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APPROXIMATION OF SMOOTH CONVEX BODIES BY
RANDOM CIRCUMSCRIBED POLYTOPES
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Rényi Institute of Mathematics and Universität Freiburg

Choose n independent random points on the boundary of a convex body
K ⊂ R

d . The intersection of the supporting halfspaces at these random points
is a random convex polyhedron. The expectations of its volume, its surface
area and its mean width are investigated. In the case that the boundary of K

is sufficiently smooth, asymptotic expansions as n → ∞ are derived even in
the case when the curvature is allowed to be zero. We compare our results to
the analogous results for best approximating polytopes.

1. Introduction and statement of results. Let K be a compact convex set
in R

d with nonempty interior and with boundary of differentiability class C2.
Choose n random points X1, . . . ,Xn on the boundary ∂K , independently and
identically distributed with respect to a given density function dK . Denote by
H+(Xi) the supporting halfspace to ∂K at Xi , and define the random polyhedron
as the intersection

⋂
i=1,...,n H+(Xi). If n is sufficiently large, then with high

probability the random polyhedron is a quite precise approximation of the convex
body K . Clearly, if dK > 0 the random polyhedron tends to K with probability
one as n tends to infinity and, by continuity, volume, surface area and mean width
of the random polyhedron tend, respectively, to the volume, surface area and mean
width of K . It is of interest to determine the rate of convergence.

In this paper we investigate the expectation of the difference of volume V ,
surface area S and mean width W of the random polyhedron and the convex
body K . It should be noted that with small but positive probability the random
polyhedron is unbounded. Hence, with positive probability, the volume of the
random polyhedron will be infinite and the expectation will not exist. To ensure
that the random polyhedron becomes bounded we intersect it with a large cube C

which contains the convex body K in its interior. Thus we define

P(n) :=
n⋂

i=1

H+(Xi) ∩ C

and investigate V (P(n))−V (K), S(P(n))−S(K) and W(P(n))−W(K). Note that
our results will not depend on the actual choice of C.
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Approximation of convex bodies by polytopes has been considered frequently
for nearly 100 years. Most of the investigations focused on the one hand side on
best-approximating inscribed and circumscribed polytopes, and on the other hand,
on inscribed random polytopes. Interestingly enough, it turns out that only a few
papers deal with circumscribed random polytopes and that volume, surface area
and mean width of random circumscribed polytopes have not been investigated at
all so far. In this paper we fill this gap and then compare our results to those for
best-approximating circumscribed polytopes.

The problem to construct a best-approximating circumscribed polytope can be
formulated in the following way: Choose n points X1, . . . ,Xn on the boundary
of K such that the polytope P best

(n) = ∩H+(Xi) is as close as possible to K , that
is, the difference of the volume of P best

(n) and the volume of K should be minimal

among all possible choices of points Xi ∈ ∂K . For convex bodies K ∈ C2 with
positive Gaussian curvature, Gruber [8] proved

V (P best
(n) ) − V (K) = 1

2divd−1�(K)(d+1)/(d−1)n−2/(d−1) + o
(
n−2/(d−1))(1)

as n → ∞, where divd−1 is a constant depending on the dimension only. Here
�(K) denotes the affine surface area of K ,

�(K) =
∫
∂K

Hd−1(x)1/(d+1) dx,

where Hd−1(x) denotes the Gaussian curvature of ∂K at x and dx denotes
integration with respect to the (d − 1)-dimensional Hausdorff measure on ∂K .
Formula (1) has been generalized to K ∈ C2 (allowing the Gaussian curvature to
be zero) by Böröczky [2].

It turns out that the corresponding result for random polytopes has the same
order of approximation as occurs in (1). But, for random polytopes we can
even prove an asymptotic expansion for EV (P(n)) − V (K) if the convex body
is sufficiently smooth. In general the existence of asymptotic expansions for
best-approximating polytopes seems to be unknown, except in the case d = 2
(Ludwig [12] and Tabachnikov [25]), but see also Remark 2 at the end of this
section.

THEOREM 1. Let K ∈ C2 and choose n random points on ∂K independently
and according to a continuous density function dK > 0. Then

EV (P(n)) − V (K) = 1

2
κ

−2/(d−1)
d−1 �

(
2

d − 1
+ 1

)

(2) ×
∫
∂K

dK(x)−2/(d−1)Hd−1(x)1/(d−1) dx n−2/(d−1)

+ o
(
n−2/(d−1)

)
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as n → ∞. Moreover, if K ∈ Ck with positive Gaussian curvature, k ≥ 3 and
dK ∈ Ck−2 with dK > 0, then

EV (P(n)) − V (K) = cV
2 (K)n−2/(d−1) + cV

3 (K)n−3/(d−1) + · · ·
+ cV

k−1(K)n−(k−1)/(d−1) + O
(
n−k/(d−1))

as n → ∞. The constants cV
m(K) satisfy cV

2m−1(K) = 0 for m ≤ d/2 if d is even,
and cV

2m−1(K) = 0 for all m if d is odd.

The asymptotic formula (2) was already treated by Kaltenbach [11] if K ∈ C3

with positive Gaussian curvature. Recently, an estimate for the variance of
V (P(n)) − V (K) led in [19] to a stronger version of (2): for any positive density
function dK a strong law of large numbers holds for V (P(n)) − V (K).

Using Hölder’s inequality it is easy to observe that for given K the right-hand
side of (2) is minimized if the density function dK equals

dmin
K (x) = Hd−1(x)1/(d+1)∫

∂K Hd−1(x)1/(d+1) dx
.

Hence choosing random points on ∂K according to dmin
K by Theorem 1 gives

EV (P(n)) − V (K) = 1

2
κ

−2/(d−1)
d−1 �

(
2

d − 1
+ 1

)
�(K)(d+1)/(d−1)n−2/(d−1)

+ o
(
n−2/(d−1)

)
as n → ∞, which should be compared to formula (1) for best-approximating
polytopes. In particular, (1) and (2) immediately imply for K ∈ C2

lim
n→∞

EV (P(n)) − V (K)

V (P best
(n) ) − V (K)

= κ
−2/(d−1)
d−1 �( 2

d−1 + 1)

divd−1
,(3)

which is independent of the convex body K . Thus it is of interest to compare the
arising constants. With respect to divd−1, its value is only known for d = 2,3, but
its asymptotic behavior as d → ∞ has been determined by Zador [26], see also
Conway and Sloane ([5], page 58),

divd−1 = 1

2eπ
d + o(d).

On the other hand, Stirling’s formula yields

κ
−2/(d−1)
d−1 �

(
2

d − 1
+ 1

)
= 1

2eπ
d + o(d)

as d → ∞, which implies that the right-hand side of (3) tends to one as
the dimension tends to infinity. In particular, as the dimension tends to ∞,
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approximation of convex bodies by random circumscribed polytopes is as
good as approximation of convex bodies by best-approximating circumscribed
polytopes.

In order to state the corresponding results for the surface area of random
polytopes we need the following notion: for K ∈ C2 denote by k1(x), . . . , kd−1(x)

the principal curvatures of K at x. In particular, the mean curvature H1(x) is
(d − 1)−1 ∑

ki(x) and the Gaussian curvature Hd−1(x) is
∏

ki(x).
The result for the surface area is surprisingly complicated and reads as follows:

THEOREM 2. Let K ∈ C2 and choose n random points on ∂K independently
and according to a continuous density function dK > 0. Then

ES(P(n)) − S(K)

= (d − 1)κ
−(d+1)/(d−1)
d−1 �

(
2

d − 1
+ 1

)

×
∫
∂K

dK(x)−2/(d−1)Hd−1(x)1/(d−1)

{
H1(x)

1

2(d + 1)
M(x)

}
dx n−2/(d−1)

+o
(
n−2/(d−1)

)
(4)

as n → ∞ where

M(x) := 1

(d − 1)κd−1

∫
Sd−2

(∑
i

ki(x)2v2
i

)(∑
i

ki(x)v2
i

)−(d+1)/2

dv

with v = (v1, . . . , vd−1). Moreover, if K ∈ Ck with positive Gaussian curvature,
k ≥ 3 and dK ∈ Ck−2 with dK > 0, then

ES(P(n)) − S(K) = cS
2 (K)n−2/(d−1) + cS

3 (K)n−3/(d−1) + · · ·
+ cS

k−1(K)n−(k−1)/(d−1) + O
(
n−k/(d−1)

)
as n → ∞. The constants cS

m(K) satisfy cS
2m−1(K) = 0 for m ≤ d/2 if d is even

and cS
2m−1(K) = 0 for all m if d is odd.

Note that the right-hand side of (4) is minimized if dK equals the following
complicated density function:

dmin
K (x) = Hd−1(x)1/(d+1){H1(x) + 1/(2(d + 1))M(x)}(d−1)/(d+1)∫

∂K Hd−1(x)1/(d+1){(H1(x) + 1/(2(d + 1))M(x)}(d−1)/(d+1) dx
.

It is a difficult open problem to deduce an analogous formula for best-
approximating polytopes.

As a third notion of “distance” between P(n) and K the difference of the mean
width can be investigated; as for best-approximating polytopes, choose Xi ∈ ∂K

such that P best
(n) is close to K in the sense that W(P best

(n) ) − W(K) is minimal.
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The deduction of the asymptotic behavior of W(P best
(n) ) − W(K) for K ∈ C2 with

positive Gaussian curvature is due to Glasauer and Gruber [7],

W(P best
(n) ) − W(K)

= 1

dκd

deld−1

(∫
∂K

Hd−1(x)d/(d+1) dx

)(d+1)/(d−1)

n−2/(d−1)(5)

+ o
(
n−2/(d−1))

as n → ∞ and the generalization to K ∈ C2 is due to Böröczky [2]. The constant
deld−1 depends on the dimension only.

In the paper [7] an idea of Glasauer relates the mean width of a convex body K

to a certain integral over the polar body K∗ of K . This can be used to determine
the asymptotic behavior of the expected mean width EW(P(n)) of the random
polytope. Note that this method requires a stronger differentiability class for
proving asymptotic expansions.

THEOREM 3. Let K ∈ C2 and choose n random points on ∂K independently
and according to a continuous density function dK > 0. Then

EW(P(n)) − W(K)

= (d − 1)�(d + 1 + 2
d−1 )

d(d + 1)!κdκ
2/(d−1)
d−1

∫
∂K

dK(x)−2/(d−1)Hd−1(x)d/(d−1) dx n−2/(d−1)(6)

+ o
(
n−2/(d−1)

)
as n → ∞. Moreover, if K ∈ Ck+2 with positive Gaussian curvature, k ≥ 3 and
dK ∈ Ck with dK > 0, then

EW(P(n)) − W(K) = cW
2 (K)n−2/(d−1) + cW

3 (K)n−3/(d−1) + · · ·
+ cW

k−1(K)n−(k−1)/(d−1) + O
(
n−k/(d−1))

as n → ∞. The constants cW
m (K) satisfy cW

2m−1(K) = 0 for m ≤ d/2 if d is even
and cW

2m−1(K) = 0 for all m if d is odd.

By Hölder’s inequality, the right-hand side of (6) is minimized if dK equals

dmin
K (x) = Hd−1(x)d/(d+1)∫

∂K Hd−1(x)d/(d+1) dx
.

Then by Theorem 3,

EW(P(n)) − W(K)

= (d − 1)�(d + 1 + 2
d−1 )

d(d + 1)!κdκ
2/(d−1)
d−1

(∫
∂K

Hd−1(x)d/(d+1) dx

)(d+1)/(d−1)

n−2/(d−1)(7)

+ o
(
n−2/(d−1)

)
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as n → ∞. We compare this result to the one for best-approximating polytopes (5).
Since in both cases the order of approximation is n−2/(d−1) and also the
dependence on the convex body K is the same, we only have to compare the
coefficients occurring in (5) and (6). The asymptotic behavior of deld−1 as d → ∞
was determined by Mankiewicz and Schütt [13, 14],

deld−1 = 1

2eπ
d + o(d).

On the other hand, by Stirling’s formula,

(d − 1)�(d + 1 + 2
d−1)

(d + 1)!κ2/(d−1)
d−1

= 1

2eπ
d + o(d)

as d → ∞, which implies for convex bodies K ∈ C2 with positive Gaussian
curvature

lim
n→∞

EW(P(n)) − W(K)

W(P best
(n) ) − W(K)

= (d − 1)�(d + 1 + 2
d−1 )

(d + 1)!κ2/(d−1)
d−1 deld−1

→ 1 as d → ∞.

Thus, also for the mean width, approximation of convex bodies by random
circumscribed polytopes is as good as approximation of convex bodies by best-
approximating circumscribed polytopes as the dimension tends to ∞.

REMARK 1. For convex bodies of class C∞ and with positive Gaussian
curvature, Theorems 1 to 3 yield asymptotic expansions for EV (P(n)) − V (K),
ES(P(n)) − S(K), and EW(P(n)) − W(K) as n → ∞.

REMARK 2. As already mentioned, in case of best approximation of a planar
convex domain K by circumscribed polygons of n sides, Tabachnikov [25] verified
the analogue of Theorem 1; namely, the existence of a Taylor expansion in terms
of n−2 if K ∈ C∞ with positive Gaussian curvature. In light of Theorem 1, it might
be surprising that one does not have the Taylor expansion in terms of n−1 in case of
best approximation of the unit three-ball by circumscribed polytopes with n faces.
This was proved by Böröczky and Fejes Tóth [3].

REMARK 3. Analogous results for best-approximating inscribed polytopes
are due to Glasauer and Gruber [7] and Gruber [8] (investigating the asymptotic
behavior of best-approximating inscribed polytopes with n vertices as n → ∞).

Analogous results for inscribed random polytopes mostly deal with random
polytopes chosen in the interior of the convex body K (cf., e.g., Bárány [1] and
Reitzner [17]). Only recently, systematic research investigating random polytopes
with vertices chosen on the boundary of K was done (after work of Buchta,
Müller and Tichy [4] and Müller [15, 16]; also see Schütt and Werner [23, 24]
and Reitzner [18]).
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2. Tools.

2.1. The first tool is a precise description of the local behavior of the
boundary of a convex body K ∈ C2. For convex bodies K ∈ C2 with positive
Gaussian curvature the following lemma was proved in [18]. The generalization to
convex bodies K ∈ C2 is a straightforward task and thus we omit the proof.

Fix K ∈ C2. Consider that part of the boundary of K where all principal
curvatures ki(x) are bounded away from zero by a given constant, say ε > 0.
Denote the set of such boundary points by ∂K+ = ∂K+(ε). At every boundary
point x ∈ ∂K+ there is a paraboloid Q

(x)
2 —given by a quadratic form b

(x)
2 —

osculating ∂K at x. Q
(x)
2 and b

(x)
2 can be defined in the following way: identify

the hyperplane tangent to K at x with R
d−1 and x with the origin. Then there

is a convex function f (x)(y) ∈ C2, y = (y1, . . . , yd−1) ∈ R
d−1 representing ∂K

in a neighborhood of x, that is, (y, f (x)(y)) ∈ ∂K . Denote by f
(x)
ij (0) the second

partial derivatives of f (x) at the origin. Then

b
(x)
2 (y) := 1

2

∑
i,j

f
(x)
ij (0)yiyj

and

Q
(x)
2 := {

(y, z) | z ≥ b
(x)
2 (y)

}
.

The essential point in the following lemma is the fact that these paraboloids
approximate the boundary of K uniformly for all x ∈ ∂K+. Note that “flat” parts
of ∂K cannot be approximated by paraboloids. Thus this approximation works
only in suitable neighborhoods Uλ of x ∈ ∂K+ which do not intersect those parts
of ∂K where the Gaussian curvature vanishes.

LEMMA 1. Let K ∈ C2 and ε > 0 in the definition of ∂K+ be given. Choose
δ > 0 sufficiently small. Then there exists a λ > 0 only depending on δ, ε and K ,
such that for each point x of ∂K+ the following holds: identify the hyperplane
tangent to K at x with R

d−1 and x with the origin. The λ-neighborhood Uλ of x

in ∂K defined by proj
Rd−1 Uλ = λBd−1 can be represented by a convex function

f (x)(y) ∈ C2, y ∈ λBd−1. Furthermore

(1 + δ)−1b
(x)
2 (y) ≤ f (x)(y) ≤ (1 + δ) b

(x)
2 (y) for y ∈ λBd−1,(8) √

1 + |gradf (x)(y)|2 ≤ (1 + δ) for y ∈ λBd−1,(9)

(1 + δ)−1dK(x) ≤ dK(p) ≤ (1 + δ) dK(x) for p ∈ Uλ(10)

and

(1 + δ)−12b
(x)
2 (y) ≤ (y,0) · nK(y) ≤ (1 + δ)2b

(x)
2 (y) for y ∈ λBd−1,(11)

where nK(y) is the outer unit normal vector of K at the boundary point
(y, f (x)(y)).
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We need the following refinement of (9):

SUPPLEMENT TO LEMMA 1. For δ > 0 and thus λ > 0 sufficiently small the
following holds for each x of ∂K+:

(1 + δ)−1 1
2

∑
i

(∑
j

f
(x)
ij yj

)2

(12)

≤
√

1 + ∑
i

f
(x)
i (y)2 − 1 ≤ (1 + δ)1

2

∑
i

(∑
j

f
(x)
ij yj

)2

for y ∈ λBd−1 .

This can be readily proved using the methods of the proof of Lemma 2

in [18] and using the facts that
√

1 + ∑
i f

(x)
i (y)2 − 1 can be replaced by

(1/2)
∑

i f
(x)
i (y)2, that

f
(x)
i (y) = f

(x)
i (x) + ∑

j

f
(x)
ij (x + θy)yj

for a suitable θ , and the continuity of f
(x)
ij .

2.2. The next tool is a description of the boundary of a convex body K ∈ Ck

with positive Gaussian curvature for k ≥ 3. It is a straightforward generalization of
a result of Schneider [21] concerning convex bodies of class C3 to convex bodies
of class Ck .

LEMMA 2. Let K ∈ Ck with positive Gaussian curvature, k ≥ 3, be given.
Then there are constants α, β > 0 only depending on K such that the following
holds for every boundary point x ∈ ∂K : identify the support plane of K at x

with R
d−1 and x with the origin. Then the α-neighborhood of x in ∂K can be

represented by a convex function f (y) of differentiability class Ck , y ∈ R
d−1.

Furthermore the absolute values of the partial derivatives of f (y) up to order k

are uniformly bounded by β .

2.3. The third tool concerns the Taylor expansion of inverse functions. It is a
refinement of well-known results on the inversion of analytic functions (cf., e.g.,
[10], Sections 1.7. and 1.9.) due to Gruber [9].

LEMMA 3. Let

z = z(w, t) = bm(w)tm + · · · + bk(w)tk + O(tk+1)

for 0 ≤ t ≤ α , 2 ≤ m ≤ k, be a strictly increasing function in t for each fixed w

in a given set. Assume that bm(·) is bounded between positive constants, that
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bm+1(·), . . . , bk(·) are bounded and that the constant in O(·) may be chosen
independent of w. Then there are coefficients c1(·), . . . , ck−m+1(·), and a constant
γ > 0 independent of w, such that for each fixed w the inverse function t (w, ·)
of z(w, ·) has the representation

t = t (w, z) = c1(w)z1/m + · · · + ck−m+1(w)z(k−m+1)/m + O
(
z(k−m+2)/m

)
for 0 ≤ z ≤ γ . The coefficients c1(·), . . . , ck−m+1(·) can be determined explicitly
in terms of bm(·), . . . , bk(·); in particular,

c1(·) = 1

bm(·)1/m
, c2(·) = − bm+1(·)

mbm(·)(m+2)/m
,

c3(·) = − bm+2(·)
mbm(·)(m+3)/m

+ (m + 3)bm+1(·)2

2m2bm(·)(2m+3)/m
,

c4(·) = − bm+3(·)
mbm(·)(m+4)/m

+ (m + 4)bm+1(·)bm+2(·)
m2bm(·)(2m+4)/m

− (m + 2)(m + 4)bm+1(·)3

3m3bm(·)(3m+4)/m
.

The coefficients are bounded and if bm(·), . . . , bk(·) are continuous, so are
c1(·), . . . , ck−m+1(·) and the constant in O(·) may be chosen independent of w.

REMARK. It is easy to check the following additional property of the coef-
ficients ci(·): if bm(w), bm+2(w), bm+4(w), . . . are even functions, and bm+1(w),

bm+3(w), bm+5(w), . . . are odd functions of w, then c1(w), c3(w), c5(w), . . . are
even functions, and c2(w), c4(w), c6(w), . . . are odd functions of w. Further if
bm+1(w), bm+3(w), bm+5(w), . . . vanish, then also c2(w), c4(w), c6(w), . . . van-
ish.

3. Proof of Theorem 1. The proof is divided into two parts. In Sections
3.1–3.5 we prove the existence of an asymptotic expansion

EV (P(n)) − V (K) = cV
2 (K)n−2/(d−1) + cV

3 (K)n−3/(d−1) + · · ·
+ cV

k−1(K)n−(k−1)/(d+1) + O
(
n−k/(d+1)

)
as n → ∞ for convex bodies of differentiability class Ck with positive Gaussian
curvature, k ≥ 3, and show the properties of the coefficients cV

i (K) stated at the
end of Theorem 1, and in Sections 3.6–3.9 we prove the first part of Theorem 1
concerning convex bodies of differentiability class C2.

3.1. Let K ∈ C2 be given and choose n random points X1, . . . ,Xn on ∂K

according to the density function dK . The intersection of the supporting halfspaces
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H+(Xj ) is a random polyhedron which contains K and by definition

P(n) :=
n⋂

i=1

H+(Xi) ∩ C,

where C is a large cube which contains K in its interior. Thus P(n) has n facets Fj ,
j = 1, . . . , n, generated by the supporting hyperplanes H(Xj ) = ∂H+(Xj ), and,
maybe, further facets generated by the boundary of C.

It is clear that we can restrict our attention to random polytopes P(n) with
P(n) → K as n → ∞. To make things more precise we assume that the Hausdorff
distance d(P(n),K) is less or equal ϑ , that is, P(n) is contained in K + ϑBd ,
where ϑ > 0 is chosen sufficiently small such that K + ϑBd is also contained
in C. We add a suitable error term which takes into account those cases where
d(P(n),K) > ϑ .

Let K ∈ Ck with positive Gaussian curvature, k ≥ 3. Denote by Hj(x) the j th
normalized elementary symmetric function of the principal curvatures of K at x;
thus H0(x) = 1 and

Hj(x) =
(

d − 1
j

)−1 ∑
1≤i1<···<ij ≤d−1

ki1(x) · · ·kij (x).

In particular, Hd−1(x) is the Gaussian curvature and H1(x) the mean curvature
of K at x.

Consider two convex bodies K and L, K ∈ C2, with K ⊂ L. Then from a
local version of Steiner’s formula for parallel bodies (cf. Sangwine-Yager [20])
it follows that

V (L) − V (K) = 1

d

d−1∑
m=0

(
d

m

)∫
∂K

r(x)d−mHd−1−m(x) dx.(13)

Here r(x) is the distance of the point x to ∂L in direction normal to ∂K , that is,
if nK(x) denotes the outer unit normal vector of ∂K at x then x + r(x)nK(x) is
contained in ∂L.

We are interested in the particular case where L is the intersection of supporting
halfspaces of K . Hence r(x) is determined by the intersection of the ray {x +
snK(x), s ≥ 0}, with a hyperplane H(y) tangent to the boundary of K at y ∈ ∂K .
For each point y ∈ ∂K this point of intersection is determined by ry(x) ≥ 0 where

ry(x) = sup{s | x + snK(x) ∈ H+(y)},
and where ry(x) = ∞ if the intersection of the halfline x + snK(x), s ≥ 0, with
the halfspace H+(y) is unbounded.

Let X1, . . . ,Xn be random points chosen according to the density function dK

on the boundary of K , and let L = P(n) = ⋂
H+(Xj ) ∩ C. Fix x ∈ ∂K and denote

by rmin(x) the “first” point of intersection on the ray {x + snK(x), s ≥ 0}, that is,

rmin(x) = min
j=1,...,n

rXj
(x).
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To determine the distribution of rmin we introduce the following notion: fix
x ∈ ∂K and define G(x, s) as that part of ∂K which is “visible” from x + snK(x),
that is,

G(x, s) = {y ∈ ∂K | ry(x) ≤ s},
and let g(x, s) be the weighted surface area of G(x, s),

g(x, s) =
∫
G(x,s)

dK(y) dy.

By definition this is just the probability that rY (x) ≤ s for a random point Y chosen
according to the density function dK on ∂K . Since the points X1, . . . ,Xn are
chosen independently,

P
(
rmin(x) > s

) = (
1 − g(x, s)

)n
.(14)

The fact that for s → ∞ the function g(x, s) does not tend to one corresponds
to the fact that even for n large with positive probability the random polyhedron⋂

H+(Xj ) is unbounded.
Now note that d(P(n),K) > ϑ if there is a point x ∈ ∂K such that either

x + rmin(x)nK(x) is a vertex of P(n) with rmin(x) > ϑ or rmin(x) = ∞. Since
for given K the function g(x,ϑ) is bounded from below by a positive constant η

for all x ∈ ∂K , it is immediate that

P
(
d(P(n),K) > ϑ

) ≤
(

n

d

)
(1 − η)n−d = O

(
nd(1 − η)n

)
.(15)

This and (13) now implies

EV (P(n)) − V (K)

= 1

d

d−1∑
m=0

(
d

m

)∫
∂K

E
(
(min{rmin(x),ϑ})d−m)

Hd−1−m(x) dx(16)

+ O
(
nd(1 − η)n

)
,

where we already know that

E
(
(min{rmin(x),ϑ})d−m

) =
∫ ϑ

0
sd−m dP

(
rmin(x) ≤ s

) + O
(
nd(1 − η)n

)
.

It is an easy observation that—for K ∈ C2 with positive Gaussian curvature and
for fixed x—the function g(x, s) is differentiable, increasing, and thus the inverse
function s(x, g) of g(x, s) exists [cf. (25) and (27)]. Hence

E
(
(min{rmin(x),ϑ})d−m

)
= n

∫ ϑ

0
sd−m

(
1 − g(x, s)

)n−1 ∂g(x, s)

∂s
ds + O

(
nd(1 − η)n

)
(17)

= n

∫ η

0
s(x, g)d−m(1 − g)n−1 dg + O

(
nd(1 − η)n

)
.
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Combining (16) and (17) yields for K ∈ C2 with positive Gaussian curvature

EV (P(n)) − V (K)

= 1

d

d−1∑
m=0

(
d

m

)∫
∂K

n

∫ η

0
s(x, g)d−m(1 − g)n−1 dg Hd−1−m(x) dx(18)

+ O
(
nd(1 − η)n

)
.

3.2. Let K ∈ Ck with positive Gaussian curvature, fix u and let x be the
point on ∂K with outer unit normal vector u. In this section we give a local
representation of K and the outer normal vectors in a neighborhood of x using
cylinder coordinates. Thus a point in R

d is denoted by (rv, z) with r ∈ R
+,

v ∈ Sd−2 and z ∈ R. Identify the support plane of ∂K at x with the plane z = 0 and
x with the origin such that K is contained in the halfspace z ≥ 0. Since K ∈ Ck,
by Lemma 2 there is a neighborhood of x in ∂K such that ∂K can be represented
by a convex function f (rv) which in polar coordinates reads as

z = f (rv) = b2(v)r2 + b3(v)r3 + · · · + bk−1(v)rk−1 + O(rk).(19)

The coefficients are bounded by a constant independent of x and v and are
continuous in v for fixed x. The constant in O(·) can be chosen independent
of x and v. By choosing a suitable Cartesian coordinate system in R

d−1 the
coefficient b2(v) can be written as

b2(v) = 1
2(k1 v2

1 + · · · + kd−1v
2
d−1),

where v = (v1, . . . , vd−1) and since for all boundary points of K the princi-
pal curvatures ki are bounded from below and above by positive constants,
the same holds for b2(v). Since (19) is the Taylor expansion, the coefficients
b2(v), b4(v), b6(v), . . . are even functions and b3(v), b5(v), b7(v) are odd func-
tions of v ∈ Sd−2.

On the other hand, the Taylor expansion of f (y), y ∈ R
d−1, implies the Taylor

expansion of f (y)i , i = 1, . . . , d − 1, where f (y)i is the ith partial derivative
of f (y). In cylinder coordinates this Taylor expansion reads as

f (rv)i = ci,1(v)r + ci,2(v)r2 + · · · + ci,k−2(v)rk−2 + O(rk−1).(20)

The coefficients are bounded by a constant independent of x and v and are contin-
uous in v for fixed x. The constant in O(·) can be chosen independent of x and v.
The coefficients ci,1(v), ci,3(v), . . . are odd functions and ci,2(v), ci,4(v), . . . are
even functions of v ∈ Sd−2.

For computing g(x, s) we need to determine those points (rv, z) ∈ ∂K with

s ≥ rv · gradf (rv) − f (rv)

and thus by (19) and (20) we need the solution of the equation

s = d2(v)r2 + d3(v)r3 + · · · + dk−1(v)rk−1 + O(rk).
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The coefficients are bounded by a constant independent of x and v and are
continuous in v for fixed x. The constant in O(·) can be chosen independent of
x and v. By choosing a suitable Cartesian coordinate system in R

d−1 it is easy
to see that the coefficient d2(v) equals b2(v) and thus is bounded from below and
above by positive constants. The coefficients d3(v), d5(v), . . . are odd functions
and d2(v), d4(v), . . . are even functions of v ∈ Sd−2.

Inverting this series using Lemma 3 gives

r = r(v, s) = e1(v)s1/2 +e2(v)s+· · ·+ek−2(v)(v)s(k−2)/2 +O
(
s(k−1)/2).(21)

The coefficients are bounded by a constant independent of x and v and are
continuous in v for fixed x. The constant in O(·) can be chosen independent of
x and v. The coefficients e2(v), e4(v), . . . are odd functions and e1(v), e3(v), . . .

are even functions of v ∈ Sd−2. Note that r = r(v, s) is the radial function of the
projection of the set G(x, s) of “visible” points onto R

d−1.

3.3. Now we prove that the function g(x, s) has a Taylor expansion in s1/2.
By definition

g(x, s) =
∫
G(x,s)

dK(y) dy.

We rewrite this integral using cylinder coordinates

g(x, s) =
∫
Sd−2

∫
r≤r(v,s)

dK(rv)

√
1 + |gradf (rv)|2 rd−2 dr dv,(22)

where r(v, s) is defined in (21).
First note that dK ∈ Ck−2 and thus we obtain a Taylor expansion for dK in terms

of r where the first term equals dK(x), which implies the existence of functions
dK,m(v) with

dK(rv) = dK(x) + dK,1(v)r + · · · + dK,k−3(v)rk−3 + O(rk−2).(23)

All coefficients are bounded by a constant independent of x and v. The
constant in O(·) can be chosen independent of x and v. The coefficients
dK,2(v), dK,4(v), . . . are even functions and the coefficients dK,1(v), dK,3(v), . . .

are odd functions of v ∈ Sd−1.
Second, by (20),

|gradf (rv)|2 = c̄2(v)r2 + c̄3(v)r3 + · · · + c̄k−1(v)rk−1 + O(rk),

where the coefficients are bounded by a constant independent of x and v

and are continuous in v for fixed x. The constant in O(·) can be chosen
independent of x and v. The coefficients c̄2(v), c̄4(v), . . . are even functions and
c̄3(v), c̄5(v), . . . are odd functions of v ∈ Sd−2. Therefore the element of surface
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area
√

1 + |gradf |2 has the Taylor expansion up to order O(rk):√
1 + |gradf (rv)|2

(24)
= 1 + f2(v)r2 + f3(v)r3 + · · · + fk−1(v)rk−1 + O(rk).

All coefficients are bounded by a constant independent of x and v and are
continuous in v for fixed x. The constant in O(·) can be chosen independent of
x and v. The coefficients f2(v), f4(v), . . . are even functions and f3(v), f5(v), . . .

are odd functions of v ∈ Sd−2.
Thus the integrand (22) has the Taylor expansion

dK(rv)

√
1 + |gradf (rv)|2 rd−2

= g0(v)rd−2 + g1(v)rd−1 + · · · + gk−3(v)rd+k−5 + O(rd+k−4),

where all coefficients are bounded by a constant independent of x and v and are
continuous in v for fixed x. The constant in O(·) can be chosen independent of
x and v. The coefficients g2(v), g4(v), . . . are even functions and g1(v), g3(v), . . .

are odd functions of v ∈ Sd−2 and g0(v) = dK(x) is independent of v. Thus the
integrations in (22) and the definition of r(v, s) in (21) imply the existence of
coefficients gi with

g = g(x, s) = g1s
(d−1)/2 + g2s

d/2 + · · · + gk−2s
(d+k−4)/2

(25)
+ O

(
s(d+k−3)/2)

,

where the coefficients g2, g4, . . . vanish, g1 is bounded away from zero, all
coefficients are bounded by a constant independent of x, and the constant in O(·)
can be chosen independent of x.

3.4. In the last step we investigate the moments E((min{rmin(x),ϑ})d−m)

and thus by (18)

n

∫ η

0
s(x, g)d−m(1 − g)n−1 dg.

It is easy to see that this can be written as

n

∫ η

0
(1−g)n−1g2(d−m)/(d−1)

(
P 	(k−3)/2
(g2/(d−1)

)+O
(
g(k−2)/(d−1)

))
dg,(26)

where P 	(k−3)/2
(z) is a polynomial in the variable z of degree 	(k − 3)/2
.
Inverting the Taylor expansion (25) using Lemma 3 gives

s = s(x, g) = s2g
2/(d−1) + s3g

3/(d−1) + · · · + sk−1g
(k−1)/(d−1)

(27)
+ O

(
gk/(d−1)

)
,
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where s3, s5, . . . are vanishing. Defining P 	(k−3)/2
(·) by

sd−m = g2(d−m)/(d−1)
(
P 	(k−3)/2
(g2/(d−1)

) + O
(
g(k−2)/(d−1)

))
proves (26). The coefficients of P̄ 	(k−3)/2
(·) and the constant in O(·) are bounded
independent of x.

Finally, the integral∫ η

0
(1 − g)n−1g2(d−m)/(d−1)

(
P 	(k−3)/2
(g2/(d−1)

) + O
(
g(k−2)/(d−1)

))
dg

can be evaluated by the substitution e−t := 1 − g. Consider the integral of a single
term gl/(d−1). Up to an error term which decreases exponentially in n this is the
following Laplace transform:∫ η

0
(1 − g)n−1gl/(d−1) dg

=
∫ ∞

0
e−tn(1 − e−t )l/(d−1) dt + O

(
nd(1 − η)n

)
= L

{
(1 − e−t )l/(d−1)}(n) + O

(
nd(1 − η)n

)
= L

{
t l/(d−1)

(
1 − l

2(d − 1)
t + · · ·

)}
(n) + O

(
nd(1 − η)n

)
.

Using an Abelian theorem (cf., e.g., Doetsch [6], Chapter 3, Section 1) we obtain

= �

(
l

d − 1
+ 1

)
n−l/(d−1)−1 − l

2(d − 1)
�

(
l

d − 1
+ 2

)
n−l/(d−1)−2

(28)
+ · · · + O

(
nd(1 − η)n

)
.

In particular,

L
{
O

(
t l/(d−1)+j+1)}

(n) = O
(
n−l/(d−1)−j−2) as n → ∞.

Therefore, terminating the Taylor expansion of (1 − e−t )l/(d−1) after the term
of order t l/(d−1)+j and taking into account the error term O(tl/(d−1)+j+1) of
the same order as the first term omitted, results in an expansion of the Laplace
transform up to order n−l/(d−1)−j−1 with an error term of order O(n−l/(d−1)−j−2).
Choose j as the smallest integer such that l/(d −1)+ j +1 > 2(d −m)/(d −1)+
(k − 2)/(d − 1). Then

n

∫ η

0
(1 − g)n−1g2(d−m)/(d−1)(P 	(k−3)/2
(g2/(d−1)) + O

(
g(k−2)/(d−1)))dg

= h0n
−2(d−m)/(d−1) + h1n

−(2(d−m)+1)/(d−1)

+ · · · + hk−3n
−(2(d−m)+k−3)/(d−1) + O

(
n−(2(d−m)+k−2)/(d−1)

)
,
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where the coefficients hm = hm(x) and the constant in O(·) are bounded
independent of x. Combined with (18) this implies

EV (P(n)) − V (K)

= cV
2 (K)n−2/(d−1) + cV

3 (K)n−3/(d−1) + · · · + cV
k−1(K)n−(k−1)/(d+1)

+ O
(
n−k/(d+1)

)
.

3.5. The following facts concerning the coefficients cV
m(K) are easily

checked:
if d − 1 is even then the expansion of the Laplace transform in (28) is a series

in powers 2/(d − 1) of n−1—observe that l is even—which yields that for odd d ,

cV
3 (K) = cV

5 (K) = · · · = 0.

Let d − 1 be odd. Then (28) proves that for d even,

cV
3 (K) = · · · = cV

d−1(K) = 0.

3.6. Now we come to the proof of the first part of Theorem 1 concerning
convex bodies of differentiability class C2.

In a first step we prove that in general g(x, s) is at least of order s2/(d−1) for
K ∈ C2 [cf. (25)]. This follows from the fact that all principal curvatures of ∂K

are bounded by a constant and thus each boundary point x of K is contained in
a ball of radius ρ > 0 which is itself contained in K . Fix x ∈ ∂K . Identify the
support plane of ∂K at x with the hyperplane R

d−1 and represent the boundary
of K locally at x by a function f (y), y ∈ R

d−1. By definition

g(x, s) =
∫
G(x,s)

dK(y)

√
1 + |gradf (y)|2 dy

≥ min
x∈∂K

dK(x)Vd−1
({y : (y, f (y)) ∈ G(x, s)}).

It is clear that the set {y : (y, f (y)) ∈ G(x, s)}—which is the projection of G(x, s)

onto R
d−1—contains the intersection of R

d−1 with the convex hull of K and
(x − sed), and thus also the intersection of R

d−1 with the convex hull of K ∩H(t)

and (x − sed) for any hyperplane H(t) parallel to R
d−1 with distance t to the

origin: H(t) = R
d−1 + ted . Choose in particular t = s: then

g(x, s) ≥ min
x∈∂K

dK(x)
( 1

2

)d−1
Vd−1

(
K ∩ H(s)

)
.(29)

To estimate Vd−1(K ∩ H(s)) note that this intersection contains the intersection
of H(s) with the ball of radius ρ. This immediately implies

g(x, s) ≥ cs(d−1)/2(30)

for s ≤ ρ, where c depends on K and dK .
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Now an easy argument proves that it is enough to take into account the term
m = d − 1 in (16),

E
(
(min{rmin(x),ϑ})k) ≤ tk + ϑk

P(rmin > t)

for t ≤ ϑ . Choose in particular t = n−3/(2(d−1)). Then by (14),

E
(
(min{rmin(x),ϑ})k) ≤ n−3k/(2(d−1)) + ϑk(1 − cn−3/4)n = O

(
n−3/(d−1))

for k ≥ 2, and thus

EV (P(n)) − V (K) =
∫
∂K

E
(
(min{rmin(x),ϑ}))dx + O

(
n−3/(d−1)).(31)

Since the Gaussian curvature Hd−1 and thus the principal curvatures ki , i =
1, . . . , d − 1, now are allowed to become zero, we again split the boundary of K

and thus the integration in (18) into the parts ∂K+ and ∂K0, where (cf. Section 2.1)

∂K+ = ∂K+(ε) := {
x ∈ ∂K :ki(x) ≥ ε, i = 1, . . . , d − 1

}
and

∂K0 := ∂K\ ∂K+
for given ε > 0. Note that by definition ∂K+(ε) is contained in ∂K+(ε/2). Now
we choose the maximal distance ϑ between P(n) and K [used in (15)] such that
the following two conditions are satisfied:

(i) the set G(x,ϑ) for x ∈ ∂K+(ε) is contained in ∂K+(ε/2), and
(ii) for any boundary point x ∈ ∂K0 with principal curvatures ki(x) there is

a paraboloid Q with principal curvatures ki(x) + ε which touches ∂K at x from
“inside” and is contained in K up to height ϑ .

For abbreviation we fix ε and write from now on ∂K+ and ∂K0 instead
of ∂K+(ε) and ∂K0(ε). This definition of ϑ now guarantees that the method
developed in Sections 3.1–3.4 also works for x ∈ ∂K+. In particular, for x ∈ ∂K+
and s ≤ ϑ the function g(x, s) is differentiable, increasing, thus the inverse
function s(x, g) of g(x, s) exists and (17) holds. For x ∈ ∂K0 we have to modify
formula (17) slightly by using partial integration. Combining this with (31) yields

EV (P(n)) − V (K)

=
∫
∂K+

n

∫ η

0
s(x, g)(1 − g)n−1 dg dx +

∫
∂K0

∫ ϑ

0

(
1 − g(x, s)

)n
ds dx(32)

+ O
(
n−3/(d−1)

)
.

Denote the first expression concerning the difference of the volume for x ∈ ∂K+
by E�V+ and the second expression concerning x ∈ ∂K0 by E�V0. We prove
estimates for both expressions: the estimate (36) for E�V+ gives the right
asymptotic behavior and the estimate (37) proves that E�V0 is of smaller order.
Combined this implies Theorem 1.
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3.7. First fix x ∈ ∂K+. For abbreviation write b2(·) and f (·) instead of b
(x)
2 (·)

and f (x)(·). Identify the support plane of ∂K at x with the plane z = 0 and x with
the origin such that K is contained in the halfspace z ≥ 0. Since x ∈ ∂K+ there is
a neighborhood of x in ∂K such that ∂K can be represented by a convex function
f (rv) which satisfies Lemma 1. [We apply Lemma 1 with arbitrary, but sufficiently
small δ > 0 such that Uλ is contained in ∂K+(ε/2).]

Equations (8)–(11) imply that for given s the solution of the equation

s = rv · gradf (rv) − f (rv) = (y,0) · nK(y)

√
1 + |gradf (x)(y)|2 − f (y)

with y = rv satisfies

(1 + δ)−3 b2(v)−1/2s1/2 ≤ r ≤ (1 + δ)2 2−1/2b2(v)−1/2s1/2(33)

for r ≤ λ and δ sufficiently small. Recall that r = r(v, s) is the radial function of
the projection of G(x, s) onto R

d−1.
As in (22) we have

g(x, s) =
∫
Sd−2

∫
r≤r(v,s)

dK(rv)

√
1 + |gradf (rv)|2 rd−2 dr dv

and hence for r ≤ λ by (10) and (9),

(1 + δ)−1dK(x)

∫
Sd−2

∫
r≤r(v,s)

rd−2 dr dv

≤ g(x, s) ≤ (1 + δ)2dK(x)

∫
Sd−2

∫
r≤r(v,s)

rd−2 dr dv,

where r(v, s) satisfies (33). The integral in the last expression equals the
(d − 1)-dimensional volume of the convex body with radial function r(v, s) which
by (33)—up to a factor (1 + δ)±1s1/2—is the indicatrix of K at x. Therefore

(1 + δ)−3d+22(d−1)/2κd−1dK(x)Hd−1(x)−1/2s(d−1)/2

(34)
≤ g = g(x, s) ≤ (1 + δ)2d2(d−1)/2κd−1dK(x)Hd−1(x)−1/2s(d−1)/2

for s sufficiently small, where κd−1 denotes the (d − 1)-dimensional volume
of Bd−1.

Now fix x ∈ ∂K0. To estimate Vd−1(K ∩ H(s)) in (29) note that for s ≤ ϑ

this intersection contains the intersection of H(s) with a paraboloid with principal
curvatures ki(x) + ε. Since the principal curvatures are bounded from above, and
at least one principal curvature is at most ε, this implies

g(x, s) ≥ cε−1/2s(d−1)/2(35)

for s ≤ ϑ , where c depends on K and dK .
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3.8. Inequality (34) is equivalent to

(1 + δ)−4d/(d−1) 1
2κ

−2/(d−1)
d−1 dK(x)−2/(d−1)Hd−1(x)1/(d−1)g2/(d−1)

≤ s ≤ (1 + δ)2(3d−2)/(d−1) 1
2κ

−2/(d−1)
d−1 dK(x)−2/(d−1)Hd−1(x)1/(d−1)g2/(d−1),

which by (28) implies, for

n

∫ η

0
s(g) (1 − g)n−1 dg,

the following upper and lower bound:

(1 + δ)−4d/(d−1) 1

2
κ

−2/(d−1)
d−1 dK(x)−2/(d−1)Hd−1(x)1/(d−1)

× �

(
2

d − 1
+ 1

)
n−2/(d−1) + O

(
n−2/(d−1)−1)

≤ n

∫ η

0
s(g)(1 − g)n−1 dg

≤ (1 + δ)2(3d−2)/(d−1) 1

2
κ

−2/(d−1)
d−1 dK(x)−2/(d−1)Hd−1(x)1/(d−1)

× �

(
2

d − 1
+ 1

)
n−2/(d−1) + O

(
n−2/(d−1)−1),

where the constant in O(·) is bounded independent of x ∈ ∂K+. This proves

(1 + δ)−4d/(d−1) 1

2
κ

−2/(d−1)
d−1 �

(
2

d − 1
+ 1

)

×
∫
∂K+

dK(x)−2/(d−1)Hd−1(x)1/(d−1) dx n−2/(d−1) + O
(
n−2/(d−1)−1)

(36)

≤ E�V+ ≤ (1 + δ)2(3d−2)/(d−1) 1

2
κ

−2/(d−1)
d−1 �

(
2

d − 1
+ 1

)

×
∫
∂K+

dK(x)−2/(d−1)Hd−1(x)1/(d−1) dx n−2/(d−1) + O
(
n−2/(d−1)−1)

for arbitrary δ ≥ 0.
For x ∈ ∂K0 inequality (35) and formula (28) imply∫ ϑ

0

(
1 − g(x, s)

)n
ds ≤

∫ 1

0

(
1 − c ε−1/2s(d−1)/2)n ds

≤ �

(
2

d − 1
+ 1

)
c−2/(d−1)ε1/(d−1)n−2/(d−1).

This proves

E�V0 ≤ �

(
2

d − 1
+ 1

)
c−2/(d−1)

∫
∂K0

ε1/(d−1) dx n−2/(d−1),(37)

where c depends on K and dK .
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We combine our results. By (36) and (37) we have

(1 + δ)−4d/(d−1) 1

2
κ

−2/(d−1)
d−1 �

(
2

d − 1
+ 1

)

×
∫
∂K

dK(x)−2/(d−1)Hd−1(x)1/(d−1) dx n−2/(d−1)

+ O
(
n−4/(d−1)) + O

(
ε1/(d−1))

≤ E�V+ + E�V0

≤ (1 + δ)2(3d−2)/(d−1) 1

2
κ

−2/(d−1)
d−1 �

(
2

d − 1
+ 1

)

×
∫
∂K

dK(x)−2/(d−1)Hd−1(x)1/(d−1) dx n−2/(d−1)

+ O
(
n−4/(d−1)) + O

(
ε1/(d−1)),

which by (32) proves Theorem 1 since δ and ε can be chosen arbitrarily small. �

4. Proof of Theorem 2. We present the proof of Theorem 2 in an order similar
to that of the proof of Theorem 1. We only work out in detail those parts of the
proof which differ from the proof of Theorem 1.

4.1. In a first step we develop a formula analogous to (13) for the difference
of the surface area of two convex bodies K and L with K ∈ C2 and K ⊂ L. By (13)
we have for the volume of L + tBd

V (L + tBd) = V (K) + 1

d

d−1∑
m=0

(
d

m

)∫
∂K

r(t, x)d−mHd−1−m(x) dx,

where r(t, x) denotes the distance of the point x ∈ ∂K to ∂(L + tBd) in direction
orthogonal to ∂K . [Note that r(0, x) = r(x).] Let xL be the unique point in ∂L

such that xL = x + r(0, x)nK(x). Then

r(t, x) = r(0, x) + 1

nK(x) · nL(xL)
t + o(t)

as t → 0 and thus
∂r(t, x)

∂t

∣∣∣∣
t=0

= 1

nK(x) · nL(xL)
.

This and the fact that r(t, x) ≤ r(0, x) + (nK(x) · nL(xL))−1t immediately imply

S(L) = ∂V (L + tBd)

∂t

∣∣∣∣
t=0

= 1

d

d−1∑
m=0

(
d

m

)∫
∂K

(d − m)r(0, x)d−m−1 1

nK(x) · nL(xL)
Hd−1−m(x) dx
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which in turn proves the following lemma:

LEMMA 4. Let K and L be two convex bodies with K ∈ C2 and K ⊂ L. Then

S(L) − S(K)

=
∫
∂K

(
1

nK(x) · nL(xL)
− 1

)
dx(38)

+
d−2∑
m=0

(
d − 1

m

)∫
∂K

r(x)d−1−m 1

nK(x) · nL(xL)
Hd−1−m(x) dx,

where r(x) denotes the distance of the point x to ∂L in direction orthogonal to ∂K

and xL = x + r(x)nK(x) ∈ ∂L.

Let K ∈ C2 be given and let L be P(n). Then for given x ∈ ∂K we are interested
in the expectations

E

(
1

nK(x) · nP(n)
(xP(n)

)
− 1

)
and E

(
min

(
rmin(x),ϑ

)j 1

nK(x) · nP(n)
(xP(n)

)

)
.

Let again P(n) satisfy d(P(n),K) ≤ ϑ whence by (15) we have to add an error
term O(nd(1−η)n). Further we assume without loss of generality that the point X1
satisfies rX1(x) = rmin(x) which means that rXi

(x) ≥ rX1(x) for all i = 2, . . . , n.
By definition this happens with probability (1 − g(x, rX1(x)))n−1. It is also clear
that in this case xP(n)

lies in the supporting hyperplane H(X1) and thus the outer
unit normal vector to P(n) at xP(n)

equals nK(X1).

E

(
min

(
rmin(x),ϑ

)j 1

nK(x) · nP(n)
(xP(n)

)

)

= n

∫
∂K

min
(
ry(x),ϑ

)j 1

nK(x) · nK(y)

(
1 − g(x, ry(x))

)n−1
dK(y) dy

+ O
(
nd(1 − η)n

)
.

We define

h(x, s) :=
∫
ry(x)≤s

1

nK(x) · nK(y)
dK(y) dy

[which is close to g(x, s) for s sufficiently small]. Observe that for K ∈ C2 with
positive Gaussian curvature the function h(x, s) is differentiable for s sufficiently
small. Thus in this case we obtain

E

(
min

(
rmin(x),ϑ

)j 1

nK(x) · nP(n)
(xP(n)

)

)
(39)

= n

∫ ϑ

0
sj (

1 − g(x, s)
)n−1 ∂h(x, s)

∂s
ds + O

(
nd(1 − η)n

)
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for s sufficiently small. Analogously

E

(
1

nK(x) · nP(n)
(xP(n)

)
− 1

)
(40)

= n

∫ ϑ

0

(
1 − g(x, s)

)n−1 ∂(h(x, s) − g(x, s))

∂s
ds + O

(
nd(1 − η)n

)
.

Combining (38), (39) and (40) we obtain for K ∈ C2 with positive Gaussian
curvature

ES(P(n)) − S(K)

=
∫
∂K

n

∫ ϑ

0

(
1 − g(x, s)

)n−1 ∂(h(x, s) − g(x, s))

∂s
ds dx

+
d−2∑
m=0

(
d − 1

m

)∫
∂K

n

∫ ϑ

0
sd−m−1(

1 − g(x, s)
)n−1(41)

× ∂h(x, s)

∂s
ds Hd−1−m(x) dx

+ O
(
nd(1 − η)n

)
.

4.2. As in Section 3.2 let K ∈ Ck with positive Gaussian curvature, fix u,
let x be the point on ∂K with outer unit normal vector u, and denote by (rv, z) a
point in R

d , v ∈ Sd−2, r ∈ R
+, z ∈ R. Identify the support plane of ∂K at x with

the plane z = 0 and x with the origin. In Section 3.2 we proved

r = r(v, s) = e1(v)s1/2 + e2(v)s + · · · + ek−2(v)(v)s(k−2)/2 + O
(
s(k−1)/2).

The coefficients are bounded by a constant independent of x and v and are
continuous in v for fixed x. The constant in O(·) can be chosen independent of
x and v. The coefficients e2(v), e4(v), . . . are odd functions and e1(v), e3(v), . . .

are even functions of v ∈ Sd−2.

4.3. Analogously to the expansion of g(x, s) in Section 3.3 we now expand
the functions h(x, s) and (h(x, s) − g(x, s)):

h(x, s) =
∫
Sd−2

∫
r≤r(v,s)

1

nK(x) · nK(rv)
dK(rv)

(42)
×

√
1 + |gradf (rv)|2 rd−2 dr dv.

Since (nK(x) · nK(rv))−1 =
√

1 + |gradf (rv)|2, formulae (23) and (24) show
that

dK(rv)
(
1 + |gradf (rv)|2)

rd−2

= h0(v)rd−2 + h1(v)rd−1 + · · · + hk−3(v)rd+k−5 + O(rd+k−4),
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where all coefficients are bounded by a constant independent of x and v and are
continuous in v for fixed x. The constant in O(·) can be chosen independent of
x and v. The coefficients h0(v), h2(v), . . . are even functions and h1(v), h3(v), . . .

are odd functions of v ∈ Sd−2. Thus the integrations in (42) and the definition
of r(v, s) in (21) imply the existence of coefficients hi with

h = h(x, s) = h1s
(d−1)/2 + h2s

d/2 + · · · + hk−2s
(d+k−4)/2

(43)
+ O

(
s(d+k−3)/2),

where the coefficients h2, h4, . . . vanish, h1 is bounded away from zero, all
coefficients are bounded by a constant independent of x, and the constant in O(·)
can be chosen independent of x.

In the same way (23) and (24) imply the existence of coefficients h−
i with

h(x, s) − g(x, s) = h−
1 s(d+1)/2 + h−

2 s(d+2)/2 + · · · + h−
k−2s

(d+k−2)/2

(44)
+ O

(
s(d+k−1)/2)

,

where the coefficients h−
2 , h−

4 , . . . vanish, h−
1 is bounded away from zero, all

coefficients are bounded by a constant independent of x, and the constant in O(·)
can be chosen independent of x.

4.4. The arguments used in Section 3.4 show that there are asymptotic
expansions for

E

(
1

nK(x) · nP(n)
(x)P(n)

− 1
)

= n

∫ ϑ

0

(
1 − g(x, s)

)n−1 ∂(h(x, s) − g(x, s))

∂s
ds + O

(
nd(1 − η)n

)
and

E

(
min

(
rmin(x),ϑ

)j 1

nK(x) · nP(n)
(xP(n)

)

)

= n

∫ ϑ

0
sj

(
1 − g(x, s)

)n−1 ∂h(x, s)

∂s
ds + O

(
nd(1 − η)n

)
which yield

ES(P(n)) − S(K)

= cS
2 (K)n−2/(d−1) + cS

3 (K)n−3/(d−1) + · · · + cS
k−1(K)n−(k−1)/(d+1)

+ O
(
n−k/(d+1)

)
.

4.5. If d − 1 is even, then cS
3 (K) = cS

5 (K) = · · · = 0 and for d − 1 odd we
have cS

3 (K) = · · · = cS
d−1(K) = 0.
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4.6. Now we come to the proof of the first part of Theorem 2. By (30) and by
the argument presented in Section 3.6, we get

ES(P(n)) − S(K) =
∫
∂K

E

(
1

nK(x) · nP(n)
(xP(n)

)
− 1

)
dx

+ (d − 1)

∫
∂K

E

(
min

(
rmin(x),ϑ

) 1

nK(x) · nP(n)
(xP(n)

)

)
dx

+ O
(
n−3/(d−1)

)
.

Again we split the boundary of K into the parts ∂K+ = ∂K+(ε) and ∂K0 =
∂K0(ε) for given ε > 0. Choose the maximal distance ϑ between P(n) and K

[used in (15)] such that the following conditions are satisfied:

(i) the set G(x,ϑ) for x ∈ ∂K+(ε) is contained in ∂K+(ε/2),
(ii) for any boundary point x ∈ ∂K0 with principal curvatures ki(x) there is

a paraboloid Q with principal curvatures ki(x) + ε which touches ∂K at x from
“inside” and is contained in K up to height ϑ and

(iii) ϑ ≤ ρ, where ρ is the radius of the ball touching ∂K from inside at every
boundary point (cf. Section 3.6).

This guarantees that the method developed in 4.1–4.4 also works for x ∈ ∂K+, for
x ∈ ∂K+ and s ≤ ϑ the functions h(x, s) and h(x, s) − g(x, s) are differentiable,
increasing, and thus the inverse functions s(x,h) [resp. s(x,h − g)] exist. Thus

ES(P(n)) − S(K)

=
∫
∂K+

n

∫ η(h−g)

0

(
1 − g(x, s(x,h − g))

)n−1
d(h − g)dx

+ (d − 1)

∫
∂K+

n

∫ η(h)

0
s(x,h)

(
1 − g(x, s(x,h))

)n−1
dhdx(45)

+
∫
∂K0

E

(
1

nK(x) · nP(n)
(xP(n)

)
− 1 + (d − 1)

min(rmin(x),ϑ)

nK(x) · nP(n)
(xP(n)

)

)
dx

+ O
(
n−3/(d−1)),

where η(h−g) and η(h) are suitable positive constants. Denote the first expressions
concerning the difference of the surface area for x ∈ ∂K+ by E�S+ and the
expression concerning x ∈ ∂K0 by E�S0. We prove estimates for both expressions
which imply Theorem 2.

4.7. Fix x ∈ ∂K+ and recall the notations introduced in Section 3.7. Here we
need analogous results for h(x, s) and h(x, s) − g(x, s). As in (42) we have

h(x, s) =
∫
Sd−2

∫
r≤r(v,s)

dK(rv)
(
1 + |gradf (rv)|2)

rd−2 dr dv
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and hence for r ≤ λ by (10) and (9),

(1 + δ)−1dK(x)

∫
Sd−2

∫
r≤r(v,s)

rd−2 dr dv

≤ h(x, s) ≤ (1 + δ)3dK(x)

∫
Sd−2

∫
r≤r(v,s)

rd−2 dr dv,

where r(v, s) satisfies (33). This leads to

(1 + δ)−3d+2κd−1dK(x)Hd−1(x)−1/2s(d−1)/2

(46)
≤ h = h(x, s) ≤ (1 + δ)2d+1κd−1dK(x)Hd−1(x)−1/2s(d−1)/2,

where κd−1 denotes the (d − 1)-dimensional volume of Bd−1.
By (42) and (22) we have

h(x, s) − g(x, s) =
∫
Sd−2

∫
r≤r(v,s)

(√
1 + |gradf (rv)|2 − 1

)
dK(rv)

×
√

1 + |gradf (rv)|2 rd−2 dr dv.

Hence for x ∈ ∂K+ and r ≤ λ by (10), (9), (12) and (33),

(1 + δ)−3d−5 d − 1

2(d + 1)
κd−1dK(x)M(x)s(d+1)/2

≤ h − g = h(x, s) − g(x, s)(47)

≤ (1 + δ)2d+5 d − 1

2(d + 1)
κd−1dK(x)M(x)s(d+1)/2,

where κd−1 denotes the (d − 1)-dimensional volume of Bd−1 and

M(x) := 1

(d − 1)κd−1

∫
Sd−2

∑
i

(∑
j

f
(x)
ij vj

)2

b2(v)−(d+1)/2 dv.

Choosing a suitable Cartesian coordinate system in R
d−1 this integral takes the

form

M(x) := 1

(d − 1)κd−1

∫
Sd−2

(∑
i

ki(x)2v2
i

)(∑
i

ki(x)v2
i

)−(d+1)/2

dv,

where k1(x), . . . , kd−1(x) denote the principal curvatures of ∂K at x ∈ ∂K+.
Fix x ∈ ∂K0. Because P(n) is close to K the boundary of P(n) consists of

supporting hyperplanes and because ∂K is touched from inside by a ball B of
radius ρ it is immediate that

nK(x) · nP(n)

(
xP(n)

) = nK(x) · nK(Xk) ≥ nK(x) · nB(X̃k)
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with a suitable random point Xk ∈ ∂K and where X̃k ∈ ∂B is chosen such that
the tangent hyperplane to ∂B at X̃k contains the point x + rXk

(x)nK(x), that is,
it intersects the halfline {x + snK(x), s ≥ 0} in the same point as the hyperplane
tangent to ∂K at Xk . Since

nK(x) · nB(X̃k) = ρ

ρ + ry(x)

for rXk
(x) ≤ ρ, we obtain

1

nK(x) · nP(n)
(xP(n)

)
− 1 ≤ c min

(
rmin(x),ϑ

)
(48)

and

min
(
rmin(x),ϑ

) 1

nK(x) · nP(n)
(xP(n)

)
≤ c min

(
rmin(x),ϑ

)
(49)

with a suitable constant c depending on K .

4.8. Inequality (46) is equivalent to

(1 + δ)−2(2d+1)/(d−1)κ
−2/(d−1)
d−1 dK(x)−2/(d−1)Hd−1(x)1/(d−1)h2/(d−1)

≤ s ≤ (1 + δ)2(3d−2)/(d−1)κ
−2/(d−1)
d−1 dK(x)−2/(d−1)Hd−1(x)1/(d−1)h2/(d−1)

and inequality (47) to

(1 + δ)−2(2d+5)/(d+1)

(
d − 1

2(d + 1)

)−2/(d+1)

κ
−2/(d+1)
d−1 dK(x)−2/(d+1)

× M(x)−2/(d+1)(h − g)2/(d+1)

≤ s ≤ (1 + δ)2(3d+5)/(d+1)

(
d − 1

2(d + 1)

)−2/(d+1)

κ
−2/(d+1)
d−1 dK(x)−2/(d+1)

× M(x)−2/(d+1)(h − g)2/(d+1).

Formula (34) combined with (46) gives

(1 + δ)−5d+1h ≤ g ≤ (1 + δ)5d−2h

and (34) combined with (47),

(1 + δ)−5d+1−6/(d+1)

(
d − 1

2(d + 1)

)−(d−1)/(d+1)

κ
2/(d+1)
d−1 dK(x)2/(d+1)

× H
−1/2
d−1 M(x)−(d−1)/(d+1)(h − g)(d−1)/(d+1)

≤ g ≤ (1 + d)5d−1−4/(d+1)

(
d − 1

2(d + 1)

)−(d−1)/(d+1)

κ
2/(d+1)
d−1 dK(x)2/(d+1)

× H
−1/2
d−1 M(x)−(d−1)/(d+1)(h − g)(d−1)/(d+1).
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Now (28) implies the following upper and lower bound:

(1 + δ)−5d−12−12/(d−1)κ
−2/(d−1)
d−1 dK(x)−2/(d−1)

× Hd−1(x)1/(d−1)�

(
2

d − 1
+ 1

)
n−2/(d−1) + O

(
n−2/(d−1)−1)

≤ n

∫ η(h)

0
s(x,h)

(
1 − g(x, s(x,h))

)n−1
dh

≤ (1 + δ)5d+15+10/(d−1)κ
−2/(d−1)
d−1 dK(x)−2/(d−1)

× Hd−1(x)1/(d−1)�

(
2

d − 1
+ 1

)
n−2/(d−1) + O

(
n−2/(d−1)−1),

where the constant in O(·) is bounded independent of x. And analogously

(1 + δ)−5d−9−4/(d−1) d − 1

2(d + 1)
κ

−2/(d−1)
d−1 dK(x)−2/(d−1)

× Hd−1(x)1/(d−1)M(x)�

(
2

d − 1
+ 1

)
n−2/(d−1) + O

(
n−2/(d−1)−1)

≤ n

∫ η(h−g)

0

(
1 − g(x, s(x,h − g))

)n−1
d(h − g)

≤ (1 + δ)5d+9+2/(d−1) d − 1

2(d + 1)
κ

−2/(d−1)
d−1 dK(x)−2/(d−1)

× Hd−1(x)1/(d−1)M(x)�

(
2

d − 1
+ 1

)
n−2/(d−1) + O

(
n−2/(d−1)−1),

where the constant in O(·) is bounded independent of x. This proves

(1 + δ)−5d−12−12/(d−1)(d − 1)κ
−(d+1)/(d−1)
d−1 �

(
2

d − 1
+ 1

)

×
∫
∂K+

dK(x)−2/(d−1)Hd−1(x)1/(d−1)

×
{
H1(x) + 1

2(d + 1)
M(x)

}
dx n−2/(d−1) + O

(
n−4/(d−1)

)
≤ E�S+

≤ (1 + δ)5d+15+10/(d−1)(d − 1)κ
−(d+1)/(d−1)
d−1 �

(
2

d − 1
+ 1

)

×
∫
∂K+

dK(x)−2/(d−1)Hd−1(x)1/(d−1)

×
{
H1(x) + 1

2(d + 1)
M(x)

}
dx n−2/(d−1) + O

(
n−4/(d−1)

)

(50)

for arbitrary δ ≥ 0.
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For E�S0 formulae (48), (49) and (31) imply

E�S0 =
∫
∂K0

E

(
1

nK(x) · nP(n)
(xP(n)

)
− 1 + (d − 1)

min(rmin(x),ϑ)

nK(x) · nP(n)
(xP(n)

)

)
dx

≤ dc

∫
∂K0

E
(
min(rmin(x),ϑ)

)
dx

≤ dcE�V0.

The asymptotic behavior of E�V0 was already determined in (37). Together
with (50) this implies

(1 + δ)−5d−12−12/(d−1)(d − 1)κ
−(d+1)/(d−1)
d−1 �

(
2

d − 1
+ 1

)

×
∫
∂K

dK(x)−2/(d−1)Hd−1(x)1/(d−1)

{
H1(x) + 1

2(d + 1)
M(x)

}
dx n−2/(d−1)

+ O
(
n−4/(d−1)

) + O
(
ε1/(d−1)

)
≤ E�S+ + E�S0

≤ (1 + δ)5d+15+10/(d−1)(d − 1)κ
−(d+1)/(d−1)
d−1

× �

(
2

d − 1
+ 1

)∫
∂K

dK(x)−2/(d−1)Hd−1(x)1/(d−1)

×
{
H1(x) + 1

2(d + 1)
M(x)

}
dx n−2/(d−1)

+ O
(
n−4/(d−1)) + O

(
ε1/(d−1))

which by (45) proves Theorem 2 since δ and ε can be chosen arbitrarily small.

5. Proof of Theorem 3. To obtain Theorem 3 we follow an idea of Glasauer
described in [7]. We may assume that 0 ∈ intK and thus also 0 ∈ intP(n). Then

W(P(n)) − W(K) = 2

dκd

∫
Sd−1

(
hP(n)

(u) − hK(u)
)
du

= 2

dκd

∫
Sd−1

(
1

ρP ∗
(n)

(u)
− 1

ρK∗(u)

)
du

= 2

dκd

∫
K∗\P ∗

(n)

‖x‖−(d+1) dx

= W ∗(P ∗
(n)) − W ∗(K∗),
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where K∗ is the polar body of K and ρK is the radial function of K . Here we
define for a convex body L

W ∗(L) := 2

dκd

∫
Lc

‖x‖−(d+1) dx,(51)

where Lc = {x ∈ R
d | x /∈ L and [0, x] ∩ L �= ∅}. In particular, if the convex

body L contains the origin in its interior then Lc = R
d \ L.

If K ∈ C2 with positive Gaussian curvature, then choosing n random points
on the boundary of K with respect to the density function dK corresponds to the
choice of n random points on the boundary of K∗ with respect to the density
function

d∗
K∗(x∗) := dK(x)Hd−1(x)−1‖x∗‖−d

(
x∗ · nK∗(x∗)

)
,(52)

where x∗ ∈ ∂K∗ is the unique point such that x ·x∗ = 1. This choice of d∗
K∗ ensures

that d∗
K∗ is the corresponding density function on ∂K∗. Using polar coordinates

with respect to the convex body K∗ and then parametrizing the convex body K by
its outer unit normal vector—observe that nK(x) = x∗

‖x∗‖—we have

∫
∂K∗

d∗
K∗(x∗) dx∗ =

∫
∂K∗

dK(x)Hd−1(x)−1‖x∗‖−d (
x∗ · nK∗(x∗)

)
dx∗

=
∫
Sd−1

dK(x)Hd−1(x)−1 du

=
∫
∂K

dK(x) dx = 1.

But if K ∈ C2 and the Gaussian curvature vanishes at certain boundary points,
d∗
K∗ will not be defined properly by (52). For this case let DK be the distribution

function with density dK and define for ∂K∗ the distribution function D∗
K∗ by

D∗
K∗

(
cone{0, ν(A)} ∩ ∂K∗) = DK(A)(53)

for a Borel set A ⊂ ∂K , where cone{0,B} denotes the cone {x :x = ty, y ∈ B,

t ≥ 0} and ν denotes the spherical image map. Note that D∗
K∗ needs neither to be

differentiable nor to be continuous, in particular, if ∂K contains flat parts.
Thus investigating W(P(n)) − W(K) of a random polyhedron P(n), generated

by choosing n random points on the boundary of K with respect to DK and
intersecting their supporting halfspaces, is the same as generating a random
polytope P ∗

n in K∗ by taking the convex hull of n random points on the boundary
of K∗ chosen with respect to D∗

K∗ and investigating W ∗(Pn) − W ∗(K∗).
Observe that the functional W ∗(Pn) − W ∗(K∗) is closely related to the volume

difference V (K∗) − V (Pn). This means that the method used by Reitzner [18] for
investigating the limit behavior of V (K) − EV (Pn) as n tends to infinity can also
be used for the functional W ∗. In [18] the limit V (K) − EV (Pn) was investigated
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for K ∈ C2 with positive Gaussian curvature, but it should be noted that for convex
bodies fulfilling weaker differentiability assumptions this limit was determined
before by Schütt and Werner [24] in a long and intricate proof.

Now most of the proof of Theorem 3 is contained in Lemma 5 and Lemma 6.
In order to state Lemma 5 and to prepare for the remaining argument in the case
K ∈ C2 we split the integral defining the mean width. Set Sd−1+ = ν(∂K+(ε)) and
Sd−1

0 = Sd−1 \Sd−1+ . (Recall that ν denotes the spherical image map.) Further ∂K+
and Sd−1+ correspond to a part ∂K∗+ = {x∗ ∈ ∂K∗ | x(x∗) ∈ ∂K+} of the boundary
of K∗ where the principal curvatures are bounded from above by a constant, and
thus ∂K∗+ is locally of differentiability class C2 with positive Gaussian curvature
(cf. Schneider [22], page 111). Observe that for x ∈ ∂K+ the Gaussian curvature
is positive and thus D∗

K∗ restricted to ∂K∗+ has a density function d∗
K∗ defined

by (52). Analogous to (32) and (45) we define

W(P(n)) − W(K)

= E�W+ + E�W0

= 2

dκd

∫
Sd−1+

(
hP(n)

(u) − hK(u)
)
du + 2

dκd

∫
Sd−1

0

(
hP(n)

(u) − hK(u)
)
du

= 2

dκd

∫
Sd−1+

(
1

ρP ∗
(n)

(u)
− 1

ρK∗(u)

)
du + 2

dκd

∫
Sd−1

0

(
1

ρP ∗
(n)

(u)
− 1

ρK∗(u)

)
du

= E�W ∗+ + E�W ∗
0 .

Using this notation we have the following lemma:

LEMMA 5. Let K ∈ C2 and choose random points X1, . . . ,Xn on ∂K∗
independently and according to the distribution function D∗

K∗ defined by a
continuous density function dK > 0. Denote by Pn the convex hull of the random
points X1, . . . ,Xn. Then

E�W ∗+ = cW
2

∫
∂K∗+

dK∗(x∗)−2/(d−1) ‖x∗‖−(d+1) H ∗
d−1(x

∗)1/(d−1) dx∗ n−2/(d−1)

+ o
(
n−2/(d−1))

as n → ∞, where

cW
2 = (d − 1)�(d + 1 + 2

d−1 )

d(d + 1)!κdκ
2/(d−1)
d−1

.

The analogous result for K ∈ Ck with positive Gaussian curvature can be stated
more directly since in that case the convex body L = K∗ is also of differentiability
class Ck with positive Gaussian curvature and dL = d∗

K∗ is well defined by (52).
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LEMMA 6. Let L ∈ Ck+2 with positive Gaussian curvature, k ≥ 3, and choose
random points X1, . . . ,Xn on ∂L independently and according to a density
function dL ∈ Ck with dL > 0. Denote by Pn the convex hull of the random points
X1, . . . ,Xn. Then

EW ∗(Pn) − W ∗(L)

= cW ∗
2 (L)n−2/(d−1) + cW ∗

3 (L)n−3/(d−1) + · · · + cW ∗
k−1(L)n−(k−1)/(d−1)

+ O
(
n−k/(d−1)

)
as n → ∞. The constants cW ∗

m (L) satisfy cW ∗
2m−1(L) = 0 for m ≤ d/2 if d is even

and cW ∗
2m−1(L) = 0 for all m if d is odd.

Since the proof of Lemma 5 (resp. Lemma 6), is similar to the proof of Theorem 1
(resp. Theorem 2) in [18], we will omit the proof. We only want to remark on the
following: since (51) also makes sense for (d − 1)-dimensional polytopes we have

W ∗(P ∗
(n)) = ∑

Fn facet ofP ∗
(n)

W ∗(Fn).

Now Lemma 5 follows from the fact that ‖x‖−(d+1) is a continuous function if
x is contained in a suitable neighborhood of ∂K . The essential step in the proof
of Lemma 6 is to observe that for the convex hull conv[X1, . . . ,Xd ] of points
X1, . . . ,Xd in K ,

W ∗(conv[X1, . . . ,Xd ])S(conv[X1, . . . ,Xd ])
is an analytic function with respect to the coordinates of the point (X1, . . . ,

Xd) ∈ R
d2

. [Recall that S(·) denotes the surface area.] Note that the proof of this
Lemma (as in [18]) requires the stronger differentiability class Ck+2 for K and Ck

for dL.
Using Lemma 5 we determine the asymptotic behavior of E�W+,

E�W+(K) = E�W ∗+(K∗)

= cW
2

∫
∂K∗+

dK∗(x∗)−2/(d−1)‖x∗‖−(d+1)H ∗
d−1(x

∗)1/(d−1) dx∗ n−2/(d−1)

+ o
(
n−2/(d−1)

)
= cW

2

∫
∂K∗+

dK(x(x∗))−2/(d−1)Hd−1(x(x∗))2/(d−1)H ∗
d−1(x

∗)1/(d−1)

× (
nK(x(x∗)) · nK∗(x∗)

)−(d+1)/(d−1)

× ‖x∗‖−d
(
x∗ · nK∗(x∗)

)
dx∗ n−2/(d−1) + o

(
n−2/(d−1)

)
,
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since nK(x) = x∗/‖x∗‖, where H ∗
d−1(x

∗) denotes the Gaussian curvature of K∗
at x∗. Using polar coordinates with respect to K∗ the integral equals∫

Sd−1+
dK(x)−2/(d−1)Hd−1(x)2/(d−1)H ∗

d−1(x
∗)1/(d−1)

× (
nK(x) · nK∗(x∗)

)−(d+1)/(d−1)
dun−2/(d−1) + o

(
n−2/(d−1))

and parametrizing ∂K by its outer unit normal vector gives∫
∂K+

dK(x)−2/(d−1)Hd−1(x)1/(d−1)H ∗
d−1(x

∗)1/(d−1)

× (
nK(x) · nK∗(x∗)

)−(d+1)/(d−1)
Hd−1(x)d/(d−1) dx n−2/(d−1)

+ o
(
n−2/(d−1)

)
.

Since

Hd−1(x)H ∗
d−1(x

∗)
(
nK(x) · nK∗(x∗)

)−(d+1) = 1

(cf. Kaltenbach [11]), we obtain

E�W+ = cW
2

∫
∂K+

dK(x)−2/(d−1)Hd−1(x)d/(d−1) dx n−2/(d−1) + o
(
n−2/(d−1)

)
.

To deal with E�W0 we choose the maximal distance ϑ between P(n) and K

such that the following conditions are satisfied:

(i) the set G(x,ϑ) for x ∈ ∂K+(ε) is contained in ∂K+(ε/2),
(ii) the set G(x,ϑ) for x ∈ ∂K0(ε) is contained in ∂K+(2ε),

(iii) for any boundary point x ∈ ∂K0 with principal curvatures ki(x) there is
a paraboloid Q with principal curvatures ki(x) + ε which touches ∂K at x from
“inside” and is contained in K up to height ϑ and

(iv) ϑ ≤ ρ, where ρ is the radius of the ball touching ∂K from inside at every
boundary point.

Now fix P(n). As in the case of the surface area we show the existence of a
constant c depending on K and dK such that

E�W0 = E�W0(ε) ≤ cE�V0(2ε).(54)

Here E�V0(2ε) corresponds to E�V0 in (32) with ∂K0(ε) replaced by ∂K0(2ε).
To prove (54) we denote by vj , j = 1, . . . ,N , the vertices of P(n), denote

by xj the point on ∂K nearest to vj and by sj the distance from vj to K ,
that is, vj = xj + sjnK(xj ). Now without loss of generality we assume that the
vertices are numbered such that the first J vertices form a “maximal sequence
of disjoint sets G(xj , sj ) meeting ∂K0.” That is, for j ∈ {1, . . . , J } the set
G(xj , sj ) satisfies the following: G(xj , sj ) meets ∂K0, G(xj , sj ) is disjoint from
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⋃
i=1,...j−1 G(xi, si), and for all k > j either sk < sj or the set G(xk, sk) meets⋃
i=1,...j−1 G(xi, si) or is contained in ∂K+. Further for all j ≥ J either G(xj , sj )

intersects
⋃

i=1,...,J G(xi, si) or G(xj , sj ) is contained in ∂K+.
For abbreviation, put Uj = ν(G(xj , sj )) and

Uj = ν
(⋃

G(xi, si) :G(xi, si) ∩ G(xj , sj ) �= ∅, i > j
)
.

Then

E�W0 = 2

dκd

∫
Sd−1

0

(
hP(n)

(u) − hK(u)
)
du

≤ 2

dκd

J∑
j=1

∫
Uj

(
hP(n)

(u) − hK(u)
)
du

≤ 2

dκd

J∑
j=1

sjVd−1(Uj ).

We show that Vd−1(Uj ) is of order s
(d−1)/2
j . Indeed, if y ∈ G(x, s) then there

is a point yB on the boundary of the ball B of radius ρ touching ∂K at x from
inside, such that nK(y) = nB(yB). Clearly the hyperplane to ∂B at yB intersects
the segment [x, x + snK(x)] and thus yB is “visible” with respect to B from
x + snK(x). Now an elementary calculation shows that

cos∠{nB(yB), nB(x)} = ρ

ryB
(x) + ρ

which immediately implies

∠{nK(y), nK(x)} ≤ c1 s1/2

for y ∈ G(x, s). Hence for y ∈ G(xj , sj ), this proves that the angle between

nK(y) and nK(xj ) is bounded from above by c1s
1/2
j and for y ∈ G(xi, si) where

G(xi, si) intersects G(xj , sj ) this proves that the angle between nK(y) and nK(xj )

is bounded from above by 3c1s
1/2
j . From this Vd−1(Uj ) ≤ c2s

(d−1)/2
j and thus

E�W0 ≤ c3

J∑
j=1

s
(d+1)/2
j

follows immediately with a constant c3 depending on K . To prove (54) it remains
to show that

E�V0(2ε) ≥ c4

J∑
j=1

s
(d+1)/2
j ,(55)

with a constant c4 depending on K . To see this observe that the convex hull of vj

and G(xj , sj ) contains a cone whose height is sj and base is a (d −1)-dimensional
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ball of radius
√

ρs/2 [cf. the deduction of formula (29)]. Since E�V0(2ε) is
bounded from below by the sum of the volumes of the convex hulls of vj and
G(xj , sj ), formula (55) follows.

Combining Lemma 5, (54) and (37) (with ε replaced by 2ε) gives

E�W+ + E�W0 = cW
2

∫
∂K

dK(x)−2/(d−1)Hd−1(x)d/(d−1) dx n−2/(d−1)

+ o
(
n−2/(d−1)) + O

(
ε1/(d−1))

which proves the first part of Theorem 3.
The second part of Theorem 3 follows immediately from Lemma 6.
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