xx(t - Ux)‘
xeU
This gives the total weight (as measured by x) of the population at time ¢.
(Individuals make no contribution before they are born; that is, x is zero for
negative arguments.) This process has been extensively studied; see, for
example, Jagers (1975), Nerman (1981) and Cohn (1985).

In several of the results for the spatial branching process considered here,
attention will be confined to characteristics that take only the values 0 and 1,
corresponding to “dead” and “alive,” respectively. This is quite a natural
assumption for the motivating question on the behavior of the most extreme
(living) individual. Many of the results do not require such an assumption,
but it seems to be important at one point in the argument, specifically, in
Lemma 3. The matter is discussed further in Section 11.

Let the random measure N, be defined by

'Nt= Z 8(px+Mx(t_0x))Xx(t_0x)’
xeU
where 8(x) is a unit mass at x. Thus the mass of N, is concentrated at the
positions occupied by people at time ¢, with the mass at a point being the
value of the corresponding person’s characteristic at that time. The total
mass of N, develops like the general branching process ¢X(¢). If y is 0-1, N,
becomes a point process, and the position of the rightmost person at time ¢ is
given by
B, =sup{p, + M (¢t —0,): x €U, x,(t — 0,) = 1}.

 The result on the growth of B, with ¢ will be a consequence of an analysis of
the behavior, for different a, of N,[ta,x) as ¢ goes to infinity. Hence the route

here to the behavior of B, is like that adopted in Biggins (1977) for the
discrete-time problem.
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In the next two sections sufficient further notation will be developed to
state the main theorems. The proofs are in the following seven sections. The
last two sections give a brief discussion of the lattice case and more general
notions of a random characteristic.

2. The growth of a general branching process. For this section the
spatial element of the problem is ignored, with the focus being on the general
branching process ¢*. Let i be the intensity measure of the point process
formed by the first-generation birth times and let 7 be its Laplace transform.
Thus

m($) = [e™*" i(dr) = E [e *"Z(dr),

where Z is the point process formed by projecting Z onto the time axis. The
Malthusian parameter is defined by

a = inf{¢: m($) < 1}.

For supercritical processes, those for which 7(0) > 1 or, equivalently, a > 0,
there is a positive probability that the process survives. Those theorems that
consider sample path behavior, as opposed to estimates of expectations, will
be for supercritical processes.

Because the proofs involve renewal theory, the lattice case needs to be
handled separately. Consequently, it will be assumed that (Z, M, y) is non-
lattice, in the sense that Z is nonlattice in time. (This assumption could just
as well have been that the measure f is nonlattice.) Note that the spatial
structure is irrelevant in this assumption. The lattice case is discussed briefly
in Section 10.

A mild integrability condition on the characteristic y is also required, for
which the following definitions are needed. A function A will be called
moderately varying if it is strictly positive and, for some & > 0, satisfies

. {sup{h(s): s —tl<e,s>0} } cw
=0 n(t) '

(2.1)

A sufficient condition for % to be moderately varying is that log 4 is uniformly
continuous on [0, ). If (2.1) holds for any & > 0, it holds for all £ > 0. A
function 2 will be called a regulator if it is strictly positive, moderately
varying and has an integral that does not grow too rapidly, in that

(2.2) %log(j:h(a) da) -0,

as t — . Note in particular that A(o) =1 is a regulator. The results in
Biggins (1996) were, for simplicity, stated for this special case only.
. The first theorem provides a crude estimate of the expected numbers in the
general branching process, that is, of E£X(¢), as t — «. It is a special case of
Theorem 3 in the next section, and it will be proved as part of that.
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THEOREM 1. Let £X be a nonlattice general branching process with
Malthusian parameter a. We have
log EEX(¢t
(1) lim inf —g—é—ﬁ——)- >«

t— oo t

(i) If, for some regulator h,

e *x(t)
then
. log E£X(t)
limsup —— < «
t—> o

These properties of expected numbers are reflected in the sample paths of
the process, as the next theorem shows.

THEOREM 2. Let £X be a supercritical nonlattice general branching pro-
cess with Malthusian parameter o. Then

(1) liminfk-g—gi(—t)— > a

t—> o

when the process survives, almost surely.
(i) If, for some regulator h, (2.3) holds, then
. log £*(¢)
lim sup — <a a.s.

t—> o

The proof is based on the estimates of expectations in the previous theorem
and known results from Nerman (1981). Condition (2.3) provides control from
above on the sample paths; it is a weaker version of Condition 5.2 in Nerman
(1981).

3. Main theorems. Let the intensity measure of the point process Z be
denoted by w, with Laplace transform m(6, ¢), so that

m(0,¢) = fe_oz_"’"p,(dz,df) =Efe“’z“’"Z(dz,dr).

This is assumed to be finite somewhere. Note that, for any fixed 0, m is a
decreasing function of ¢ and that m(¢) = m(0, ¢). For supercritical pro-
cesses, m(0,0) > 1 (but it need not be finite). Let

@(0) = inf{$: m(9, ) < 1}.
[Note that «(6) may be infinite.] It is easy to check that, because m is
convex, a(0) is a convex function of §. This implies that « is continuous on

the interior of its domain of finiteness. Using the definition of m and both
monotone and dominated convergence, it can be shown that « is actually
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continuous on the closure of its domain of finiteness. This means that « is a
closed convex function as defined in Rockafellar [(1970), Section 7].

It has been assumed that, for some (6,, ¢,), m(6,, ¢,) is finite; the
convolution powers of wu are then well defined. Furthermore, for a sufficiently
large value of ¢, m(6,, ¢;) < 1, which implies that the “renewal” measure v,
formed by summing the convolution powers of u, is also well defined.

It is a straightforward matter to obtain the Laplace transform of the
intensity measure of N,. It is

n,(0) = E [e""N/(dp) = [e "?E(e "M~y (t — o))v(dp,do).
It will be convenient to let g,(¢) = E(e "y (¢)), so that
(3.1) n,(0) = [go(t = 0)e "v(dp,do).

Multiplying through by e *®! and integrating out p turns this into a
renewal equation. Hence, if g,(0)e 9?7 were directly Riemann integrable
with a finite integral, precise asymptotics for n,(6) would result. Because
only rather crude asymptotics are sought, less than this can be asked of g,.
The next theorem describes the asymptotic behavior of n,; the condition (3.2)
supplies the necessary control over g,. Notice that, because n,(0) = E£X(2),
the special case 6 = 0 in this theorem is Theorem 1.

THEOREM 3. (1) We have

log n,(6
liminf—g—ttg—)- > a(0).
t—> o
(i) If, for some regulator h,
e—a(o)te—GM(t)X(t)
3.2 E| sup < oo,
2 e
then
log n,(6
limsup—g—té—l < a(9).

t—> o

Because the main results need the convergence of ¢ ! log n,(6) for all
0 < 0, it is natural to introduce the notion of (3.2) holding whenever needed.
Specifically, the triple (Z, M, x) will be called regulated if, for each 6 < 0 in
{6: a(9) < 9}, there is a regulator ~ such that, when ¢ = a(6),

e~¢te—0M(t)X~(t)
0 }

'has finite expectation. Note that U(0, a(8)) is exactly the variable occurring
in (3.2). The next result is an immediate consequence of this definition and
Theorem 3.

U(e, ¢) = Sup{
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COROLLARY 1. Suppose that (Z, M, x) is nonlattice and regulated. Then
log r;t(ﬂ) = a(0)
ast — o, forall § < 0.

Let the intensity measure of N, be denoted by 7,, so that n, is the
transform of 7,. Estimates of 7, can now be based on Corollary 1 by an
application of a variant of the large deviation results of Gartner (1977) and
Ellis (1984). A little additional notation is needed to state the result.

The concave dual (rate function, large deviation function, etc.) of a convex
function % that is finite for some 6 < 0 is given by

k*(x) = inf{x6 + k(0)}.
0<0
Because all the results will be formulated for right tails, attention has been

confined to § < 0 here.
Let the right endpoint of the domain of finiteness of a* be @, so that

a = sup{a: a*(a) > —x}.

Usually this will be infinite. An example is given in Biggins (1996) that shows
that it is necessary to exclude a = a in the next two theorems. (In these log 0
is to be interpreted as —.)

THEOREM 4. Suppose that (Z, M, x) is nonlattice and regulated, and for
some 0 < 0, a(6) < . Then, for all a + d,

log(n,[ta, %)) R

; a*(a),

ast — »,

The estimate of expected numbers in the previous theorem has a counter-
part in the sample paths, described in the following result.

THEOREM 5. Suppose that (Z, M, x) is supercritical, nonlattice and regu-
lated, and x is a 0-1 characteristic. Suppose also that, for some 6 < 0,
a(f) < oo,

@) If a*(a) < 0, then, for any k > a*(a),
e *N,[ta,®) > 0 a.s.,

ast — o,
() Ifa # a and a*(a) > 0, then

log(N,[ta, ) _
t

as t — », when the process survives, almost surely.

a*(a),
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It will be clear from the proof of this result that, when a = a, a*(a)
continues to provide an upper bound for #~! log(N;[ta,)), but it need no
longer be its limit.

By looking at the a in the previous theorem for which N[ta,®) decays and
those for which it grows, the following corollary is established.

COROLLARY 2. Suppose that (Z, M, x) is supercritical, nonlattice and
regulated, that x is a 0—1 characteristic and that, for some 6 < 0, a(8) < .
Then

Tt — vy = inf{a: a*(a) < 0},

ast — »,

There is an alternative formula for y which is often simpler to compute. It
already occurs in Biggins (1980), where upper bounds for the d-dimensional
analogue of B,/t were discussed.

PROPOSITION 1. We have

v = mf{a: ;Eg{log m(6, —af)} < 0}.

Theorem 3, with Theorem 1 as a special case, is proved first, for it plays a
part in the proof of Theorem 2. Theorems 2 and 4, which both depend on
Theorem 3, but are otherwise independent of each other, are proved next. The
main proofs finish with that of Theorem 5, which draws on Theorems 2(i)
and 4.

4. Preparatory lemmas on integrability. Two technical matters arise
in the proofs. One is the Riemann approximation of certain functions; the
other is controlling the process for all ¢ through its values on a fine lattice.
The objective here is to establish lemmas that, under the conditions imposed,
ensure neither of these issues causes a problem. Key ideas are taken from
Lemma 5.3 of Nerman (1981). The first two lemmas are needed for the proof
of Theorem 3; the third lemma is important in controlling sample path
behavior in Theorems 2 and 5.

For £ > 0, let, for ¢t = 0,

x°(t) = sup{ x(s):ls —tl<e,s=0}.

This is a sample-path upper approximation to y.In a similar way, provided x
is 0-1, let, for ¢ such that x°(¢) = 1,

Me(t) = sup{M(s):|ls —tl< e, x(s) =1,s = 0}.

For completeness, take M(¢) = M(¢), for all other ¢.
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Recall that

,¢te—9M(t)X(t) }

U(e, ¢) = S?p{e 0]

where A is a regulator.

LEmMma 1. If
Y == sup{e "M @x(a)}

a<t

has finite expectation, then g, is continuous almost everywhere on [0, t], and
hence is Riemann integrable there. In particular, if, for any ¢, U(0, ¢) has
finite expectation, the conclusion holds.

Proor. The fact that the paths of M and y are D-valued and dominated
convergence (using Y) show that g,(a) [= Ee *M@)y(a)] is D-valued, and
hence continuous almost everywhere, on [0, ¢]. For the last part simply note
that, for some constant K, Y < KU(6, ¢). O

LEMMA 2. If EU(9, ¢) is finite,

n

1
— log Y. sup {g,(c)e ?7}| -0,

i=0i<o<i+1

as n — o,

PrOOF. Observe that
go(0)e 7 = B(e ™My (0)e ")
< EU(6,¢)h(0).
Now
Y sup h(o) <K["h(o)do
i=0i<o<i+l 0

as h is moderately varying. Thus, as h is a regulator and, therefore, by
definition, satisfies (2.2), the result follows. O

LEMMA 8. If x is 0-1 and U(0, ¢) has finite expectation, so has
exp( —¢t)exp(—60M*°(¢)) x°(2) }

h(t)

When 6 = 0 the conclusion holds for a general (not just 0—1) nonnegative x.

U®(6,¢) = sup {
t

Proor. Note first that, when y is a 0—1 characteristic and x*(¢) = 1,
exp(—0M*(¢t)) = sup{exp(—OM(s))x(s):ls —tI <&, s> 0}.
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Hence,
exp( — ¢t )exp(—0M*(2)) x°(¢)
e h()
= sn.tlp‘{exl;f(—_t)(w) sup{exp(—0M(s))x(s):ls—tl<e,s> 0}}

sup{h(s):ls —tl < e,s > 0}
o

which is finite, as A is moderately varying. When 6 = 0, but y is general, this
bound still holds because the first equality is then just the definition of y*. O

< U(6, ¢)exp(ldle) sup{

5. Proof of Theorem 3.

PrOOF OF THEOREM 3(i). Suppose first that a(6) < « with m(6, a(6)) = 1.
This ensures that
e 92720y (dz,dr) and e P *®%(dp,do)

are a probability measure and its associated renewal measure. Denote by 7,
the renewal measure that results by integrating out p here. Multiplying
through by e~*(®* in the definition of n, [(3.1)] and integrating out p gives

(5.1) e @n(0) = [g4(t = 0)e "5 (do).
The aim is to bound this integral from below.

Replace (M(¢), x(¢)) by
(52)  (M(t), x(6)I(x(t) <By)I(t < B,)I(|M(z)| < By))
with the B’s chosen large enough to ensure that the corresponding g, is not
identically zero. (The indicator involving B; only matters when general
characteristics are considered.) Obviously, because it makes the characteris-
tic smaller, this replacement decreases n,(6), so it is enough to prove the
result for characteristics of this form. Now, in such cases, Lemma 1 shows

that g, is Riemann integrable. Taking suitable lower approximants to g, and
using the renewal theorem shows that, for any finite 7' and some K > 0,

[2o(t = 0)e XI5 (do) = K];Tgo(o-)e“"(")"da >0,
provided ¢ is sufficiently large. Because, from (5.1),

tllogn,(0) =a(0) +¢t! log(fgo(t — o)e *OXi=) io(da))

>a(f) +t! log(Kngo(a)e‘“(")"da),
0

for large ¢, and the second term on the right tends to zero as ¢ — =, the result
is proved in this case.
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To deal with the cases where m(6, a(6)) < 1 or a(f) = », truncate the
point process Z (and hence w) by discarding points at a distance of more than
T (in space or time) from the origin and children beyond the 7'th in any
family. Then, in an obvious notation, m (0, ¢) is always finite, so a;(0) must
satisfy m;(6, ap(6)) = 1. Also, as T 1, ap(0)7 a(6). Hence the result al-
ready proved applies to the truncated process and numbers in it are obviously
dominated by those in the original process. Thus

liminfw > ap(0)1 a(6),

to>

completing the proof of (i). O

PROOF OF THEOREM 3(ii). Assume a() < o, for otherwise there is nothing
to prove. Just as in the proof of the first part,

tllogn,(0)=a(8) +t! log(fgo(t — o)e *OXi=a) ﬁo(da)).
Taking an upper Riemann approximant and using the fact that the renewal

measure is uniformly bounded on intervals of fixed length shows that, for
some finite K, the integral on the right here is less than

[t]+1
KY sup gyo)e =@
i=0 i<o<i+1

[This estimate also covers the case where, because m(0, a(8)) < 1, the re-
newal measure is defective.] Thus
[t]+1
tllogn, (0) <a(8)+tllog|K ). sup gy(c)e | - a(6),

i=0 i<o<i+l

when (3.2) holds, using Lemma 2. O
6. Proof of Theorem 2.

ProoF OoF THEOREM 2(i). Suppose that y(¢) is replaced by
x(t) = x(®)I(¢t <a)I( x(t) <K),

with a and K chosen large enough to ensure that [Ey(o)do is positive. As
in Section 5, truncate the point process Z (and hence w) by discarding births
later than 7' and all births after the 7T'th in any family. Then i,(¢) is always
finite and a; must satisfy mr(a;) = 1. By construction, the truncated
process has moments of all orders and j is bounded. Hence Theorem 5.4 of
* Nerman (1981) applies to give -

log £X(¢) S
t T
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on the survival set of the truncated process, almost surely. Since, for T, < T,
E8(t) < £8(2) < £X(¢) and ap 1 @ as T 1w, it follows that
log £X(¢
liminf—gi—() >a a.s.

t—>

whenever a truhcated process survives. Finally, as T increases, the survival
sets for the truncated processes increase to that of the original process. This
completes the proof of (). O

Proor oF THEOREM 2(ii). By Lemma 3, that (2.3) holds implies that (2.3)
also holds with x ¢ in place of y. Thus, replacing x by x °, Theorem 1 implies
that ¢ log E€X°(¢) - a, so that, as ¢ — « along any fine lattice,

. log £¥°(¢)
11msup————t—— <a as.,

by Borel-Cantelli. Take a lattice with span less than ¢ and say ¢, and ¢, are
neighboring lattice points. It is a consequence of the definition of y ¢ that, for
t, <t <ty £X(¢) < £X°(¢,); hence
: log £%(¢)
lim sup — <a as. O

t—>

7. Proof of Theorem 4. The large deviation result needed to make the
link between the information in Corollary 1 and the result required is
discussed first.

Let {£,} be measures with logarithmic transforms {%,}, so

k(0) = log [e=*%,(dx).

Assume that for some fixed sequence of positive numbers tending to infinity,

{a,},
(7.1) lim kul(6)

n-oo Q

=k(0),
with £(8) < «, for some 6 < 0. A simple Markov bound shows that when (7.1)
holds,
log({,|a,x,®
lim sup g4 [a ) <k*(x).

n—x n

In the problem considered here this upper bound is complemented by a lower
bound obtained by truncation. To describe this, say that {¢, ;} is a sequence
of good minorants for {{,} if, for all Borel sets A, ¢, 7(A) < ¢, 7, ,(A)1 {,(4),
as T 17, and

k n T( 0)

lim —= =% ,
1m a r(0)

n—o n
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with %, differentiable. The following result is a fairly straightforward conse-
quence of Theorem 2 of de Acosta, Ney and Nummelin (1991).

PROPOSITION 2. Suppose that there is a sequence of good minorants with
kyp 1T k. Then
log(Z,[a,x,%))

n

lim

n—o

— k*(x)

except, possibly, for x = sup{a: k*(a) > —x}.

An example given in Biggins (1996) illustrates that the right endpoint of
the domain of finiteness of £* really can be an exceptional point here.

Theorem 4 will follow immediately from Corollary 1 and Proposition 2 once
a sequence of good minorants is identified. The truncations used in Section 5
are the obvious tools to manufacture these. First truncate (M, x) as described
at (5.2), but with B;, B, and B; replaced by T'. Clearly the resulting 7, is a
minorant for the original one. Now truncate the point process Z also, in the
way described in the proof of Theorem 3(i). This produces m;(6, ¢), which is
always finite, with m;(0, a;(8)) = 1 and a;(6)1 a(6). As m is analytic, the
implicit function theorem guarantees that a; is differentiable. Corollary 1
applies to the truncated process for each T, showing that their intensity
measures do indeed form a sequence of good minorants.

8. Proof of Theorem 5. Consider first the case where a*(a) < 0 and
k > a*(a). Replace (M, x) by (M?, x*). It follows from Lemma 3 that Theo-
rem 4 applies to this & upper approximant, giving the behavior of its
expected numbers. Therefore, by Borel-Cantelli,

e “'Nf[ta,*) > 0 as.

along any fine lattice, and the upper approximant at lattice values dominates
N, ta,») for all ¢, much as in the proof of Theorem 2, giving the result
claimed. Similarly, when a*(a) > 0,
. .
lim sup %t[ta,)_ <a*(a) as.
t— o
To establish that a*(a) > 0 is also the lower bound is rather harder. The
idea is to find a general branching process embedded in the original one that
has the property that, for any included individual, p, > ao,, and that has a
Malthusian parameter near to a*(a). Theorem 2, on the growth of a general
branching process, can then be applied to this embedded process to get a
lower bound on numbers in the original process to the right of ta at time ¢.
. However, the details are more complicated than this outline suggests.
Assume that a is in the interior of {a: a*(a) > —}; otherwise, there is
nothing to prove. Note that, as a concave function, a*(a) is continuous on this
set. Truncate Z (and all its copies) by discarding all births that occur in (0, A).
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The truncated process will be denoted by Z“. It is not too hard to check that
as A0, af(b)1 a*(d), for all b in the interior of {a: a*(a) > —=}. For § > 0
and small enough that a*(a) — 8 > 0, choose b > a and A small such that
(8.1) ) a*(a) — 6 < af(d) < a*(a).
The continuity of a*(a) ensures this is possible. Discard the original move-
ment process and characteristic for a moment and use instead

MA(t) =bt, x“(t) =I(0<t<A),

so, at time ¢, only those recently born (for they satisfy ¢ — A < 0, <t) are
registered in the count. It is clear that (Z*, M2, x*) is regulated, so Theorem
4 gives

log(n2[tb,

Lol 9) , a3 o).
Now, using this and (8.1), choose ¢ sufficiently large that
(82) ela™(@)-8) ‘ntA[tb,OO) < el@*(a)+8)

For this ¢, identify the set of individuals, denoted by .#;, counted by the new
characteristic at time ¢ and to the right of ¢b. More formally,

Fo={x:p, + M*(t — 0,) 2 tb, (¢ — 0;) = 1}
={x:p,=2bo,,t —A <o, <t}.

Note that because Z2 has no births in (0, A), all members of ., are on
distinct lines of descent. It is easy to see that .#, forms an optional line in the
sense of Jagers (1989), and so, by Theorem 4.14 of that paper, independent
copies of the original process emanate from each member of this line. Now
define a general branching process by considering ., to be the direct
descendants of the initial ancestor. From the process emanating from each of
these, construct independent copies of .#, to form the next generation and so
on. Observe that in the original process, every person selected to be in the
embedded process automatically satisfies p, > bo,.

The next thing to do is to bound the Malthusian parameter «, for the
embedded process. Note that by arrangement, all birth times in its first
generation are near ¢, so the simple bounds

e *nA[th,°) <E| Y. e“’"’X] < e 9" OpA[th,»)
x€S,

combine with (8.2) to give

(8.3) a, > a*(a) — 8.

Now that a suitable embedded process has been identified, it is necessary
‘to count it in a way that respects the movement and counting in the original
process. To do this, let

X(8) =I(M(¢) = =B + bt) x(t),
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where B is positive and large enough to ensure that [Ex(c) do is positive.
Because everyone born in the embedded process has p, > bo,, the positions
of those registered by this characteristic at time ¢ satisfy

(84) p,+ M (t— o) =bo,—B+b(t—-o,)=0>bt B,

and in addition tiley have to count (as judged by x) in the original process.
Applying Theorem 2(i) to the resulting process, obtained by counting the
embedded process by y, gives
log £%(¢
(8.5) liming 2

t—> o

. as.

on the survival set of the embedded process. Using (8.4), ¢*(¢) < N,[tb — B, %)
and, since b > a, N/[tb — B,) < N,[ta,»), for large t. Thus it follows from
(8.3) and (8.5) that

(8.6) lim inf

t—>

[0}
EE—%—)— > a*(a) — 6 as.
when the embedded process survives.

In fact the estimate (8.6) holds whenever the original process survives. The
idea for showing this is simple. Instead of starting the embedded process from
the initial ancestor, start several of them from some later individuals. This
will not disturb the estimates too much, but will increase the part of the
sample space where they hold. More precisely, an embedded process may be
started from any individual in the original process. Denote the one started
from x by £X(¢). A little thought shows that

eX(t) <N[b(t - 0,) +p, — B,»),
and again, for large ¢,
N,[b(t - 0,) + p, — B,®) < N,[ta,»),

so that (8.6) holds whenever the embedded process emanating from x sur-
vives. On any optional line each individual produces an independent embed-
ded process, and clearly (8.6) holds whenever at least one of the associated
embedded processes survives. By taking a large enough optional line, the
event that one of these embedded processes survives can be made as close to
the survival set of the original process as desired. Hence (8.6) holds on the
survival set of the original process. Because § was arbitrary, this completes
the proof. O

9. Proofs of Corollary 2 and Proposition 1.

PrROOF OF COROLLARY 2. Becduse y is a 0—1 characteristic, N)[{a, ®) is an
integer, so when e *!N/(ta,©) - 0 almost surely with « <0, it follows
that N[ta,») = 0, for all sufficiently large ¢, almost surely. Thus, because
I(B, > ta) < N/ ta,~), Theorem 5(i) yields lim sup B,/t < y almost surely.
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Standard convexity theory [Rockafellar (1970), Theorems 12.2 and 27.1(a)]
yields that the supremum of the concave function a* is «(0), which is greater
than zero because the process is supercritical. This implies that a*(a) > 0,
for all a < y. Thus, for a < vy, using Theorem 5(ii), I(N,[ta,®) > 0) is, for all
large t, the survival set. Because I(B, > ta) = I(N/[ta,») > 0), this shows
that liminf B, /¢t > y almost surely on the survival set. O

PROOF OF PROPOSITION 1. Suppose a*(a) < 0, so that, for some 6’ <0,
0'a + a(6’) < 0. Then, because m(6’, ¢) is monotone decreasing in ¢, 1 >
m(6’, a(8") > m(8’', —0'a), so inf{m(h, —af): 6 < 0} < 1. Similarly, if
a*(a) > 0, then, for all <0, fa + a(6) >0 and then m(6, —0a) >
m(6, a(0)). This implies that m(8, —0a) > 1, for all § < 0, as required. [The
case where m(0, a(0)) < 1 gives m(0, —6a) = «.] O

10. The lattice case. If birth times are lattice and M and x only
change on the same lattice of time points, nearly everything becomes easier;
in particular, s-approximants can be dispensed with. However, one minor
aspect becomes more complicated.

Without loss of generality the lattice can be taken to be the integers. When
the embedded process is constructed, once A < 1, all the members of .#;, have
a single birth time /. Then, when applying Theorem 2(i) to establish (8.5),
convergence only holds on the sublattice [N, rather than on the original
lattice. In deducing that the set on which (8.6) holds can be expanded to the
whole of the survival set, attention can be confined to optional lines drawn
only from individuals with birth times in the sublattice I/N. In this way, (8.6)
is shown to hold throughout the survival set as ¢ goes to infinity through IN.
Using the same argument, but confining attention, for fixed %, to individuals
with birth times in the sublattice £ + [N establishes the required result as ¢
goes to infinity through %2 + IN. Putting these together, for 2 = 0,1,...,7 — 1,
gives convergence along the full lattice.

11. More general characteristics. The development of lower bounds
in Theorem 5 applies without change if the characteristic y is general rather
than 0-1. However, Lemma 3, which is important in establishing upper
bounds on the sample paths, uses the fact that y is 0—1 in an essential way.

One extension is very easy. Suppose y is general, but there is a 0-1
characteristic y' such that, for some constant C, y < Cx' and (Z, M, x") is
regulated. Then the upper bounds for N,/ give similar bounds for N,, and
Theorem 5 still holds. Note, however, that the conditions no longer involve
(Z, M, x), but rather (Z, M, x").

From the mathematical point of view, it seems natural to combine M and
© x into a single entity. One way to do this is to widen the definition of a
random characteristic so that it encompasses both elements. Then y will, for
each ¢, code how an individual of age ¢ contributes weight to various sets.
Thus, in this formulation, x(¢#, du) is a random measure and its integral
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[x(¢, du) is a random characteristic in the usual (i.e., temporal) sense. The
random measure N, is now defined by

th(du) = Z Xx(t - Gx’du _px)

xeU

For the questions addressed here, y should take values in the measures that
have Laplace transforms that are finite for all 6 <0, and should, as a
function of ¢, have left and right limits, all of this form. Conditions like this
will be needed to push through the analogue of the results in Section 4. The
treatment of expected values and lower bounds on the sample paths should
extend without too much trouble to this broader framework, with the key
condition (3.2) being replaced by

e—a(ﬂ)t]‘e—er(t’ dZ)
[ )«

However, at this level of generality, I could not see how to avoid explicit
conditions on s-approximants to the sample paths to obtain upper bounds
that hold for all time. The difficulty already arises at the start of this section,
where conditions on (Z, M, x*) would be needed to push through upper
bounds. This seemed a heavy price to pay for the extra generality, so the less
sophisticated framework of 0—1 characteristics and individual movement was
used in the main results.

E| sup
¢
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