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Stochastic evolutionary systems of additive functional type, described by
processes with locally independent increments, are considered with Markov
switching in an asymptotic split state space having a stoppage state. The
average and diffusion approximation limit theorems are established in both
single and double merging. The proofs of these results are obtained using
a singular perturbation approach of linear reducible–invertible operators and
the tightness of processes. Particular cases of these systems including integral
functionals, dynamic systems, storage processes and compound Poisson
processes are also considered. The application of limit theorems in reliability
and reward problems is discussed.

1. Introduction. Stochastic approximations, as average, diffusion and
Poisson approximations, are interesting not only theoretically but also increasingly
in practical systems modeling.

In the study of real systems, two problems usually arise. The first one is
connected to the generally high complexity of the state space. The second one
is connected to the fact that the local characteristics of the systems are not fixed
but depend upon random factors.

Concerning the first problem, in order to be able to give analytical or numerical
tractable models, the state space must be simplified via a reduction of the number
of states. This is possible when some subsets are connected between them by
small transition probabilities and the states within such subsets are asymptotically
connected. This is typically the case of reliability and in most applications
concerned with hitting time models, for which the state space is naturally cut in two
subsets (the up states set and the down states set) [19, 23]. In this case, transitions
between the subsets are slow compared with those within the subsets.

Concerning the second problem, we describe the random changes of local
characteristics by a stochastic process, called a switching process [1–3]. In
applications, switching processes could represent the environment [13, 25], or, in
the particular case of dynamic reliability, the structure of the system [6].
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Usually, the switching process is assumed to be an ergodic process. Neverthe-
less, in many practical problems nonergodic stochastic switching processes have
to be considered, for example, when the system is observed up to the hitting time
to some subset of the state space. We are here interested in this case in order to
solve reliability problems.

An interesting stochastic evolutionary system with Markov switching is the
following:

ξε(t) := ξε(0) +
∫ t

0
ηε(ds;xε(s/ε)

)
,(1)

where for each ε > 0, the process xε(t/ε), t ≥ 0, is a switching process, with state
space E0, and ηε(t;x), x ∈ E0, is a switched R

d -valued stochastic process. There,
xε(t/ε), t ≥ 0, is a nonergodic jump Markov process with one absorbing state,
say 0. The additive functional ξε(t) gives the reward of the system up to time t or
the cumulative sojourn time spent in a subset of states up to time t , and so on
[19, 13, 18, 25, 26, 30]. If ζ ε denotes the hitting time of xε(t/ε) to state 0, then
ξε(ζ ε) is the reward up to the system failure.

The operator-valued stochastic processes called random evolutions are powerful
stochastic models for modeling real systems. Several stochastic models can be
described as particular cases of a random evolution [4, 19, 13, 21, 22, 25, 27].
The stochastic evolutionary systems considered here are described by processes
with locally independent increments with Markov nonergodic switching processes
in an asymptotic split state space. Note that in the literature these Markov
processes with locally independent increments have also been called “weakly
differentiable Markov processes” [9], or “locally infinitely divisible processes” [8],
or “piecewise–deterministic Markov processes” [5]. These processes are of
increasing interest in the literature because of their importance in applications,
for which they constitute an alternative to diffusion processes. It is worth noticing
that such processes include strictly the independent increment processes. For their
detailed presentation and applications see [5].

The underlying mathematical tools for the results obtained here are based on the
theory of singular perturbed reducible–invertible operators and on the martingale
characterization of Markov processes [7, 28, 29]. We obtain thus average and
diffusion approximation limit theorems and give examples of application of these
results to reliability problems. The theoretical results proven here can be applied
in the reliability modeling of large state space systems with high reliability, as well
as in maintenance modeling, in performance evaluation, and so on. In the abstract
reliability setting the following partition of the state space E0 = E ∪ {0} holds,
where E contains the working or up states and 0 is the down state. In this case,
reliability concerns the distribution of the hitting time to the state 0 [13, 20].

Moreover, functionals such as the stochastic integral functional (1) can be used
for modeling the maintenance cost up to the system failure. Storage jump processes
with Markov switching can be used for modeling the so-called dynamic reliability
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of systems [6]. Actually, dynamic reliability is a new and more general model than
the classical reliability models.

Up to now, the only method used for obtaining numerical results in the study
of dynamic reliability and other applied problems based on hitting time models
is the Monte Carlo method (see [6] and the references therein). The stochastic
approximation results presented here constitute an alternative to this well-known
method [10–12, 14, 24].

Results presented in this paper extend the results previously obtained by the
authors concerning diffusion approximation by the following points: the class
of locally independent increment processes ηε(t;x), t ≥ 0, x ∈ E, constitute
a wider class than the independent increment processes class studied in [13]; the
switching processes xε(t/ε), t ≥ 0, ε > 0, are nonergodic with stoppage time;
we consider simultaneously an asymptotic split of the state space; the three level
stochastic systems considered, that is, the switching processes, switched processes
and additive functional all depend upon the parameter ε; finally, in [18] we have
also studied Poisson approximation of systems (1) when the process ηε(t, x) is
just a pure jump Markov process and xε(t/ε) a semi-Markov process but via
semimartingale techniques and compensative operator for semi-Markov process.

The paper is organized as follows. In Section 2, we give the general setting of
the processes considered here. In Section 3, we give some particular cases of the
considered random evolution as well as examples of their potential application to
dynamic reliability. In Section 4, we give a general phase merging scheme, that
is, a simplification of the state space with single and double merging, allowing us
to obtain average limit results for switching processes. In Section 5, we present
general averaging results for the stochastic systems. In Section 6, we present
diffusion approximation results in single and double merging schemes under
balance conditions. In Section 7, we obtain a differential equation satisfied by
functionals of reward up to stoppage time of the limit process. Finally, in Section 8,
we give the proofs of the theorems of the previous sections.

2. Preliminaries. Let us be given the Euclidean space R
d with the Borel

σ -algebra Bd and the compact measurable space (E,E). It is worth noting that
slightly changed conditions allow including a locally compact space of values for
the switched process. We consider the family of right continuous with left limits
(cadlag) time-homogeneous Markov processes ηε(t;x), t ≥ 0, x ∈ E, with locally
independent increments in the series scheme and a small series parameter ε > 0.
These processes depend on the phase state x ∈ E, take values in the Euclidean
space R

d , d ≥ 1, and their generators are given by

Γε(x)ϕ(u) = aε(u;x)ϕ′(u)

+ ε−1
∫

Rd
[ϕ(u + εv) − ϕ(u) − εvϕ′(u)]�ε(u, dv;x).

(2)
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A complete characterization of the above generator is given in [5]. It is worth
noticing that the drift velocity of aε(u;x) in (2) contains an initial drift and
the drift due to the jumps. Note also that ηε(·, ·) contains no diffusion part
(see, e.g., [5, 8, 9]).

REMARK 1. It is understood that in the case where d > 1, we have

vϕ′(u) =
d∑

k=1

vk

∂ϕ

∂uk

(u).

The drift velocity aε(u;x) and the measure of the random jumps �ε(u, dv;x)

depend on the state x ∈ E and on the series parameter ε > 0. The family of time-
homogeneous cadlag Markov jump processes xε(t), t ≥ 0, ε > 0, in the same series
scheme taking values in the state space (E,E), is given by its generators

Qεϕ(x) = q(x)

∫
E

P ε(x, dy)[ϕ(y) − ϕ(x)],(3)

where q is the intensity of jumps, which is a nonnegative element of the Banach
space B(E) of real bounded functions defined on the state space E, with the sup-
norm, that is, ‖ϕ‖ := supx∈E |ϕ(x)|.

The stochastic evolutionary system with Markov switching is represented as
follows:

ξε(t) = ξε(0) +
∫ t

0
ηε(ds;xε(s/ε)

)
.(4)

The regular Markov jump process can be defined by the Markov renewal process
(xε

n, τ
ε
n , n ≥ 0), and θε

n := τ ε
n − τ ε

n−1, n ≥ 1, given by the semi-Markov kernel [23]

Qε(x,B, t) = P(xε
n+1 ∈ B,θε

n+1 ≤ t|xε
n = x)

= P ε(x,B)
(
1 − e−q(x)t

)
.

(5)

Let us introduce the counting process

νε(t) := max{n : τ ε
n ≤ t/ε},(6)

with the renewal moments

τ ε
n =

n∑
k=1

θε
k , n ≥ 1, τ ε

0 = 0,

and the auxiliary processes

τ ε(t) = τ ε
νε(t), θε(t) = t/ε − τ ε(t).

The evolutionary system (4) can be represented also in the following form:

ξε(t) := ξε(0) +
νε(t)−1∑

k=0

ηε(εθε
k+1;xε

k) + ηε
(
εθε(t);xε(t/ε)

)
.(7)
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3. Particular cases and examples of stochastic evolutionary systems. Let
us give here four typical evolutionary systems as particular cases of the above
system (1).

1. A stochastic integral functional is determined by

αε(t) :=
∫ t

0
aε

(
xε(s/ε)

)
ds,(8)

where aε(x), x ∈ E, ε > 0, is a family of real-valued measurable functions such
that ∫ t

0

∣∣aε

(
xε(s)

)∣∣ds < +∞ a.s. t ≥ 0, ε > 0.

We will consider aε(x) = a(x) + εa1(x), for all x ∈ E, ε > 0.
The corresponding generators (2) have the following form:

Γε(x)ϕ(u) = aε(x)ϕ′(u).(9)

2. A dynamical system with Markov switching is determined by a solution of the
evolutionary equation

d

dt
Uε(t) := aε

(
Uε(t);xε(t/ε)

)
.(10)

The respective generators (2) have the following form:

Γε(x)ϕ(u) = aε(u;x)ϕ′(u).(11)

3. The storage jump process with Markov switching is determined by the
generators

Γε(x)ϕ(u) = aε(u;x)ϕ′(u)

+ ε−1
∫

Rd
[ϕ(u + εv) − ϕ(u) − εvϕ′(u)]�ε(u, dv;x),

(12)

where aε(u;x) is exactly the drift of the jump part, that is,

aε(u;x) =
∫

Rd
v�ε(u, dv;x).

4. A compound Poisson process with Markov switching is determined by the
generators

Γε(x)ϕ(u) = aε(x)ϕ′(u)

+ ε−1
∫

Rd
[ϕ(u + εv) − ϕ(u) − εvϕ′(u)]�ε(dv;x),(13)

where

aε(x) =
∫

Rd
v�ε(dv;x).
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The most used stochastic model for a dynamic reliability system is a coupled
Markov process ξ(t), x(t), t ≥ 0, on the product phase space R

d × E, (see [6]).
The second component x(t), t ≥ 0, describes the evolution of the structure of the
system with a stoppage time (time to failure). The first component ξ(t), t ≥ 0,
takes values in R

d , and especially in the dynamic system case it describes the
operational parameters of the system like temperature, pressure, velocity, and so
on, or the reward rate of the system. The lifetime of such a system is defined
by T = inf{t ≥ 0 : (ξ(t), x(t)) ∈ B × {0}}, where B is a critical region of R

d , and
the reliability is defined by

r(t) := P(T > t), t ≥ 0.

Of course, when B = R
d , we get that T is equal to the stoppage time of x(t), t ≥ 0.

The pure-jump Markov process x(t), t ≥ 0, can be defined by the Markov
renewal process (xn, τn, n ≥ 0), where xn = x(τn), n ≥ 0, is the imbedded Markov
chain, and τn is the renewal jump moment of the Markov process x(t), t ≥ 0. As
usual, let us define the sojourn times θk = τk − τk−1, k ≥ 1, the counting process
ν(t) = max{n : τn ≤ t} and the processes θ(t) := t − τ (t), τ (t) := τν(t).

EXAMPLE 1. The integral reward of the system is represented by the
following integral functional:

αt =
∫ t

0
a(x(s)) ds,(14)

which can be written as follows:

αt =
ν(t)∑
k=1

θka(xk−1) + θ(t)a(x(t)).(15)

This representation is only due to the jump evolution of the process x(t), t ≥ 0,
and can be interpreted as the reward on the interval [0, t], the function a(x), x ∈ E,
being the reward rate per unit time in state x.

The reliability system x(t), t ≥ 0, defined on the phase space E0 = E ∪ {0},
with the subspace of working states E and the stoppage state {0} has the stoppage
time ζ := inf{t :x(t) = 0}. The total reward of the system up to stoppage time is

αζ =
∫ ζ

0
a(x(s)) ds.

EXAMPLE 2. The dynamical reward rate of the system is described by the
solution of the evolutionary equation

d

dt
U(t) = C(U(t), x(t)), U(0) = 0.(16)
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It can be represented as follows:

U(t) =
ν(t)∑
k=1

∫ τk

τk−1

C
(
Uk−1(s), xk−1

)
ds +

∫ t

τ (t)
C

(
Uτ(t)(s), xτ(t)

)
ds,(17)

where Uk(t), k ≥ 0, are determined by the recurrent equations

d

dt
Uk(t) = C

(
Uk(t), xk

)
, τk ≤ t < τk+1, k ≥ 0,(18)

with the initial values

Uk(τk) = Uk−1(τk), k ≥ 1,U0(0) = 0.(19)

The representation (17) can be interpreted as the dynamical reward on the
interval [0, t] with the velocity of reward C(U(s), x), in the state x ∈ E, which
depends not only on state x of the system but also on the instant value of rate U(s)

at time s ∈ [0, t].
EXAMPLE 3. The stochastic reward rate of the system is defined by the

storage processes η(t;x), t ≥ 0, x ∈ E, with the generators

Γ(x)ϕ(u) = (u;x)

∫
Rd

[ϕ(u + v) − ϕ(u)]�(u, dv;x).(20)

The intensity of jumps (u;x) and the distribution function of jump values
�(u, dv;x) depend on the state of the system x ∈ E.

Particularly, a birth-and-death process η(t;x), t ≥ 0, x ∈ E, defined by the
intensity λ(u;x) and µ(u;x) of jumps +1 and −1, respectively, can be considered
as a stochastic reward rate of a system x(t), t ≥ 0, with the number of working
devices η(t;x) in the state x. Of course, the true reward rate can be given by a
functional of η(t;x).

4. Phase merging scheme. The Markov switching processes xε(t), t ≥ 0,
ε > 0, are considered in a split state space

E0 = E ∪ {0}, E =
N⋃

k=1

Ek, Ek ∩ Ek′ = ∅, k 	= k′,(21)

with absorbing state {0}.
The phase merging algorithm is considered under the following assumptions.

A1. The stochastic kernel in (3) is represented in the following form:

P ε(x,B) = P (x,B) + εP1(x,B),(22)

where the stochastic kernel P (x,B) is coordinated with the splitting (21) as
follows:

P (x,Ek) = 1k(x) :=
{

1, x ∈ Ek,
0, x /∈ Ek.

(23)
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The Markov supporting process x(t), t ≥ 0, on the state space (E,E),
determined by the generator

Qϕ(x) = q(x)

∫
E

P (x, dy)[ϕ(y) − ϕ(x)],(24)

is supposed to be uniformly ergodic in every class Ek , 1 ≤ k ≤ N , with the
stationary distribution πk(dx), 1 ≤ k ≤ N , satisfying the following relations:

πk(dx)q(x) = qkρk(dx), qk =
∫
Ek

πk(dx)q(x),

ρk(B) =
∫
Ek

ρk(dx)P (x,B), ρk(Ek) = 1.

Define the projector �, by

�ϕ(x) :=
N∑

k=1

∫
Ek

πk(dy)ϕ(y)1k(x),(25)

where 1k(x) = 1 for all x ∈ Ek , 1 ≤ k ≤ N , and 0 otherwise. Let us denote
by R0 the potential operator of the jump Markov process defined by [13],

R0Q = QR0 = � − I.

Define also the operator P , as follows:

Pϕ(x) =
N∑

k=1

∫
Ek

P (x, dy)ϕ(y)1k(x).

The perturbing kernel P1(x,B) is a signed kernel and determines the stoppage
probabilities

P ε(x, {0}) = −εP1(x,E) =: εp(x).(26)

In fact, we consider here that the initial Markov process xε(·) is a perturbation
of the ergodic Markov process x(·).

A2. The stationary exit probabilities verify

pk =
∫
Ek

ρk(dx)P1(x,E \ Ek) > 0, 1 ≤ k ≤ N,N ≥ 2.(27)

A3. The stationary stoppage probabilities

pk0 =
∫
Ek

ρk(dx)p(x), 1 ≤ k ≤ N,(28)

verify max1≤k≤N pk0 > 0.

Let the merging function be

m(x) = k, x ∈ Ek,1 ≤ k ≤ N and m(0) = 0.
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LEMMA 1 ([13]). Under the above assumptions A1–A3, the weak conver-
gence

m
(
xε(t/ε)

) ⇒ x̂(t) as ε → 0,

takes place. The limit merged Markov process x̂(t), t ≥ 0, on the merged state
space Ê0 = {0; 1,2, . . . ,N} is determined by the generator matrix

Q̂0 = (q̂0
kr ; 0 ≤ k, r ≤ N),(29)

with entries

q̂0
kr = qkpkr , pkr =

∫
Ek

ρk(dx)P1(x,Er), 1 ≤ k, r ≤ N,(30)

pk0 =
∫
Ek

ρk(dx)p(x), 1 ≤ k ≤ N.(31)

REMARK 2. The representations (22) and (26) and the relations (27) and (28)
yield

pkr ≥ 0, r 	= k; pkk < 0, 1 ≤ k ≤ N,

and the following identity takes place:

k∑
r=0

pkr = 0, 1 ≤ k ≤ N.(32)

It is easy to verify that {0} is an absorbing state of the merged Markov process
x̂(t), t ≥ 0, with the generator matrix Q̂0, given by relations (29)–(31). The
intensity of stoppage is

q̂0
k0 = qkpk0, 1 ≤ k ≤ N.

The transition probabilities of the embedded Markov chain are defined by

p̂kr = −pkr/pkk, r 	= k.

Due to (32) the following identity takes place:∑
r 	=k

p̂kr = 1, 1 ≤ k ≤ N.

EXAMPLE 4. In the particular case where N = 1, the merged Markov process
x̂(t), t ≥ 0, has the merged state space Ê0 = {0,1} with absorbing state {0}. The
intensity of the sojourn time in state {1} is

q =
∫
E

π(dx)q(x).

The stoppage probability is

p =
∫
E

ρ(dx)p(x).
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The time to stoppage (or to failure)

ζ̂ := max{t : x̂(t) = 0}
has the exponential distribution with the parameter ̂ = qp, that is,

r̂(t) := P(ζ̂ > t) = e−̂t ,

which is the approximating reliability of the system.

EXAMPLE 5. Consider a three-state Markov process, E0 = {0,1,2}, with
generator matrix

Qε =

 0 0 0

ελ −(1 + ε)λ λ

εµ µ −(1 + ε)µ




=

0 0 0

0 −λ λ

0 µ −µ




︸ ︷︷ ︸
Q

+ ε


 0 0 0

λ −λ 0
µ 0 −µ




︸ ︷︷ ︸
Q1

.

The transition matrix of the embedded Markov chain is

P ε =

1 0 0

ε 0 1 − ε

ε 1 − ε 0


 =


 1 0 0

0 0 1
0 1 0




︸ ︷︷ ︸
P

+ ε


0 0 0

1 0 −1
1 −1 0




︸ ︷︷ ︸
P1

.

Now for the ergodic process x(t), t ≥ 0, taking values in E = {1,2}, and
generator Q, we have

π =
(

µ

λ + µ
,

λ

λ + µ

)
.

And for the ergodic embedded Markov chain xn,n ≥ 0, we have

ρ = (1/2,1/2).

Thus, as we have p(1) = −P1(1,E) = 1 and p(2) = −P1(2,E) = 1, the
stoppage probability is p = 1.

On the other hand we have

q(1) = λ, q(2) = µ.

Hence,

q = π1q(1) + π2q(2) = 2λµ

λ + µ
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and

̂ = qp = 2λµ

λ + µ
.

The limit of the distribution of the normalized stoppage time is P(ζ̂ > t) =
exp(−̂t).

The double merging algorithm can be used in the split phase space with N > 1
as given in the following lemma.

LEMMA 2. Let the Markov jump process xε(t), t ≥ 0, on the split state
space (21) be given by the generator (3) with the stochastic kernel represented
as follows:

P ε(x,B) = P (x,B) + εP1(x,B) + ε2P2(x,B),(33)

where the stochastic kernel P (x,B) satisfies condition (23) and the perturbing
kernel P1(x,B) satisfies the condition

P1(x,E) = 0.

The second perturbing kernel determines the stoppage probabilities

P ε(x, {0}) = −ε2P2(x,E) =: ε2p(x).

Then, under assumptions A2 and A3, the weak convergence

m
(
xε(t/ε)

) ⇒ x̂(t) as ε → 0

takes place. The limit Markov merged process x̂(t), t ≥ 0, on the merged state
space Ê = {1,2, . . . ,N} is determined by the generating matrix Q̂ = (q̂kr; 1 ≤ k,

r ≤ N) with entries

q̂kr = qkpkr = qk

∫
Ek

ρk(dx)P1(x,Er).

Under the additional condition of ergodicity of the merged Markov process x̂(t),
t ≥ 0, with stationary distribution π̂ = (π̂k , 1 ≤ k ≤ N), the weak convergence

m̂
(
xε(t/ε2)

) ⇒ ˆ̂x(t) as ε → 0

takes place. The merging function m̂ is defined by

m̂(x) =
{

1, x ∈ E,
0, x = 0.

The limit double merged Markov renewal process ˆ̂x(t), t ≥ 0, is defined on the

state space ˆ̂
E = {1,0} by the intensity of sojourn time in state {1}, ˆ̂q = ∑N

k=1 π̂kq̂k ,
and the stoppage probability

ˆ̂p =
N∑

k=1

q̂kp̂k0, p̂k0 :=
∫
Ek

ρk(dx)p(x), 1 ≤ k ≤ N.
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REMARK 3.

1. The Markov process xε(t/ε), t ≥ 0, in the phase merging scheme of Lemma 1
is determined by the generator

Qε = ε−1Q + Q1,

where Q is the generator given by (24), and

Q1ϕ(x) = q(x)

∫
E

P1(x, dy)ϕ(y).

2. The Markov process xε(t/ε2), t ≥ 0, on the double merging scheme of
Lemma 2 has the following generator:

Qε = ε−2Q + ε−1Q1 + Q2,

with the operator

Q2ϕ(x) = q(x)

∫
E

P2(x, dy)ϕ(y).

3. The phase merging algorithms are based on the solution of the singular
perturbation problems [13].

For averaging and diffusion approximation results that follow in Sections 5 and 6,
we need the following assumption.

ASSUMPTION A. Convergence in probability of the initial values of ξε(t),
m(xε(t/ε)), t ≥ 0, hold, that is,(

ξε(0),m(xε(0))
) P→ (

ξ(0), x̂(0)
)
,

and there exist a c ∈ R+, such that

sup
ε>0

E|ξε(0)| ≤ c < +∞.

5. Average approximation scheme. In this section we will give two theo-
rems for the averaging evolutionary system ξε(t) in single and double averaging
of the switching Markov processes xε(t), respectively.

In what follows the following Banach spaces will be used endowed by the
corresponding sup-norms.

1. B is the Banach space of real-valued measurable bounded functions ϕ(u, x),
u ∈ R

d , x ∈ E.
2. B1 := C1(Rd × E) ∩ B is the Banach space of continuously differentiable

functions on u ∈ R
d uniformly on x ∈ E with bounded first derivative.

3. B2 := C2(Rd ×E)∩ B is the Banach space of twice continuously differentiable
functions on u ∈ R

d uniformly on x ∈ E with bounded first two derivatives.
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THEOREM 1 (Average approximation). Let the stochastic evolutionary system
ξε(t) be represented by

ξε(t) = ξε(0) +
∫ t

0
ηε

(
ds;xε(s/ε)

)
, t ≥ 0, ε > 0.(34)

Let the process ηε(t;x), t ≥ 0, x ∈ E, ε > 0, be given by the generators (2).
Let that the switching Markov process xε(t), t ≥ 0, satisfies the phase merging
condition of Lemma 1.

Let the following conditions be valid.

C1. The drift velocity a(u;x) belongs to the Banach space B1, with

aε(u;x) = a(u;x) + θε(u;x),

where θε(u;x) goes to 0 as ε → 0 uniformly on (u;x) and �ε(u, dv;x) ≡
�(u, dv;x) independent of ε.

C2. The operator

γε(x)ϕ(u) = ε−1
∫

Rd
[ϕ(u + εv) − ϕ(u) − εvϕ′(u)]�(u, dv;x)

is negligible on B1,

sup
ϕ∈C1(Rd )

‖γε(x)ϕ‖ → 0 as ε → 0.

C3. Assumption A holds.

Then the stochastic evolutionary system ξε(t), t ≥ 0, defined by relation (34),
converges weakly to the averaged stochastic system Û (t ∧ ζ̂ )

ξ ε(t) ⇒ Û (t ∧ ζ̂ ) as ε → 0.

The limit process Û (t), t ≥ 0, is defined by a solution of the evolutionary
equation

d

dt
Û(t) = â

(
Û (t), x̂(t)

)
, Û (0) = 0,

on the time interval 0 ≤ t ≤ ζ̂ [ζ̂ is the stoppage time of the merged Markov
process x̂(t), t ≥ 0].

The averaged velocity is determined by

â(u; k) =
∫
Ek

πk(dx)a(u;x), 1 ≤ k ≤ N, â(u; 0) = 0.

REMARK 4. There is no change in the result if we consider a dependent on ε

measure of random jumps in the form �ε(u, dv;x) = �(u, dv;x)+ε�1(u, dv;x).
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REMARK 5. The operator γε(x) is the jump part after extraction of the drift
part due to the jumps of the process ηε(·, ·).

The following corollary gives particular results of Theorem 1, in the four cases
described in Section 3.

COROLLARY 1.

1. The stochastic integral functional (8) converges weakly as follows:∫ t

0
a(xε(s/ε)) ds ⇒

∫ t∧ζ̂

0
â(x̂(s)) ds as ε → 0,

where

â(k) =
∫
Ek

πk(dx)a(x).

In the particular case where N = 1, the stochastic integral functional converges
weakly,∫ t

0
a
(
xε(s/ε)

)
ds ⇒ â · (t ∧ ζ̂ ) as ε → 0, â =

∫
E

π(dx)a(x).

2. The dynamical system defined by (10) converges weakly to a dynamical system
with a simplest switching process x̂(t), t ≥ 0, instead of the initial one xε(t),
t ≥ 0.

3. The storage jump process with Markov switching defined by the generators
of (12) converges weakly as follows:

ξε(t) ⇒ V̂ (t ∧ ζ̂ ) as ε → 0,

where the averaged process V̂ (t), t ≥ 0, is determined by a solution of the
evolutionary equation

d

dt
V̂ (t) = â

(
V̂ (t), x̂(t)

)
, V̂ (0) = 0.

4. The compound Poisson process with Markov switching defined by the genera-
tors of (13) converges weakly as follows:

ξε(t) ⇒
∫ t∧ζ̂

0
â(x̂(s)) ds as ε → 0.

Of course functions a and â given in cases 1 and 4 are different functions from
those given in Section 3.

The following theorem concerns averaging result for the evolutionary sys-
tem ξε(t) in the double merging scheme (33). For an ergodic double average of
integral functionals see [16].
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Define ˆ̂
ζ the stoppage time of the process ˆ̂x(t), by

ˆ̂
ζ = min

{
t : ˆ̂x(t) = 0

}
.

THEOREM 2 (Double average). Let the switching Markov process xε(t), t ≥ 0,
satisfy the conditions of the double merging scheme (Lemma 2). Let the stochastic
system be represented as follows:

ξε(t) = ξε(0) +
∫ t

0
ηε

(
ds;xε(s/ε2)

)
,

where the processes ηε(t;x), t ≥ 0, x ∈ E, are given by the generator of (2). Let
conditions C1–C3 of Theorem 1 be true.

Then the weak convergence

ξε(t) ⇒ ˆ̂
U

(
t ∧ ˆ̂

ζ
)

as ε → 0

takes place. The limit double averaged system ˆ̂
U(t), t ≥ 0, is defined by a solution

of the equation

d

dt

ˆ̂
U(t) = ˆ̂a

( ˆ̂
U(t), ˆ̂x(t)

)
,

ˆ̂
U(0) = 0, ˆ̂a(u; 1) =

N∑
k=1

π̂kâ(u; k).

The stoppage time ˆ̂
ζ has an exponential distribution with the parameter

ˆ̂
 = qp (see Lemma 2).

REMARK 6. A result analogous to Corollary 1 can be obtained for the double
merged process ˆ̂x(t), t ≥ 0, in the cases of stochastic integral (8), of the storage
jump process with Markov switching (12) and of the compound Poisson process
with Markov switching (13) [17].

6. Diffusion approximation scheme. The split state space E0 = E ∪ {0} is
considered for simplicity with N = 1. So, the supporting Markov process x(t),
t ≥ 0, defined by the generator of (24) is uniformly ergodic on E with the
stationary distribution π(dx).

The main assumption in this section is that the balance condition says that the
stationary average of the fast motion is equal to zero,

â(u) =
∫
E

π(dx)a(u;x) ≡ 0.(35)

We consider here the following additive functional

ξε(t) = ξε(0) +
∫ t

0
ηε

(
ds;xε(s/ε2)

)
,
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THEOREM 3 (Diffusion approximation). Let the processes ηε(t;x), t ≥ 0,
x ∈ E, be defined by the generators (2) with the drift velocity

aε(u;x) = ε−1a(u;x) + a1(u;x)(36)

and let the measures of random jumps be

�ε(u, dv;x) = ε−1�(u, dv;x)+ �1(u, dv;x).(37)

Let the following conditions hold.

D1. The drift velocity functions a(u;x) and a1(u;x) belong to the Banach
space B2.

D2. The operators

γε(x)ϕ(u) = ε−1
∫

Rd

[
ϕ(u+εv)−ϕ(u)−εvϕ′(u)− ε2

2
v2ϕ′′(u)

]
�ε(u, dv;x)

are negligible on B2, that is,

sup
ϕ∈C2(Rd)

‖γε(x)ϕ‖ → 0 as ε → 0.

D3. The switching Markov process xε(t), t ≥ 0, is defined by the generator (3)
with the stochastic kernel

P ε(x,B) = P (x,B) + ε2P1(x,B),

where the kernels P (x,B) and P1(x,B) satisfy assumptions A1–A3 of the
phase merging scheme (Lemma 1).

D4. Assumption A holds.

Then, under the balance condition (35), the weak convergence

ξε(t) ⇒ ξ̂ (t ∧ ζ̂ ) as ε → 0

takes place. The limit diffusion process ξ̂ (t), t ≥ 0, is defined by the generator

L̂ϕ(u) = b̂(u)ϕ′(u) + 1
2B̂(u)ϕ′′(u).(38)

The drift coefficient is defined by

b̂(u) = â1(u) + b̂1(u),

where

â1(u) =
∫
E

π(dx)a1(u;x) and b̂1(u) =
∫
E

π(dx)a(u;x)R0a
′
u(u;x).

The covariance function is defined by

B̂(u) = 2
∫
E

π(dx)[a(u;x)R0a(u;x) + C0(u;x)],
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where

C0(u;x) = 1
2

∫
Rd

vv∗�(u, dv;x),

where v∗ is the transpose of the vector v, and R0 is the potential operator of Q

(see [13]),

QR0 = R0Q = � − I.

The following corollary gives particular results of Theorem 3 in the four cases
given in Section 3.

COROLLARY 2.

1. The stochastic integral functional (8) converges weakly,∫ t

0
aε

(
xε(s/ε2)

)
ds ⇒ ξ̂ (t ∧ ζ̂ ) as ε → 0.

The limit process ξ̂ (t), t ≥ 0, is a diffusion process with generator (38), where

b(u) ≡ â1 =
∫
E

π(dx)a1(x) and B̂(u) ≡
∫
E

π(dx)a(x)R0a(x).

2. The dynamical system (10) converges weakly to a diffusion as in the above
theorem.

3. The storage jump process with Markov switching defined by the generators (12)
with

a(u;x) =
∫
E

v�(u, dv;x) and a1(u;x) =
∫
E

v�1(u, dv;x)

converges weakly as follows:

ξε(t/ε2) ⇒ ξ̂ (t ∧ ζ̂ ) as ε → 0,

where the limit process ξ̂ (t), t ≥ 0, is a diffusion process with generator (38),
where

b̂(u) =
∫
E

π(dx)b(u;x), B̂(u) =
∫
E

π(dx)C0(u;x),

b(u;x) =
∫

Rd
v�(u, dv;x), C0(u;x) = 1

2

∫
Rd

vv∗�(u, dv;x).

In cases where d > 1, C0(u, x) is a matrix function.
4. The compound Poisson process with Markov switching defined by genera-

tors (13) weakly converges,

ξε(t/ε2) ⇒ ξ̂ (t ∧ ζ̂ ) as ε → 0,
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where the limit process ξ̂ (t), t ≥ 0, is a diffusion process with generator (38),
with drift

â1 =
∫
E

π(dx)a1(x), a1(x) =
∫

Rd
v�1(dv;x),

and covariance function

B̂ =
∫
E

π(dx)[a0(x) + C0(x)], a0(x) = a(x)R0a(x),

C0(x) = 1
2

∫
Rd

vv∗�(dv;x).

A diffusion approximation in a phase double merging scheme (Lemma 2) is
realized by the following theorem.

THEOREM 4 (Diffusion approximation in double merging scheme). Let the
switching Markov process xε(t), t ≥ 0, be defined by the generator (3) with the
stochastic kernel

P ε(x,B) = P (x,B) + εP1(x,B) + ε2P2(x,B),

where the kernels P (x,B) and Pk(x,B), k = 1,2, satisfy the conditions of
Lemma 2. The processes ηε(t;x), t ≥ 0, x ∈ E, are given by generators (2) with
characteristics (36) and (37).

Let conditions C1–C3 of Theorem 1 hold. Then, under balance condition (35)
the weak convergence

ξε(0) +
∫ t

0
ηε

(
ds;xε(s/ε3)

) ⇒ ˆ̂
ξ
(
t ∧ ˆ̂

ζ
)

as ε → 0

takes place. The limit diffusion process ˆ̂
ξ(t), t ≥ 0, is defined by the generator

ˆ̂
Lϕ(u) = ˆ̂

b(u)ϕ′(u) + ˆ̂
B(u)ϕ′′(u).(39)

The drift coefficient is defined by

ˆ̂
b(u) = ˆ̂a1(u) + ˆ̂

b1(u),

ˆ̂a1(u) =
N∑

k=1

π̂kâ1(u; k), â1(u; k) =
∫
Ek

πk(dx)a1(u;x),

ˆ̂
b1(u) =

N∑
k=1

π̂kb1(u; k), b1(u; k) = â(u; k)R̂0â
′
u(u; k).
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The covariance function is defined by

ˆ̂
B(u) =

N∑
k=1

π̂kB̂k(u),

B̂k(u) = â(u; k)R̂0â(u; k) + Ĉ0(u; k), Ĉ0(u; k) =
∫
Ek

π̂k(dx)C0(u;x).

Here, the operators R0 and R̂0 are the potential operators for Q and Q̂0,
respectively.

COROLLARY 3.

1. The stochastic integral functional (8) converges weakly,∫ t

0
aε(xε(s/ε3)) ds ⇒ ˆ̂

ξ
(
t ∧ ˆ̂

ζ
)

as ε → 0.

The limit process ˆ̂
ξ(t), t ≥ 0, is a diffusion process having generator (39), with

ˆ̂
b(u) ≡ ˆ̂a1 =

N∑
k=1

π̂kâ1(x), â1(k) =
∫
Ek

πk(dx)a1(x),

ˆ̂
B(u) ≡

N∑
k=1

π̂kB̂k, B̂k = â(k)R̂0â(k).

2. The storage jump process with Markov switching defined by generators (12)
weakly converges,

ξε(t/ε3) ⇒ ˆ̂
ξ
(
t ∧ ˆ̂

ζ
)

as ε → 0,

where the limit process ˆ̂
ξ(t), t ≥ 0, is a diffusion process with generator (39),

where

ˆ̂
b ≡ 0,

ˆ̂
B(u) =

N∑
k=1

π̂kĈ(u; k), Ĉ(u; k) =
∫
Ek

π̂k(dx)C(u;x).

3. The compound Poisson process with Markov switching defined by by genera-
tors (13) converges weakly,

ξε(t/ε3) ⇒ ˆ̂
ξ
(
t ∧ ˆ̂

ζ
)

as ε → 0,

where the limit process ˆ̂
ξ(t), t ≥ 0, is a diffusion process having generator (39),

with

ˆ̂
b ≡ 0,

ˆ̂
B =

N∑
k=1

π̂kĈ(k), Ĉ(k) =
∫
Ek

π̂k(dx)C(x).
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7. Reward of stochastic system per operating time. A function of particular
interest in applications is the reward of operating time, that is, ξε ◦ ζ ε, where ζ ε

defined in the previous section is the stoppage time of the switching Markov
process xε(t).

Let us define the mean reward of operating time by the following relation:

Wε(u) := E
[
ξε(ζ ε)|ξε(0) = u

]
,(40)

and the limit reward by

Ŵ (u) := lim
ε→0

Wε(u) = E
[
U(ζ̂ )|U(0) = u

]
.(41)

Then we have (see Example 4),

Ŵ (u) = ̂

∫ ∞
0

e−̂tU(t) dt

= u +
∫ ∞

0
e−̂tU ′(t) dt(42)

=
∫ ∞

0
e−̂t â(U(t)) dt.

The functional limit reward is

�̃(u) = E
[
�(U(ζ̂ ))|U(0) = u

]
= ̂

∫ ∞
0

e−̂t�(U(t)) dt(43)

= ̂

∫ ∞
0

e−̂tAt dt �(u),

where the semigroup At is defined by

Atϕ(u) := ϕ(U(t)),

and U(t) is a solution of the equation

d

dt
U(t) = â(U(t)), U(0) = u.

The generator of this semigroup, denoted by A, is defined by

Aϕ(u) := â(u)ϕ′(u).

Thus

�̃(u) = ̂R
̂
�(u),(44)

where R
̂

is the resolvent of the semigroup

̂R
̂

= I + AR
̂
,
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or

(̂ − A)R
̂

= I.

The following equation is verified by the functional reward:

â(u)�̂′(u) − ̂�̂(u) = ̂�(u).(45)

An initial value can be

�̂(0) = ̂

∫ ∞
0

e−̂t â(U0
t ) dt, U0

0 = 0.

8. Proofs of theorems. We will prove only Theorems 1 and 3. The proofs of
other theorems are similar.

8.1. Proof of Theorem 1. The proof of Theorem 1 will be realized by the
following approach. First, we will establish the convergence of generators of some
Markov processes by a singular perturbation of the linear operator technique.
Second, we will prove the compactness property of the stochastic processes
by proving the compact containment condition and the submartigale condition.
Finally, we will establish the convergence results by applying Theorem 8.10 of [7]
adapted to our conditions.

The generator of the coupled Markov processes ξε(t), xε(t/ε), t ≥ 0, in
Theorem 1 is

Lε = ε−1Q + Q1 + Γ(x) + γε(x) + �ε(x),

where operator Q is defined in (24), operator Q1 in Remark 3, operator Γ(x) is
defined by Γ(x)ϕ(u) = a(u;x)ϕ′(u), operator �ε(x) is defined by �ε(x)ϕ(u) =
θε(u;x)ϕ′(u), and operator γε(x) is defined in condition C2 of Theorem 1. All
the above operators are bounded ones. Of course, the operator γε(x) + �ε(x) is a
negligible one on B1.

Let R0 be the potential of the operator Q, that is, R0 = [Q + �]−1 − �.

Let C
2
0(R

d × Ê0) be the space of measurable bounded functions ϕ(u, v) with
compact support and twice continuously differentiable on the first argument.

LEMMA 3 ([13]). The asymptotic representation of

[ε−1Q + Q1 + Γ(x)]ϕε(u, x) = Lϕ̂ + ε�ε(x),(46)

with ϕε(u, x) = ϕ(u,m(x)) + εϕ1(u, x), ϕ̂ = ϕ̂(u, v) ∈ C
2
0(R

d × Ê0), is real-
ized by

L(x) = Q̂1 + Γ̂(x),

where contracted operators Q̂1, Γ̂(x) are defined by

�Q1� = Q̂1� and �Γ(x)� = Γ̂(x)�
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and

ϕ1 = R0[L − L(x)]ϕ,(47)

�ε(x) = (
Q1 + Γ(x)

)
R0

[
L − (

Q1 + Γ(x)
)];(48)

hence, �ε(x) is a bounded operator independent of ε.

Let us consider the function ϕ0 : R → [1,+∞) defined by ϕ0(u) = √
1 + u2;

thus ϕ′
0(u) = 2u/

√
1 + u2. Hence,

|ϕ′
0(u)| ≤ 2 ≤ 2ϕ0(u), |ϕ′′

0 (u)| ≤ 2 ≤ 2ϕ0(u), u ∈ R.(49)

We obtain first the following inequality:

Lεϕ0(u) = ε−1Qϕ0(u) + Q1ϕ0(u) + Γ(x)ϕ0(u)

= aε(u;x)ϕ′
0(u) ≤ 2|aε(u;x)|ϕ0(u)(50)

≤ Caϕ0(u).

Now, by Lemma 4 of [17], we get the following compact containment condition.

LEMMA 4 [17]. If

Pb ∈ B, b ∈ B(E)(51)

and

E[|ξε(0)|] ≤ c < +∞,(52)

then the family of processes (34)

ξε(t) = ξε(0) +
∫ t

0
ηε

(
ds;xε(s/ε)

)
, t ≥ 0, ε > 0,(53)

satisfies the compact containment condition (see [7], page 129)

lim
l→∞ sup

ε>0
P

ε

(
sup

0≤t≤T

|ξε(t)| ≥ l

)
= 0.(54)

For any nonnegative function ϕ ∈ C∞
0 (R), we get the following inequality:

|Lεϕ(u)| = |Q1ϕ(u) + Γ(x)ϕ(u)|
≤ qϕ(u) + |aε(u;x)||ϕ′(u)|(55)

≤ Cϕ.

Hence, similarly to Lemma 5 in [17], we get that the family of processes ξε(t),
t ≥ 0, ε > 0, is tight in DR[0, T ] for every T > 0.
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The following convergence theorem is an adaptation of our conditions of
Theorem 8.10, page 234 in [7]. See also [17]. Let us define the state space
V = Ê0 = {0,1, . . . ,N} of the merged process x̂(·).

An algebra A ⊂ D(E) is called separating, if, whenever P,Q ∈ P (E) (the
set of all probability measures on E), and

∫
f dP = ∫

f dQ for f ∈ A, we have
P = Q (see [7]).

THEOREM A. Suppose the generator L of the coupled Markov process ξ(t),
x̂(t), t ≥ 0, on the state space R

d × V , has at most one solution of a martingale
problem in D[0,∞), and that the closure of the domain D(L) contains a
separating algebra A.

Suppose the family of Markov processes ξε(t), xε(t), t ≥ 0, ε > 0 on R
d × E

defined by the generators Lε, ε > 0, with domains D(Lε) dense in C(Rd × E),
satisfies the following conditions.

C1. There exists a collection of functions ϕε(u, x) ∈ C(Rd × E), such that the
following uniform convergence takes place:

lim
ε→0

ϕε(u, x) = ϕ(u,m(x)) ∈ C(Rd × V )(56)

and such that for every T > 0,

lim
ε→0

sup
0≤t≤T

E
∣∣ϕε

(
u,xε(t)

)∣∣ < +∞.(57)

C2. The uniform convergence of generators

lim
ε→0

Lεϕε(u, x) = Lϕ(u,m(x)),(58)

takes place, the functions Lεϕε, ε > 0, are uniformly bounded, and Lϕ ∈
C(Rd × V ).

C3. The family of probability measures (P ε, ε > 0) corresponding to the switch-
ing merged processes (ξε(t),m(xε(t)), t ≥ 0, ε > 0) is relatively compact.

C4. The convergence in probability of the initial values holds, that is,

(
ξε(0),m

(
xε(0)

)) P→ (ξ(0), x̂(0)) as ε → 0,

with uniformly bounded expectation

sup
ε>0

E|ξε(0)| ≤ c < +∞.

Then the weak convergence in DRd×V [0,∞)(
ξε(t),m

(
xε(t)

)) ⇒ (ξ(t), x̂(t)) as ε → 0,

takes place.
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Now we complete the proof of Theorem 1. It is easy to see that all the
conditions of Theorem A are fulfilled and thus that the weak convergence
stated in Theorem 1 holds. Namely, asymptotic representations (46)–(48) provide
conditions C1 and C2 of Theorem A. Now, by (55) we can prove easily
that ϕ(ξε(t)) + Cϕt, t ≥ 0, is a nonnegative F ε

t -submartingale, with F ε
t =

σ(ηε(u), xε(u/ε), u ≤ t). From this and the compact containment condition
(Lemma 4), we get condition C3 (see [29, 17]).

It is worth noticing that the limit process U(t ∧ ζ̂ ) is a stopped process to time ζ̂

since the process x̂(·) has one absorbing state.

8.2. Proof of Theorem 3. The generator of the coupled Markov processes
ξε(t), xε(t/ε2), t ≥ 0, in the case of Theorem 3 is

Lε = ε−2Q + ε−1Γ(x) + Q1 + Γ1(x) + Γ0(x) + γε(x) + εB1(x),

where Γ(x)ϕ(u) = a(u;x)ϕ′(u), Γ1(x)ϕ(u) = a1(u;x)ϕ′(u), Γ0(x)ϕ(u) =
C0(u;x)ϕ′′(u), and B1ϕ(u) = B1(u;x)ϕ′′(u), with B1(u;x) = 1

2

∫
Rd vv∗�1(u,

dv;x). Of course, the operator γε(x) + εB1(x) is a negligible one on B1.
Let us define the operator Q0 := Q1 + Γ1(x) + Γ0(x) − Γ(x)R0Γ(x), and the

contracted operator Q̂0 by �Q0� = Q̂0�. Then we have the following singular
perturbation result for generator Lε.

LEMMA 5. Under the balance condition �Γ(x)�ϕ = 0 and if Q̂0 is an
reducible–invertible operator, the following asymptotic representation:

[ε−2Q + ε−1Γ(x) + Q1 + Γ2(x)](ϕ + εϕ1 + ε2ϕ2) = Lϕ + εθε,

where Γ2(x) := Γ1(x) + Γ0(x), is realized by the vectors which are determined by
the equation [

Q̂1 + Γ̂0 − Γ(x)R̂0Γ(x)
]
ϕ̂ = L̂ϕ̂,

and

ϕ1 = −R0Γ(x)ϕ,

ϕ2 = R0(L − Q0)ϕ,

θε = [
Γ(x) + ε

(
Q1 + Γ0(x)

)]
ϕ2 + (

Γ0(x) + Q1
)
ϕ1.

The proof of Theorem 3 is based on the following theorem.

THEOREM B. Let us consider the family of coupled Markov processes

ξε(t), xε(t/ε2), t ≥ 0, ε > 0,(59)

a Markov process ξ(t), x̂(t), t ≥ 0, of generator L with domain D(L), and an
algebra A ⊂ D(L) that separate points. Consider also the test functions

ϕε(u, x) = ϕ(u,m(x)) + εϕ1(u, x), ϕ ∈ A.
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Suppose that the following conditions are fulfilled:

C1. The compact containment condition for the family (59) holds.
C2. For every T ∈ R+, we have

lim
ε→0

E

[
sup

0≤t≤T

∣∣ϕε
(
ξε(t),m

(
xε(t/ε2)

)) − ϕ
(
ξε(t),m

(
xε(t/ε2)

))∣∣] = 0(60)

C3. and

sup
ε>0

E
[‖Lεϕε‖∞,T

]
< +∞,(61)

where ‖ϕ‖∞,T = sup0≤t≤T |ϕ(ξ(t),m(x(t/ε2)))|.
C4. The convergence in probability of the initial values holds, that is,(

ξε(0),m(xε(0))
) P→ (

ξ(0), x̂(0)
)

as ε → 0,

with uniformly bounded expectation

sup
ε>0

E|ξε(0)| ≤ c < +∞.

Then (
ξε(t),m

(
xε(t/ε2)

)) ⇒ (
ξ(t), x̂(t)

)
as ε → 0.

PROOF. This is a compilation of our conditions of Theorem 9.4, page 145,
and Corollary 8.6, page 231 of [7]. �

Let us first prove the compactness containment condition for processes (59).

LEMMA 6. If supε>0 E|ξε(0)| ≤ c < +∞, then the family of stochastic
processes ξε(t), t ≥ 0, ε > 0, satisfies the compact containment condition

lim
l→∞ sup

ε>0
P

ε

(
sup

0≤t≤T

|ξε(t)| ≥ l

)
= 0.(62)

PROOF. Let us consider the test functions ϕε
0(u, x) = ϕ0(u) + εϕ1(u, x),

where ϕ0(u) = √
1 + u2.

From the asymptotic representation

Lεϕε
0(u, x) = Lϕ0 + θεϕ0

and the definition of the operator Γ0(x) := −R0Γ(x), we get

ϕ1 = −R0Γ(x)ϕ0 = Γ0(x)ϕ0.

Hence,

ϕε
0(u, x) = ϕ0(u) + εϕ1(u, x) = [1 + εΓ0(x)]ϕ0(u).
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From the boundness of the operator R0(x) and inequalities (49), we get

|Γ0(x)ϕ0(u)| ≤ Cϕ0(u),

where C is a positive constant. And from this inequality we get

(1 − εC)ϕ0 ≤ ϕε
0(u, x) ≤ (1 + εC)ϕ0.(63)

Using the above inequalities, we can write the following relations:

P
(
ϕ0(ξ

ε(t)) ≥ ϕ0(l)
)

= P
(
(1 − εC)ϕ0(ξ

ε(t)) ≥ (1 − εC)ϕ0(l)
)

≤ P
(
ϕε

0
(
ξε(t), xε(t)

) ≥ (1 − εC)ϕ0(l)
)

[from (63)]

≤ 2Eϕε
0
(
ξε(t), xε(t)

)/
ϕ0(l) (for ε ≤ 1/2C)

≤ 4Eϕ0(ξ
ε(t))/ϕ0(l) [from (63)]

≤ 4Eϕ0(ξ
ε(0))/ϕ0(l)

≤ 4
(
1 + E|ξε(0)|)/ϕ0(l),

which goes to 0 as l → +∞. �

For the other conditions of Theorem B, we can work as follows. The separating

points algebra A considered here is C
2
0(R

d × V ).
We have

E

[
sup

0≤t≤T

∣∣ϕε(ξε(t), xε(t/ε2)
) − ϕ

(
ξε(t),m

(
xε(t/ε2)

))∣∣]

= εE sup
0≤t≤T

∣∣ϕ1
(
ξε(t), xε(t/ε2)

)∣∣ → 0 as ε → 0.

(64)

On the other hand,

sup
0<ε≤ε0

E
[‖Lεϕε‖∞,T

]
(65) ≤ sup

0<ε≤ε0

E
[‖Lϕ‖∞,T

] + sup
0<ε≤ε0

E
[‖θε‖∞,T

]
< +∞.

Now, by Theorem B, Lemma 6, relation (64) and inequality (65), the proof of
Theorem 3 is achieved.

8.3. Comments on the proofs of Theorems 2 and 4. The proofs of Theorems
2 and 4 are similar to the previous ones.

It is easy to get the corresponding generators of the coupled Markov processes.
There are the following:

Lε = ε−2Q + ε−1Q1 + Q2 + Γ(x) + γε(x),
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for Theorem 2, and

Lε = ε−3Q + ε−2Q1 + ε−1Γ(x) + Q2 + Γ1(x) + γε(x),

for Theorem 4.

9. Concluding remarks. Results obtained in this paper can be used in order
to develop numerical algorithmic settings for concret problems in reliability,
replacement and more general problems concerning hitting times and functionals
of type (1), (see, e.g., [6, 30]).

More general results concerning effects of the mode change of the switching
and switched processes can be obtained by a similar way. A useful generalization
is to consider semi-Markov switching process.

Acknowledgment. The authors are grateful to an anonymous referee for his
useful comments that improved the presentation of this paper.
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