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UNIVERSAL PREDICTION OF RANDOM BINARY SEQUENCES
IN A NOISY ENVIRONMENT
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Let X = {(Xt ,Yt )}t∈Z be a stationary time series where Xt is binary
valued and Yt , the noisy observation of Xt , is real valued. Letting P denote the
probability measure governing the joint process {(Xt ,Yt )}, we characterize
U(l,P), the optimal asymptotic average performance of a predictor allowed
to base its prediction for Xt on Y1, . . . , Yt−1, where performance is evaluated
using the loss function l. It is shown that the stationarity and ergodicity
of P, combined with an additional “conditional mixing” condition, suffice
to establish U(l,P) as the fundamental limit for the almost sure asymptotic
performance. U(l,P) can thus be thought of as a generalized notion of the
Shannon entropy, which can capture the sensitivity of the underlying clean
sequence to noise. For the case where X = {Xt } is governed by P and Yt

given by Yt = g(Xt ,Nt ) where g is any deterministic function and N = {Nt },
the noise, is any i.i.d. process independent of X (namely, the case where
the “clean” process X is passed through a fixed memoryless channel), it is
shown that, analogously to the noiseless case, there exist universal predictors
which do not depend on P yet attain U(l,P). Furthermore, it is shown that in
some special cases of interest [e.g., the binary symmetric channel (BSC) and
the absolute loss function], there exist twofold universal predictors which do
not depend on the noise distribution either. The existence of such universal
predictors is established by means of an explicit construction which builds
on recent advances in the theory of prediction of individual sequences in the
presence of noise.

1. Introduction. Let {(Xt , Yt )}t∈Z be a random process with components
taking values in {0,1} × R, where X = {Xt } is the binary-valued stationary
time series of interest and Y = {Yt } can be perceived as its real-valued noisy
observation sequence. As a concrete example of practical interest, assume that
Y is the output of a fixed and memoryless noisy channel whose input is X.
Without loss of generality, this situation can be modeled by the existence of
some measurable function g : {0,1} × R → R such that Yt = g(Xt ,Nt) where
N = {Nt } is some i.i.d. process independent of X. A predictor F , in this noisy
context, is a sequence of measurable mappings {Ft}t≥1, Ft : Rt−1 → [0,1], where
Ft(Y1, . . . , Yt−1) is interpreted as the prediction of F at the time t , based on the
noisy past. The performance of the predictor is evaluated using a loss function

Received August 2000; revised January 2002.
AMS 2000 subject classifications. Primary 62M20, 60G25; secondary 94A17.
Key words and phrases. Prediction with noise, conditional mixing, universal prediction, Shannon

entropy, filtering, asymptotic optimality, prediction with experts, sequential decisions, martingale
difference, generalized ergodic theorem.

54



UNIVERSAL PREDICTION IN A NOISY ENVIRONMENT 55

l : {0,1} × [0,1] → [0,∞), so that l(Xt ,Ft(Y1, . . . , Yt−1)) is the loss of the
predictor F , at time t . Ultimately, the goal of the predictor is to minimize its
average performance 1

n
LF (Y n

1 ,Xn
1 ) =def

1
n

∑n
t=1 l(Xt ,Ft(Y1, . . . , Yt−1)). As is

straightforward to see (and as will be formally established in the sequel), the best
predictor in the sense of minimizing the expected average loss 1

n
ELF (Y n

1 ,Xn
1 ) is

the Bayes optimal one, namely, that minimizing at each point in time the expected
loss of the prediction, given the available noisy past. Unfortunately, there are two
main types of difficulties associated with the employment of the Bayes optimal
predictor. The first is an algorithmic, computational difficulty. The implementation
of the Bayes predictor requires knowledge of the conditional distribution of Xt

given Y t−1
1 = (Y1, . . . , Yt−1), the explicit computation of which turns out to be of

prohibitively large complexity, growing exponentially with t even in the simplest
of situations. The second difficulty, which is deeper and more fundamental, is
its dependence on P, the distribution of the process X. Clearly, even when the
channel is known, minimizing the expected loss given the noisy past requires full
knowledge of the distribution of X which, in the majority of practical situations,
will not be available.

The main contribution of this work is in establishing, for the above-described
situation, the existence of universal predictors, that is, predictors that are
independent of P and yet asymptotically achieve optimum performance. Moreover,
these predictors have a relatively simple structure that avoids an explicit estimation
of the distribution of Xt conditioned on its noisy past.

The existence of universal predictors for the stochastic noiseless setting is
a well-known fact, extensively established by the cumulative work of many
researchers (cf. [1], Section V, [15], Section II and the many references therein).
The basic idea behind all universal predictors in the noiseless case in a nutshell
is essentially the same: learning the unknown distribution from experience by
working with the empirical distribution induced by the available past sequence.
This is true even for prediction schemes that are not explicitly presented this way,
for example, the predictor (cf. [7], Section V) induced by the Lempel–Ziv universal
coding scheme [21].

To the best of our knowledge, however, the question of existence and the
problem of construction of universal predictors for the noisy setting has not been
explicitly addressed in the literature. As mentioned earlier, in the literature related
to prediction, universality was investigated exclusively for the noiseless case. In
the classical and well-developed theory of filtering, on the other hand, which is
dedicated to a variety of situations involving noisy observations, the probabilistic
model is usually assumed to be fully specified, and, accordingly, the prediction
schemes obtained are distribution dependent. An exception to this is the line
of work related to robust filtering, which was carried out by researchers from
the signal processing and information theoretic communities in the seventies and
eighties (cf. [3, 6, 8, 14, 13, 16] and the references therein). The setting considered
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in robust filtering, however, is completely different from the one we consider
in this paper. The typical problem considered in robust filtering is that where
the power spectral densities of the signal and the noise (assumed jointly weakly
stationary), rather than being fully known, are only known (or assumed) to belong
to some set. One then seeks a (time-invariant) filter which is minimax optimal
under mean squared error loss. The prediction (filtering) schemes obtained in
robust filtering, which are guided by the minimax formulation, are not adaptive.
They are essentially designed to minimize the expected loss for the worst possible
signal and noise sources in the uncertainty set. This is in contrast to the approach
we present here which allows one to compete with classes of sources as rich as that
of all stationary and ergodic processes; whereas, under the minimax formulation
of robust filtering, the uncertainty classes needed to be considerably more limited
to allow for meaningful results. In addition, while in robust filtering attention is
restricted to the mean square error loss as the performance criterion, in this work
we consider the case of a general loss function and pay most of our attention to
the actual rather than the expected loss. Accordingly, the setting considered in this
work is general enough to model a wide range of noisy situations arising in data
compression (e.g., predictive coding of noisy images), signal processing (filtering),
learning theory, statistics and economics. One can think of Xt as the label and Yt

as the instance. Then our setting coincides with that of learning with unlabeled
instances; see [5].

It should be emphasized that there is no unique natural and straightforward way
to extend the basic idea behind the universal prediction schemes in the noiseless
setting for the noisy one. This is because the approximated distribution of the ob-
served sequence Y, available through the accumulating observations of the
noisy past, does not, in general, naturally induce an empirically approximated
distribution of the next clean bit (conditioned on its noisy past). This conditional
distribution is hard to estimate even when the channel is completely known.
Furthermore, even in situations where the empirical distribution of the noisy
observation sequence does naturally lead to an estimation of the distribution of the
clean bit based on its noisy past (e.g., cases where it may seem natural to use the
plug-in approach of deconvolving the empirical distribution of the noisy sequence
with the channel), it is not clear that this estimated distribution has the desired
convergence properties. Correspondingly, it is not clear that the prediction strategy
that such a plug-in approach induces asymptotically attains the best achievable
performance.

Our approach to the construction of the universal predictors uses recent ad-
vances in the theory of prediction of individual sequences in the presence of
noise [19, 20]. The main contribution of this recent line of research was in es-
tablishing the existence of predictors, fed by a noisy version of an underlying
clean individual sequence, that compete successfully with a given set of predic-
tion schemes, uniformly for all individual sequences. The idea behind the choice
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of the predictors proposed here is to use the prediction schemes of the individ-
ual sequence setting [19] and to claim that these compete with classes of predic-
tion schemes that are on the one hand reasonably small and hence yield small
redundancy rates and, on the other hand, dense in the sense of covering members
whose asymptotic performance is the same as the optimum. Specifically, we con-
struct predictors which compete with the set of all Bayesian–Markovian prediction
schemes whose performance is guaranteed for each individual sequence, a fortiori,
in the probabilistic setting considered here. A similar approach was recently taken
in [10] and in [9] for the original noise-free case, where efficient and relatively
simple predictors for ergodic time series were constructed using results from the
theory of prediction of individual sequences.

As will be demonstrated in Section 4, the approach taken here to the
construction of universal predictors for this noisy setting is a fruitful one. In
particular, it will be established in Section 4 that when the noisy sequence is
the output of an arbitrary memoryless channel, there always exists a universal
predictor; that is, a predictor which almost surely asymptotically attains the
best theoretically achievable performance no matter what the clean sequence is,
provided that certain regularity conditions are met.

It should be emphasized that the finding that for essentially all memoryless
channels there exists a universal predictor is far from being trivial. This is because
the traditional points of view taken in the construction of universal predictors
for the noise-free setting do not lend themselves easily to the case of noisy
observations. In the noise-free case, universal predictors are, roughly speaking,
always viewed either as prediction schemes which strive to identify and imitate
predictors which have been proved efficient on the past sequence, or prediction
schemes which try to learn the conditional distribution of the next outcome of the
sequence from experience, given its past. Both of these points of view, however,
are hard to extend to the noisy setting. This is because, due to the noise, it is unclear
which predictors have been doing well on the past sequence (if one adopts the first
point of view) and it is equally unclear how to “learn” the conditional distribution
of the next clean outcome based on the past noisy sequence since the next clean
outcome will never be observed. Nevertheless, as will be established in Section 4,
this difficulty can be alleviated and universal predictors can be constructed for the
noisy setting.

The outline of this work is as follows. In Section 2, we present our notation
conventions and regularity conditions. The two main parts of this work are
presented in Sections 3 and 4, respectively. Section 3 is dedicated to assessing
the ultimate limits of prediction performance in the noisy setting. In Section 4, the
existence of universal predictors is established.

2. Notation conventions. Throughout the paper, random elements will be
denoted by capital letters; thus, for any integers m ≤ n we let Xn

m denote a random
binary vector (Xm, . . . ,Xn) ∈ {0,1}n−m+1. Infinite random binary sequences will
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be denoted by boldface letters, so that X = (. . . ,X−1,X0,X1, . . .) ∈ {0,1}∞.
Similarly, if the components of {Yi} are real valued, we let Yn

m and Y denote
the random elements of R

n−m+1 and R
Z, respectively. Deterministic elements,

or specific sample values of random elements, will be denoted by the respective
lowercase letters.

Suppose now that we have a process with components (Xt , Yt ) taking values
in {0,1} × R. In this framework, we think of {Xt }t≥1 as the “clean” sequence of
interest to predict, which, unfortunately, we cannot directly access and thus must
base our predictions for the bit Xt on its “noisy past” Y t−1

1 . Thus, a predictor F is
a sequence of functions Ft : Rt−1 → [0,1], t ≥ 1. For any x ∈ {0,1}Z, y ∈ R

Z and
a given loss function l : [0,1] × {0,1} → [0,∞), we let

LF

(
y

t2
t1
, x

t2
t1

) def=
t2∑

t=t1

l
(
Ft(y

t−1
1 ), xt

)

denote the average loss from time t1 up to time t2 of the predictor F when fed
with the noisy sequence y and judged w.r.t. the clean sequence x. The dependence
of LF on the particular loss function l is suppressed in the notation as it is assumed
fixed and known in any prediction problem. We will further let

LF (y,x)
def= lim sup

n→∞
1

n
LF (yn

1 , xn
1 )

denote the asymptotic performance of F . For a stochastic process {(Xt , Yt )}t∈Z

governed by a probability measure P, we let EP denote expectation w.r.t. P. We
omit the superscript P whenever clear from the context.

For any family of random variables {Ri}i∈I (where I is an arbitrary index set),
we let σ({Ri}i∈I ) denote the smallest sigma field with respect to which all the
{Ri}i∈I are measurable. For any process W = {Wt}t∈Z we let F t

W =def σ(Wt
1)

(the information known to one who observes the process from time 1 up to
time t). Similarly, we let FW =def σ(W). Following the customary abuse of
notation, for any random variable R, we shall frequently write E(R|Y t

1) instead
of E(R|F t

Y ). Equality between random variables, when not explicitly specified,
should be interpreted in the almost sure sense w.r.t. a probability measure which
should be clear from the context.

Throughout this work the following will be kept intact.

ASSUMPTION 1. The function l(·, ·), together with the derivatives of l(·,0)

and l(·,1) (assumed to exist), are bounded throughout by the constant B .

Assumption 1 is not essential for the validity of our results. The reason it
is made is to facilitate a simpler exposition, emphasizing the important points
and avoiding insignificant technicalities. This is also the reason for restricting
attention to the case where X is binary valued and Y is real valued. The results and
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approach presented in the sequel carry over straightforwardly to the case where
the components of X belong to any finite alphabet and the components of Y to
an arbitrary Polish space. Finally, we remark that, though in real-life prediction
situations time starts at t = 1 and, accordingly, all quantities of interest for our
setting ultimately depend only on {(Xt , Yt )}t≥1, Kolmogorov’s extension theorem
allows us to assume that the time axis is infinite in both directions.

3. Fundamental limitations on prediction performance. Let {(Xt , Yt )}t∈Z

be a process taking values in the measurable space {{{0,1} × R}Z,FXY } and
distributed according to the stationary probability measure P. We let

U(l,P)
def= EP

{
min

0≤α≤1

{
P{X0 = 0|Y−1−∞} · l(α,0)

+ P{X0 = 1|Y−1−∞} · l(α,1)
}}

= EPAl(P{X0 = 1|Y−1−∞})
(1)

denote the Bayes envelope for our setting, where, for any loss function l, we define
Al : [0,1] → [0,∞) by

Al(p)
def= inf

0≤α≤1

{
(1 − p) · l(α,0) + p · l(α,1)

}
.(2)

Note that our assumptions on the loss function l allow replacing the infimum by
a minimum in (2) and guarantee the boundedness and continuity of Al(·), as the
minimization is performed in a compact set over continuous functions of p which
are uniformly bounded. It is also easily verified that Al(·) is concave. For any
0 ≤ p ≤ 1, we now let

�l(p) = arg min
0≤α≤1

{
(1 − p) · l(α,0) + p · l(α,1)

}
,

where, for concreteness, if there is more than one minimizing value, we take the
lowest one. Note that �l(p) can be interpreted as the best prediction to make,
in the sense of minimizing expected loss, when the loss is measured with the
loss function l and the outcome is determined according to a flip of a coin with
probability p to hit one.

The following theorem establishes U(l,P) as the acheivable limitation on
prediction performance in the noisy setting.

THEOREM 1. Let P be stationary.

(a) For any predictor F we have

lim inf
n→∞

1

n
EPLF (Y n

1 ,Xn
1 ) ≥ U(l,P).(3)
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(b) The predictor F opt given by

F
opt
t (Y t−1

1 ) = �l(P{Xt = 1|Y t−1
1 })(4)

satisfies

lim
n→∞

1

n
EPLF opt(Y n

1 ,Xn
1 ) = U(l,P).(5)

(c) If P is also ergodic then

lim
n→∞

1

n
LF opt(Y n

1 ,Xn
1 ) = U(l,P) a.s.(6)

PROOF. To prove (a) we note that, by the definition of Al(·), we have

1

n
EPLF (Y n

1 ,Xn
1 ) ≥ 1

n

n∑
t=1

E
[
Al(P{Xt = 1|Y t−1

1 })]
(7)

= 1

n

n∑
t=1

E
[
Al(P{X0 = 1|Y−1

−t−1})
]
.

Therefore

lim inf
n→∞

1

n
EPLF (Y n

1 ,Xn
1 ) ≥ lim

t→∞E
[
Al(P{X0 = 1|Y−1

−t−1})
]

(8)

= E
[
Al

(
lim

t→∞ P{X0 = 1|Y−1
−t−1}

)]
(9)

= E
[
Al(P{X0 = 1|Y−1−∞})](10)

= U(l,P),(11)

where (8) follows from Cèsaro’s theorem, (9) follows by bounded convergence
and the continuity of Al(·) and (10) follows from martingale convergence (cf.,
in particular, [4], Theorem 5.21). The proof of (b) is immediate upon noting that
when F = F opt, (7) holds with equality. To establish (c) note that since

1

n
LF opt(Y n

1 ,Xn
1 ) = 1

n

n∑
t=1

l
(
�l(P{Xt = 1|Y t−1

1 }),Xt

)
,

we have almost surely

lim
n→∞

1

n
LF opt(Y n

1 ,Xn
1 ) = El

(
�l(P{X0 = 1|Y−1−∞}),X0

)
= E

[
E
{
l
(
�l(P{X0 = 1|Y−1−∞}),X0

)∣∣Y−1−∞
}]

(12)

= E
[
Al(P{X0 = 1|Y−1−∞})]

= U(l,P),(13)
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where the first equality follows by combining the stationarity and ergodicity of P
with [4], Theorem 5.21 and invoking Breiman’s generalized ergodic theorem. The
equality before last can be verified by writing out explicitly the inner conditional
expectation in (12). �

As was pointed out in previous works (e.g., [1]), in which part (c) of Theorem 1
was proved for the noiseless case, the celebrated Shannon–McMillan–Breiman
(SMB) theorem (the asymptotic equipartition property) is obtained from this part
of the theorem by letting l be the logarithmic loss function and X = Y. Thus,
part (c) of Theorem 1 can be regarded as a generalization of the SMB theorem
for the case where the predictor accesses a noisy version of the past and its
performance is evaluated using a general loss function.

To complete the picture displayed in Theorem 1, it would be natural to
determine whether the almost sure analogue of part (a) of the theorem holds (for
ergodic processes), as is known to be the case in the noise-free setting (cf. [1]).
Our first step in this direction is to establish the following.

LEMMA 1. Let {(Xt, Yt )}t∈Z be conditionally mixing in the sense that

∞∑
s=1

sup
t≥1

E
∣∣Pr{Xt+s = a|Xt = a,F t+s−1

Y } − Pr{Xt+s = a|F t+s−1
Y }∣∣< ∞(14)

for each a ∈ {0,1}. Then for any predictor F we have

lim
n→∞

1

n

n∑
t=1

[
l
(
Ft(Y

t−1
1 ),Xt

)− E
{
l
(
Ft(Y

t−1
1 ),Xt

)∣∣F t−1
Y

}]= 0 a.s.(15)

We refer to (14) as a “conditional mixing condition” as it essentially implies
that for two points in time t1 < t2, Xt1 and Xt2 are approximately independent
conditioned on F t2−1

Y when t2 − t1 is large. One example for a situation of interest
where (14) holds is the case where {Xt } is a first-order homogeneous noncyclic
Markov chain and the noise, {Nt}, is i.i.d. In this case

Pr{Xt+s = a|F t+s−1
Y }

= Pr{Xt+s = a|Xt = 0,F t+s−1
Y }Pr{Xt = 0|F t+s−1

Y }
+ Pr{Xt+s = a|Xt = 1,F t+s−1

Y }Pr{Xt = 1|F t+s−1
Y }

= Pr{Xt+s = a|Xt = 0, Y t+s−1
t+1 }Pr{Xt = 0|F t+s−1

Y }
+ Pr{Xt+s = a|Xt = 1, Y t+s−1

t+1 }Pr{Xt = 1|F t+s−1
Y }
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and therefore

E
∣∣Pr{Xt+s = a|Xt = a,F t+s−1

Y } − Pr{Xt+s = a|F t+s−1
Y }∣∣

≤ max
b,b′∈{0,1}

E
∣∣Pr{Xt+s = a|Xt = b,Y t+s−1

t+1 }
(16)

− Pr{Xt+s = a|Xt = b′, Y t+s−1
t+1 }∣∣

≤ max
b,b′∈{0,1}

E
∣∣Pr{Xs = a|X0 = b,Y s−1

1 } − Pr{Xs = a|X0 = b′, Y s−1
1 }∣∣.

It is well known from the theory of nonlinear filtering (the problem of the
dependence of the filter on the initial condition of the process, cf., e.g., [2]) that
(16) decays exponentially rapidly in s, so that (14) holds. A similar argument leads
to the conclusion that (14) holds for the more general case where {Xt } is any finite-
order, ergodic noncyclic Markov process and the noise, {Nt}, is i.i.d.

Note that for the noise-free case, namely when X = Y, the assertion of Lemma 1
is that for any predictor F we have

lim
n→∞

1

n

n∑
t=1

[
l
(
Ft(X

t−1
1 ),Xt

)− E
{
l
(
Ft(X

t−1
1 ),Xt

)∣∣F t−1
X

}]= 0 a.s.(17)

This is because, in the noise-free case, the additional “conditional mixing”
condition (14) holds trivially for any source. In the noiseless case, however,
this result follows easily by making the observation that {l(Ft (X

t−1
1 ),Xt ) −

E{l(Ft(X
t−1
1 ),Xt )|F t−1

X },F t
X} is a (bounded) martingale difference sequence

and hence satisfies a law of large numbers (cf., e.g., Theorem 2.19 of [11] or
Section III of [1]). Unfortunately, in the noisy setting, this is no longer the case.
Generally, the sequence {l(Ft(Y

t−1
1 ),Xt )−E{l(Ft(Y

t−1
1 ),Xt )|F t−1

Y }} will not be
a martingale difference sequence with respect to any filtration and, therefore, will
not necessarily obey the law of large numbers for martingales. Indeed, a simple
example will be presented in the sequel where this sequence does not satisfy a
law of large numbers even when the joint process {(Xt , Yt )} is stationary and
ergodic. As is established in the proof that follows, condition (14) guarantees that
this sequence asymptotically behaves as a martingale difference sequence in the
sense of satisfying a law of large numbers. The following technical lemma will be
useful in the proof of Lemma 1.

LEMMA 2. Let {δt }t≥1 be any sequence of random variables satisfying for all
t :Eδt = 0, |δt | ≤ C a.s., and

∞∑
s=1

sup
t≥1

|Eδtδt+s | < ∞.(18)

Then

1

n

n∑
t=1

δt
a.s.→ 0.(19)
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PROOF. Denoting Sn = 1
n

∑n
t=1 δt , condition (18) and the bound |δt | ≤ C

imply that Var(Sn) ≤ C1/n for some finite C1. Therefore, by Chebyshev’s
inequality and the Borel–Cantelli lemma, it follows that Sk2 → 0 almost surely.
With |δt | uniformly bounded by C, it is easy to check that |Sn| ≤ |Sk2| + 3C/k for
all n ∈ [k2, (k + 1)2], completing the proof. �

PROOF OF LEMMA 1. Since

l
(
Ft(Y

t−1
1 ),Xt

)− E
{
l
(
Ft(Y

t−1
1 ),Xt

)∣∣F t−1
Y

}
= [

1{Xt=0} − Pr{Xt = 0|F t−1
Y }]l(Ft(Y

t−1
1 ),0

)
(20)

+ [
1{Xt=1} − Pr{Xt = 1|F t−1

Y }]l(Ft(Y
t−1
1 ),1

)
,

it will suffice to establish

lim
n→∞

1

n

n∑
t=1

δt = 0 a.s.(21)

and

lim
n→∞

1

n

n∑
t=1

εt = 0 a.s.,(22)

where we denote δt = [1{Xt=0} − Pr{Xt = 0|F t−1
Y }]l(Ft (Y

t−1
1 ),0) and εt =

[1{Xt=1} − Pr{Xt = 1|F t−1
Y }] × l(Ft(Y

t−1
1 ),1). To this end, note that for fixed

t and s,

Eδtδt+s(23)

= EE{δtδt+s |F t−1
Y }

= E
{
l
(
Ft(Y

t−1
1 ),0

)
l
(
Ft(Y

t−1
1 ),1

)
× [

Pr{Xt = 0,Xt+s = 0|F t+s−1
Y }(24)

− Pr{Xt+s = 0|F t+s−1
Y }Pr{Xt = 0|F t+s−1

Y }]}.
Therefore

|Eδtδt+s | ≤ B2E
∣∣Pr{Xt+s = 0|Xt = 0,F t+s−1

Y } − Pr{Xt+s = 0|F t+s−1
Y }∣∣.(25)

Consequently, (14) implies
∞∑

s=1

sup
t≥1

|Eδtδt+s | < ∞.(26)

Combining (26) with the immediate facts that Eδt = 0 and that |δt | ≤ B a.s. and
applying Lemma 2 gives (21). The limit in (22) is obtained similarly. �
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Equipped with Lemma 1, we can now present:

THEOREM 2. For any predictor F , and stationary ergodic process {(Xt ,

Yt )}t∈Z satisfying (14), we have

lim inf
n→∞

1

n
LF (Y n

1 ,Xn
1 ) ≥ U(l,P) a.s.(27)

PROOF. We have almost surely

lim inf
n→∞ LF (Y n

1 ,Xn
1 ) = lim inf

n→∞
1

n

n∑
t=1

l
(
Ft(Y

t−1
1 ),Xt

)

= lim inf
n→∞

1

n

n∑
t=1

E
{
l
(
Ft(Y

t−1
1 ),Xt

)∣∣F t−1
Y

}
(28)

= lim inf
n→∞

1

n

n∑
t=1

P{Xt = 0|Y t−1
1 }l(Ft(Y

t−1
1 ),0

)
(29)

+ P{Xt = 1|Y t−1
1 }l(Ft(Y

t−1
1 ),1

)

= lim inf
n→∞

1

n

n∑
t=1

(1 − P{Xt = 1|Y t−1
1 })l(Ft(Y

t−1
1 ),0

)

+ P{Xt = 1|Y t−1
1 }l(Ft(Y

t−1
1 ),1

)

≥ lim inf
n→∞

1

n

n∑
t=1

Al(P{Xt = 1|Y t−1
1 })(30)

= EAl(P{X0 = 1|Y−1−∞})(31)

= U(l,P,Q),(32)

where (28) follows from Lemma 1, (32) from the definition of Al(·), and (31) from
Breiman’s generalized ergodic theorem. �

Theorems 1 and 2 establish U(l,P) as the fundamental prediction performance
limitation for the noisy setting. For a process X one may regard U(l,P)

as a generalized notion of entropy. Where the entropy rate of a process
measures its compressibility (which, as mentioned above, is equivalent to its
noiseless predictability w.r.t. the logarithmic loss function), U(l,P) measures its
predictability w.r.t. a general loss function l when the predictor is fed with a
noisy version of the past. Hence U(l,P), in some sense, is also a measure of the
sensitivity of the clean process of interest to noise. As a concrete example, for
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a given process X let Pq denote the measure governing the joint process (X,Y)

when Y is the output of a BSC with crossover probability q fed with X. Looking
at U(l,Pq) as a function of q gives an indication for the sensitivity of the process X
to noise and, in particular, can serve as a basis to discriminate and rank the
predictability of different processes which have the same noiseless predictability
(cf. [20], Section 5, for a more comprehensive discussion of this point in the
context of individual sequences).

The statement in Theorem 2, similarly to its analogue from the noiseless
setting, seems quite intuitive and acceptable. It indeed seems natural that the best
prediction strategy would be to minimize the expected loss given the available
information, and that, when stationarity and ergodicity are assumed, any other
prediction strategy would almost surely perform no better. One may initially be
tempted to conjecture that, as in the noiseless case, (27) holds true for all stationary
ergodic processes. The following simple example shows that this is generally not
the case. Let the distribution of X be given by

X =
{ · · · 0 1 0 1 0 · · · , w.p. 1

2 ,

· · · 1 0 1 0 1 · · · , w.p. 1
2 ,

and let Y be an i.i.d. Bernoulli(1/2) source independent of X. The process X
is easily verified to be stationary and ergodic and, consequently, so is the joint
process {(Xt , Yt )}. Denoting the probability measure governing this process by P,
we clearly have U(l,P) = Al(1/2). On the other hand, the predictor F which, at
time t , without regard to Y t−1

1 , gives zero for t odd and one for t even, clearly
satisfies P{lim infn→∞ LF (Y n

1 ,Xn
1 ) = 0} = 1/2, which contradicts (27) (for any

nondegenerate loss function).
The above counterexample demonstrates the insufficiency of stationarity and

ergodicity alone, in the noisy setting, for a strong converse result. Theorem 2, on
the other hand, assures us of the sufficiency of stationarity and ergodicity when an
additional mixing-type assumption (14) is made. The question of the necessity of
the latter has yet to be answered.

Note that thus far, P was assumed an arbitrary stationary (or stationary and
ergodic when the almost sure asymptotic regime was considered) probability
measure governing the joint process {(Xt , Yt )}. A situation of particular interest
is that where the measurement Yt is the output of a fixed (not necessarily
memoryless) noisy channel. This can be formally modeled as follows.

DEFINITION 1. Let X = {Xt }t∈Z and N = {Nt}t∈Z be two processes taking
values in the measurable spaces {{0,1}Z,FX} and {RZ,FN } and distributed
according to the probability measures P and Q, respectively. Given a measurable
function g : {0,1} × R → R, we let for each t , Yt = g(Xt ,Nt). Let P(P,Q,g)

denote the probability measure on {{{0,1} × R}Z,FXY } according to which
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{(Xt , Yt )}t∈Z is distributed when the processes X and N are independent. We define

U(l,P,Q,g)
def= U

(
l,P(P,Q,g)

)
,(33)

where the right-hand side of (33) was defined in (1).

It is conceptually constructive to think of g as the channel and of N as
the channel noise. Admittedly, not all stationary processes {(Xt, Yt )}t∈Z can be
decoupled to comply with the model of Definition 1. In other words, there
exist stationary probability measures P on {{{0,1} × R}Z,FXY } for which there
exists no tuple (P,Q,g) (where P , Q and g are as in Definition 1) such that
P = P(P,Q,g). One simple example for such a case can be found in the
Appendix. This model, however, suffices for representing all conceivable situations
of practical interest in which Yt is a noisy measurement of Xt . In addition, the
model of Definition 1 facilitates the introduction of the following two notions of
universality which is motivated by Theorems 1 and 2.

DEFINITION 2. Let P , Q, g and P(P,Q,g) be as in Definition 1. A predic-
tor F will be said to be universal with respect to a stationary and ergodic noise
source Q and a channel g if

lim
n→∞

1

n
LF (Y n

1 ,Xn
1 ) = U(P,Q,g, l), P(P,Q,g)-a.s.(34)

whenever P is a stationary and ergodic probability measure and P(P,Q,g) is
conditionally mixing in the sense of (14). It will be said to be twofold uni-
versal with respect to a family Q of stationary and ergodic probability measures
on {RZ,FN } (noise sources) and a channel g if (34) holds whenever P is a
stationary and ergodic probability measure and Q ∈ Q is such that P(P,Q,g)

is conditionally mixing in the sense of (14).

Thus, assume, for example, that the clean sequence {Xt } is stationary and
ergodic, but its distribution is not known to the predictor. Roughly speaking,
a universal predictor is one that would be guaranteed to attain the best achievable
asymptotic performance no matter what the distribution of {Xt } is. A twofold
universal predictor is one with asymptotic performance guaranteed under channel
uncertainty, in addition to the lack of information regarding the distribution of the
clean sequence. Note that the probability measure governing the noise process, Q,
is assumed stationary and ergodic in the above definition. The reason for this is that
otherwise P(P,Q,g) will not be stationary and ergodic (except for degenerate
cases). In such a case, U(l,P,Q,g) would lose its significance as it would
no longer necessarily be the best almost surely achievable asymptotic loss. The
following section is dedicated to establishing the existence of predictors that are
universal in the above sense.
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4. Universal predictors for the noisy setting. One of the main contributions
of [19] was the finding that in the noisy setting, for any given finite set of prediction
schemes (the reference class), there exists one which efficiently competes with
all predictors in the set, uniformly for all underlying clean individual binary
sequences. An approach was presented for the construction of such a predictor
for a general noise source and observation alphabet.

The general approach that we propose for the stochastic noisy setting is the
following: Consider the increasing family of sets of predictors {Mk}k∈N such
that each Mk contains all kth order Bayes predictors of the form Ft(Y

t−1
1 ) =

�l(Pr{Xt = 1|Y t−1
t−k }), for all possible stationary ergodic distributions of the input

sequence X. Then, for every k, obtain a predictor Fk which competes with the
reference class Mk for all individual sequences, using the methodology introduced
in [19] (cf. Section 2 therein). Finally, combine the Fk’s into one predictor
which asymptotically competes with M = ⋃∞

k=1 Mk for all individual binary
sequences and hence, in particular, with the Bayes optimal predictor (which is
an accumulation point of M even when not strictly contained in that set). Since
such a predictor (if successfully constructed) attains the asymptotic performance
of the Bayes optimal predictor for each individual sequence, it clearly competes
with the Bayes predictor no matter what distribution is put on the space of binary
source sequences. In particular, the source sequence can be distributed according
to any stationary ergodic probability measure, in which case (up to verification of
the additional conditional mixing condition), competing with the Bayes optimal
predictor guarantees that the best achievable performance is attained. To wit, such
a predictor is universal.

Generally, in choosing the family {Mk}k∈N, Mk must be rich enough to
contain approximations to all kth order Bayes predictors of the form Ft(Y

t−1
1 ) =

�l(Pr{Xt = 0|Y t−1
t−k }) for all possible stationary ergodic distributions of the input

sequence. On the other hand, the classes in this family must be limited enough
to allow for the existence of a predictor with redundancy w.r.t. each class which
becomes asymptotically negligible. As will be illustrated in the first concrete
model to be considered in this section, in the case of finite alphabet observations
this is not a problem, and Mk can simply be taken as the set of all kth-order
Markov predictors, that is, the set of all time-invariant predictors which base
their predictions on no more than the last k noisy observations. In the case of
continuous-valued observations, however, the choice of Mk must be made more
carefully. In this case, as will be elaborated on below, the set of all kth-order
Markov predictors is much too rich and a set must be chosen which, though
containing approximations to all kth-order Bayes predictors (corresponding to all
possible distributions of the clean process X), is considerably more limited.

4.1. The binary symmetric channel. Consider the setting of Definition 1 for
the case where N = {Nt}t∈Z is a binary noise sequence distributed according to
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the probability measure Q, the clean binary sequence X is distributed according
to P , and the channel function g is given by Yt = g(Xt ,Nt ) = Xt ⊕ Nt , where
⊕ denotes XOR (addition modulo 2). This setting models the most general
situation of a symmetric binary-input binary-output channel, namely, the situation
where the channel can be arbitrarily varying and have arbitrary memory. Let
x = (x1, x2, . . .) ∈ {0,1}N be an individual binary sequence and y = (y1, y2, . . .) ∈
{0,1}N an individual binary observation sequence. We now define the conditional
kth-order Markov predictability of xn

1 given yn
1 by

λk(x
n
1 |yn

1 )
def= inf

F∈Mk

1

n
LF (yn

1 , xn
1 ),(35)

where Mk is the set of all kth-order Markov predictors. The asymptotic conditional
kth-order Markov predictability of the infinite sequence x given y is defined as

λk(x|y)
def= lim sup

n→∞
λk(x

n
1 |yn

1 ).(36)

Finally, we define the conditional Markov noisy predictability of x given y by

λ(x|y) = lim
k→∞λk(x|y),(37)

where the limit exists for all x,y ∈ {0,1}N as λk(x|y) is nonincreasing with k. To
eliminate future concerns, we note that for any two stochastic binary sequences
X and Y, λk(X

n
1 |Xn

1 ), and hence also λk(X|Y) and λ(X|Y), are well-defined
random variables. The only point that must be accounted for is the measurability of
λk(X

n
1 |Xn

1 ), which is defined as an infimum over the set Mk , which is clearly not
countable. This is not a real problem, however, as the loss functions are assumed
continuous. Therefore, Mk in the definition of λk(X

n
1 |Xn

1 ) can be replaced by (or
conceived as) the set of all kth-order Markov predictors with predictions assuming
only rational values, which is a countable set.

THEOREM 3. Let P(P,Q,g) be stationary, ergodic and satisfy (14). We then
have

λ(X|Y) ≤ U(l,P,Q,g), P(P,Q,g)-a.s.(38)

The assertion of Theorem 3 should not be surprising. Letting F
optK
t (Y t−1

1 ) =
�l(Pr(Xt = 1|Y t−1

t−k )) denote the “best” Bayesian kth-order Markov predictor,
clearly F optK ∈ Mk . Therefore, λ(X|Y) should be no larger than the asymptotic
average loss of any F optK for any k. However, when stationarity and ergodicity
prevail, the losses of the F optK converge, as k approaches infinity, to U(l,P,Q,g).
This rationale is made precise in the proof that follows.
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PROOF OF THEOREM 3. For each k we have almost surely

λk(X|Y) = lim sup
n→∞

inf
F∈Mk

LF (Y n
1 ,Xn

1 )(39)

≤ lim sup
n→∞

LF optk (Y
n
1 ,Xn

1 )(40)

= lim sup
n→∞

1

n

n∑
t=1

E
{
l
(
F

optk
t (Y t−1

1 ),Xt

)∣∣F t−1
Y

}
(41)

= lim sup
n→∞

1

n

n∑
t=1

[
l
(
�l

(
Pr(Xt = 1|Y t−1

t−k )
)
,0
)
Pr(Xt = 0|Y t−1

1 )

(42)
+ l
(
�l

(
Pr(Xt = 1|Y t−1

t−k )
)
,1
)
Pr(Xt = 1|Y t−1

1 )
]

= E
[
l
(
�l

(
Pr(X0 = 1|Y−1

−k )
)
,0
)
Pr(X0 = 0|Y−1−∞)

(43)
+ l
(
�l

(
Pr(X0 = 1|Y−1

−k )
)
,1
)
Pr(X0 = 1|Y−1−∞)

]
,

where (40) follows by the fact that, as established in the preceding discussion,
F optk ∈ Mk . Equation (41) follows from Lemma 1. Equation (43) follows
from the generalized ergodic theorem and the appropriate version of martingale
convergence (cf. [4], Theorem 5.21). Consequently,

λ(X|Y) = lim
k→∞λk(X|Y)

≤ lim sup
k→∞

E
[
l
(
�l

(
Pr(X0 = 1|Y−1

−k )
)
,0
)
Pr(X0 = 0|Y−1−∞)

(44)
+ l
(
�l

(
Pr(X0 = 1|Y−1

−k )
)
,1
)

Pr(X0 = 1|Y−1−∞)
]

≤ E

[
lim sup
k→∞

l
(
�l

(
Pr(X0 = 1|Y−1

−k )
)
,0
)

Pr(X0 = 0|Y−1−∞)

(45)

+ l
(
�l

(
Pr(X0 = 1|Y−1

−k )
)
,1
)

Pr(X0 = 1|Y−1−∞)

]

= EAl

(
Pr(X0 = 1|Y−1−∞)

)
(46)

= U(l,P ),(47)

where (45) follows from Fatou’s lemma, and (46) follows from combining
martingale convergence with the fact that for all 0 ≤ p ≤ 1,

lim
p′→p

[
l
(
�l(p

′),0
)
(1 − p) + l

(
�l(p

′),1
)
p
]= Al(p).(48)

To see why (48) holds [note that this is not completely trivial as �l(·) may
not be continuous, e.g., for the absolute loss function], denote for convenience
γ (p′,p) = l(�l(p

′),0)(1 − p) + l(�l(p
′),1)p. Clearly |γ (p′,p) − γ (p′,p′)| ≤
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2B|p′ − p|, but, by the definition of �l(·), γ (p′,p′) = Al(p
′), which, by the

assumed continuity of the loss function, approaches Al(p) as p′ → p. �

The following is an immediate consequence of Theorem 3. We state it explicitly
as a corollary for future reference.

COROLLARY 1. Let Q be stationary and ergodic and F be any predictor such
that

LF (Y,x) ≤ λ(x|Y), Q-a.s. ∀x ∈ {0,1}∞,(49)

then F is universal with respect to Q.

PROOF. Clearly, (49) implies that for any probability measure P on {{0,

1}∞,FX},
LF (Y,X) ≤ λ(X|Y), P(P,Q,g)-a.s.(50)

In particular, whenever P(P,Q,g) is stationary and ergodic and (14) is satisfied,
the right-hand side of (50) is upper bounded by U(l,P,Q,g). This, by definition,
implies that F is universal w.r.t. Q. �

Clearly, the existence of a predictor satisfying (49) implies, by Theorem 2,
that (38) holds with equality whenever P(P,Q,g) is conditionally mixing.
Corollary 1 justifies our approach to obtaining universal predictors for this case,
which is to seek universal predictors in the sense of (49) (namely efficient
prediction schemes from the individual sequence setting). Note that the treatment
above did not assume that the noise components were independent (i.e., that N is
an i.i.d. process). In the following sections, we consider universal predictors for
the case of a stationary and memoryless channel, that is, the case where N is an
i.i.d. Bernoulli(p) process. This model is traditionally referred to as the binary
symmetric channel (BSC). We let Qp denote the measure corresponding to the
case where the channel crossover probability is p.

4.1.1. The absolute loss function and twofold universality. Consider the
absolute loss function given by l(α, x) = |α − x|. Two predictors were presented
in [7] for this loss function and shown to be universal for the noiseless individual
sequence setting: the increasing order Markov predictor and the incremental
parsing predictor. The reader is referred to [7] for a full description of and
discussions on these predictors. In the next section, which will be dedicated to the
case of a general loss function, we will construct a predictor which is very similar
in spirit to the increasing order Markov predictor of [7]. We therefore, at this point,
abstain from describing this predictor. In [20], the following was established.
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THEOREM 4 (Theorem 7 of [20]). Let F be any universal predictor from the
noiseless case for the l1 loss function (e.g., one of the two mentioned above). Then
for every p ∈ [0,1/2),

LF (Y,x) ≤ λ(x|Y), Qp-a.s. ∀x ∈ {0,1}∞.(51)

Actually, to be more precise, the right-hand side of (51) in Theorem 7 of [20]
was π(x|Y) rather than λ(x|Y), where the former denotes the conditional finite-
state noisy predictability defined in [20] and is actually a lower bound for the latter
(as is immediate from their definitions).

As extensively discussed in [20], this result is quite surprising because it tells
us that not only is the Markov (respectively, finite state) predictability achievable
in the noisy individual sequence setting, but that it can in fact be achieved
by employing a universal predictor from the noiseless setting, no matter what
the parameter governing the channel may be. The following is an immediate
consequence of Corollary 1 and Theorem 4.

THEOREM 5. The increasing order Markov predictor and the incremental
parsing predictor are twofold universal with respect to {Qp}p∈[0,1/2).

In words, the bottom line of Theorem 5 is that by employing, for example,
the incremental parsing predictor of [7] on the noisy sequence, one is guaranteed
of almost surely achieving the Bayesian envelope, for all stationary, ergodic, and
conditionally mixing sources and for all possible BSCs (of crossover probability
less than 1/2).

4.1.2. General loss functions. This section is dedicated to the construction of
universal predictors for general loss functions using the methodology described at
the beginning of the section. As will be evident, these predictors are not twofold
universal, as they are constructed using loss estimators which depend on the
channel crossover probability p. The question of the existence of twofold universal
predictors for the BSC and a general loss function remains open.

Given a loss function l, we denote for convenience l0(·) =def l(0, ·) and
l1(·) =def l(1, ·). Suppose now that l0 and l1 are twice differentiable and define

S(z) = l′0(z)l′′1 (z) − l′1(z)l′′0 (z)

and

R(z) = l′0(z)l′1(z)2 − l′1(z)l′0(z)2

S(z)
,

where l′i and l′′i are the first and second derivatives of li , respectively, i = 0,1.
Now, define

cl = sup
0<z<1

R(z).
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If S(z) = 0 for some 0 < z < 1, we write cL = ∞. For a given p ∈ [0,1/2), we
define the following auxiliary loss function, l̃, in terms of the original one:

l̃0(z)
def= 1 − p

1 − 2p
l0(z) − p

1 − 2p
l1(z) + p

1 − 2p
l1(0)

and

l̃1(z)
def= −p

1 − 2p
l0(z) + 1 − p

1 − 2p
l1(z) + p

1 − 2p
l0(1)

so that

l̃(y, z) = (1 − y)l̃0(z) + yl̃1(z).(52)

Let now Sp(z), Rp(z) and cl(p) be as in equations (A.2)–(A.2) for the loss
function l̃, where if Sp(z) = 0 for some 0 < z < 1, we take cl(p) = ∞. We are
now ready to present the main result of this section.

THEOREM 6. Let l be a loss function such that:

(i) l0(0) = l1(1) = 0,
(ii) l0 and l1 are three times differentiable in (0,1),

(iii) l′0(z) > 0 and l′1(z) < 0 for 0 < z < 1.

Assume further that cl(p) < ∞ and that S(z) is positive for 0 < z < 1. Then for
any 0 ≤ p < 1/2, there exists a universal predictor with respect to Qp .

Two examples for families of loss functions easily verified to satisfy the
hypotheses of Theorem 6 (for all 0 ≤ p < 1/2) are (cf. [19]):

1. α-powered loss function: defined by l(z, x) = |x − z|α , for any 1 < α ≤ 2.
2. Hellinger loss function: defined by l(z, x) = 1

2((
√

1 − x − √
1 − z)2 + (

√
x −√

z )2). More generally, the loss function given by l(z,0) = 1 − (1 − z)α and
l(z,1) = 1 − zα , for 1/2 ≤ α < 1 (note that the Hellinger loss is the case
α = 1/2).

Let F be a given finite set of experts and consider the following prediction
algorithm due originally to Vovk ([18, 17]; cf. also [12]).

ALGORITHM 1 (Vovk [18]).

Initialization. Enumerate the experts arbitrarily as F = {F (i)}Ni=1 and set the
weights w1,i = 1, 1 ≤ i ≤ N .

Prediction. Let vt,i = wt,i/Wt , where Wt =∑N
i=1 wt,i . At the beginning of trial t ,

compute for x = 0 and x = 1 the value

	(x) = −cl ln
N∑

i=1

vt,i exp
{−l

(
x,F

(i)
t (xt−1)

)
/cl

}
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and predict with any value Pt that satisfies, for x = 0 and x = 1, the condition

l(x,Pt ) ≤ 	(x).(53)

If no value of Pt meets (53) then the algorithm is said to fail.
Update. After observing xt , let

wt+1,i = wt,i exp
{−l

(
x,F

(i)
t (xt−1)

)
/cL

}
.

The following was established in [19], by simply applying known results for
Algorithm 1 (cf., e.g., [12]) to the auxiliary loss function of (52).

THEOREM 7 [19]. Let l be a loss function satisfying the hypotheses of
Theorem 6. For any class of predictors {F (i) : 1 ≤ i ≤ N}, let P be the strongly
sequential predictor given in Algorithm 1, with l̃ replacing l, F

(i)
t (yt−1) replacing

F
(i)
t (xt−1) and cl(p) replacing cl . Then P is guaranteed never to fail and we have

for all n,

max
yn

1 ∈{0,1}n

{
L̂P (yn

1 ) − min
1≤i≤N

L̂F (i) (y
n
1 )

}
≤ cL(p) lnN,(54)

where, for any predictor F , L̂F (yn) is defined by

L̂F (yn
1 )

def=
n∑

t=1

(1 − yt) − p

1 − 2p
l0
(
Ft(y

t−1)
)+ yt − p

1 − 2p
l1
(
Ft(y

t−1)
)
.(55)

As was established in [19], Lemma 2, L̂F (Y n
1 ) is an efficient estimator for

LF (Y n
1 , xn

1 ) in the sense that, for any predictor F and all x ∈ {0,1}∞, we have

lim sup
n→∞

|LF (Y n
1 , xn

1 ) − L̂F (Y n
1 )|√

n log logn
≤ C(p), Qp-a.s.,(56)

where C(p) is a deterministic constant depending only on the noise parameter p.
Equipped with Theorem 7, we now proceed to construct a predictor which is

universal in the sense of satisfying (49) and therefore, by Corollary 1, is universal
w.r.t. Qp , that is, for a given channel crossover probability. Note first that in
the present setting, where the noisy observations are binary valued, the set Mk

of all kth-order Markov predictors can be quite naturally parameterized by the
set [0,1]2k

. To see the one-to-one correspondence between the elements of Mk

and those of [0,1]2k
, note that for any point θ ∈ [0,1]2k

, we can let P θ be the
kth-order Markov predictor satisfying P θ

t (yt−1) = θ(yt−1
t−k ), θ(yt−1

t−k ) denoting the
ith component of θ (0 ≤ i ≤ 2k − 1), where i =∑k

j=1 2j−1yt−j . For ε > 0 we let
Mε

k be the finite set of kth-order Markov predictors corresponding to the ε-grid in
[0,1]2k

, namely, the set of all 
1/ε�2k
points in [0,1]2k

with components that are
integer multiples of ε. We can now state the following theorem.
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THEOREM 8. Let the hypotheses of Theorem 6 hold. Let further P be
the predictor obtained by dividing the observed noisy data y = (y

N1
1 y

N1+N2
N1+1 · · ·

y
N1+···+Nk

N1+···+Nk−1+1 · · ·) into nonoverlapping blocks and applying the predictor of

Theorem 7 to each block where, for the kth block (of length Nk), the expert class
is Mεk

k . Taking Nk = 22k
and εk = 1/Nk, we have for all k and y ∈ {0,1}N,

L̂P (yn
1 ) − inf

F∈Mk

L̂F (yn
1 ) ≤ O

(√
n
)
.(57)

PROOF. Suppose first that n =∑k
j=1 Nj + t , where 1 ≤ t ≤ Nk+1. We then

have the following chain of inequalities ( justified below):

L̂P (yn
1 ) − inf

F∈Mk

L̂F (yn
1 )

≤ L̂P

(
y

N1+···+Nk−1
1

)− inf
F∈Mk

L̂F

(
y

N1+···+Nk−1
1

)
(58)

+ L̂P

(
y

N1+···+Nk

N1+···+Nk−1+1

)− inf
F∈Mk

L̂F

(
y

N1+···+Nk

N1+···+Nk−1+1

)
(59)

+ L̂P

(
y

N1+···+Nk+t
N1+···+Nk+1

)− inf
F∈Mk

L̂F

(
y

N1+···+Nk+t
N1+···+Nk+1

)
(60)

≤ c1

k−1∑
j=1

Nj(61)

+ cl(p)2k ln
1

εk

+ c2Nkεk(62)

+ cl(p)2k+1 ln
1

εk+1
+ c2tεk+1(63)

≤ c1Nk−1
(
1 + o(k)

)+ cl(p)2k lnNk + c2
(64)

+ cl(p)2k+1 lnNk+1 + c2

= c1
√

Nk

(
1 + o(k)

)
+ cl(p)

[
(lnNk)

2 + (ln Nk+1)
2]+ 2c2

= O
(√

Nk

)
≤ O

(√
n
)
.(65)

The term in (61) bounds that in (58) for some constant c1 as it clearly follows
from the boundedness of the loss function and the definition of L̂F (·) that, for
any F,y, a, l : |L̂F (ya+l

a+1)| ≤ c1l. To see that (62) bounds (59) and, similarly, that
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(63) bounds (60), we write

L̂P

(
y

N1+···+Nk

N1+···+Nk−1+1

)− inf
F∈Mk

L̂F

(
y

N1+···+Nk

N1+···+Nk−1+1

)
≤ L̂P

(
y

N1+···+Nk

N1+···+Nk−1+1

)− inf
F∈M

εk
k

L̂F

(
y

N1+···+Nk

N1+···+Nk−1+1

)+ c2Nkεk(66)

≤ cl(p) ln |Mεk

k | + c2Nkεk(67)

= cl(p) ln
1/εk�2k + c2Nkεk

≤ cl(p)2k ln
1

εk

+ c2Nkεk,(68)

where inequality (67) follows from Theorem 7. Inequality (66) follows from the
fact that for some constant c2 and all ε > 0 we have

inf
F∈Mε

k

L̂F

(
y

N1+···+Nk

N1+···+Nk−1+1

)≤ inf
F∈Mk

L̂F

(
y

N1+···+Nk

N1+···+Nk−1+1

)+ c2Nkε.(69)

This follows from the facts that for any predictor in Mk there exists one in Mε
k

which ε-approximates all its Nk predictions on the kth block and that L0(·) and
L1(·) are Lipschitz [as L′

0(·) and L′
1(·) are bounded]. To conclude, note that for

any n′ > n, there exists k′ ≥ k such that n′ =∑k′
j=1 Nj + t , where 1 ≤ t ≤ Nk′+1.

Since Mk ⊂ Mk′ , (65) gives us

L̂P

(
yn′

1
)− inf

F∈Mk

L̂F

(
yn′

1
)≤ L̂P

(
yn′

1
)− inf

F∈Mk′
L̂F

(
yn′

1
)

(70)

≤ O
(√

n′ ).(71) �

We can now prove Theorem 6 by establishing the universality of the predictor
of Theorem 8.

PROOF OF THEOREM 6. By Corollary 1 it will suffice to establish

LP (Y,x) ≤ λ(x|Y), Qp-a.s. ∀x ∈ {0,1}∞,(72)

where P is the predictor of Theorem 8. To this end, fix ε > 0, k ∈ N, x ∈ {0,1}N.
We have Qp-almost surely

LP (Y,x) − λk(x|Y)(73)

= lim sup
n→∞

1

n
LP (Y n

1 , xn
1 ) − lim sup

n→∞
λk(x

n
1 |Yn

1 )(74)

≤ lim sup
n→∞

[
1

n
LP (Y n

1 , xn
1 ) − λk(x

n
1 |Yn

1 )

]
(75)

= lim sup
n→∞

[
1

n
LP (Y n

1 , xn
1 ) − 1

n
L̂P (Y n

1 ) + 1

n
L̂P (Y n

1 )(76)
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− inf
F∈Mε

k

1

n
L̂F (Y n

1 ) + inf
F∈Mε

k

1

n
L̂F (Y n

1 )

(77)

− inf
F∈Mk

1

n
LF (Y n

1 , xn
1 )

]

≤ lim sup
n→∞

[
1

n
LP (Y n

1 , xn
1 ) − 1

n
L̂P (Y n

1 ) + 1

n
L̂P (Y n

1 )(78)

− inf
F∈Mk

1

n
L̂F (Y n

1 ) + min
F∈Mε

k

1

n
L̂F (Y n

1 )

(79)

− min
F∈Mε

k

1

n
LF (Y n

1 , xn
1 ) + cε

]

≤ lim sup
n→∞

[
1

n

∣∣LP (Y n
1 , xn

1 ) − L̂P (Y n
1 )
∣∣+ 1

n

(
L̂P (Y n

1 ) − inf
F∈Mk

L̂F (Y n
1 )

)
(80)

+ max
F∈Mε

k

1

n

∣∣L̂F (Y n
1 ) − LF (Y n

1 , xn
1 )
∣∣+ cε

]
(81)

≤ lim sup
n→∞

1

n

∣∣LP (Y n
1 , xn

1 ) − L̂P (Y n
1 )
∣∣(82)

+ lim sup
n→∞

1

n

(
L̂P (Y n

1 ) − inf
F∈Mk

L̂F (Y n
1 )

)
(83)

+ lim sup
n→∞

max
F∈Mε

k

1

n

∣∣L̂F (Y n
1 ) − LF (Y n

1 , xn
1 )
∣∣+ cε(84)

≤ 0 + 0 + 0 + cε,(85)

where (79) bounds (77) as it follows from the definition of Mε
k that infF∈Mε

k

1
n

×
L̂F (Y n

1 , xn
1 ) ≥ infF∈Mk

1
n
L̂F (Y n

1 , xn
1 ) and that infF∈Mk

1
n
LF (Y n

1 , xn
1 ) ≥ infF∈Mε

k

1
n
×

LF (Y n
1 , xn

1 ) − cε for some constant c which depends only on the loss function
(as the Lipschitz condition is satisfied by the loss function which has bounded
derivatives) and is independent of ε. The limit suprema in (82) and (84) are zero
from (56) (note that Mε

k is a finite set). The limit supremum in (83) is upper
bounded by zero by Theorem 8. The remaining transitions are self evident. So
we have established

LP (Y,x) ≤ λk(x|Y) + cε,(86)

which, by the arbitrariness of k, ε and x, implies (72). �

Note that given the strength of (54) and (56), it is easy to see that in the above
proof [cf., in particular, (85)] we have actually shown that for all δ > 0,

lim sup
n→∞

n( 1
n
LP (Y n

1 , xn
1 ) − λk(x|Y) − δ)√

log logn
≤ C(p), Qp-a.s. ∀x ∈ {0,1}∞,
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which implies

lim sup
n→∞

n( 1
n
LP (Y n

1 , xn
1 ) − λ(x|Y) − δ)√

log logn
≤ C(p), Qp-a.s. ∀x ∈ {0,1}∞

and consequently, by Theorem 3, for all 0 ≤ p < 1/2 and P such that P(P,Qp)

satisfies (14),

lim sup
n→∞

n( 1
n
LP (Y n

1 ,Xn
1 ) − U(l,P,Qp) − δ)√
log logn

≤ C(p), P(P,Qp)-a.s.

4.2. Continuous-valued observations. Throughout this section, we assume a
fixed loss function l : [0,1] × {0,1} → [0,∞]. The output alphabet is now the
real line. We assume a memoryless noisy channel with a fixed noise distribution
characterized by the density function f (·|·), which is really two density functions
(w.r.t. Lebesgue measure): f (yt |xt = 0) and f (yt |xt = 1). The only assumption
on the channel which we will need for the main result of this section is the trivially
mildest possible one, namely, that f (·|xt = 0) and f (·|xt = 1) or, more precisely,
the corresponding cumulative distribution functions, are not identical. Any channel
satisfying this requirement will henceforth be referred to as distinguishable. Note
that this setting complies with the model of Definition 1. To see this concretely, let,
for example, Q be the probability measure making the process N of Definition 1
an i.i.d. process with N1 uniformly distributed on [0,1]. Let the function g be
given by g(i,Nt ) = F−1

i (Nt ) for i ∈ {0,1}, where F−1
i : [0,1] → R, the (possibly

pseudo-) inverse of the distribution function Fi(·) = ∫ ·
−∞ f (y|xt = i) dy, is given

by F−1
i (β) =def inf{α :

∫ α
−∞ f (y|xt = i) dy ≥ β}. It is then easy to see that for

the above described choices of Q and g, P(P,Q,g) is the measure according
to which the joint process {(Xt , Yt )}t∈Z is distributed. Since in this setting, the
measure according to which {(Xt, Yt )}t∈Z is distributed is fully determined by
the X-marginal P and by the conditional density f (·|·), we henceforth slightly
alter the notation introduced in Definition 1 and let P(P,f ) replace P(P,Q,g)

and U(l,P,f ) replace U(l,P,Q,g), where, for a given chanel f , Q and g are
constructed as specified above. The terminology of Definition 2 will be altered
analogously, so that we will say that a predictor F is universal w.r.t. the channel f

rather than w.r.t. the coresponding Q and g.
To present our main result for this section, we first define, for any B > 0, the

following auxiliary “loss function” lB : [0,1] × [0,1] → [0,∞]:
lB(u, z) = {1 − [(2B + 1)u − B]} · l0(z)

(87) + [(2B + 1)u − B] · l1(z) + Bl1(0).

Further, let SB(z), RB(z) and cl(B) be defined as in equations (A.2), (A.2) and
(A.2), respectively, with lB0 and lB1 replacing l0 and l1 where lB0(·) = lB(0, ·)
and lB1(·) = lB(1, ·). We will also need the following notion of regularity.
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DEFINITION 3. Let X = {Xt }t∈Z be a stationary binary sequence and define

αX(k)
def= min

{v∈{0,1}k : Pr(Xk
1=v)>0}

Pr(Xk
1 = v).

The process X (or the probability measure governing it) will be said to be
exponentially regular if {αX(k)}k≥1 decays exponentially fast at the most, that is,

lim inf
k→∞

1

k
log α(k) > −∞.(88)

Note that Markov processes of all finite orders, processes which are mixing
in any reasonable sense and almost any stationary processes that one can think
of are exponentially regular. One may even be tempted to conjecture that all
stationary binary sequences are exponentially regular. To see that this is not the
case, let x(k) ∈ {0,1}Z be a periodic deterministic binary sequence of period k

obtained from the infinite concatenation of the block of length k consisting of
k − 1 1’s followed by a 0. Let now X(k) be the stationary sequence obtained by
randomly shifting x(k) anywhere between 1 and k steps (equiprobably, say, to the
right). Denote the measure corresponding to X(k) by Pk . For a given sequence of
nonnegative weights summing to unity, {wk}k≥1, we now let P =∑∞

k=1 wkPk . P is
clearly stationary and we have

αP(k)
def= min

{v∈{0,1}k : P(Xk
1=v)>0}

P(Xk
1 = v)

≤ P(Xk
1 = 1 1 · · ·1)(89)

≤
∞∑

j=k+1

wk.

Clearly, the weights {wk}k≥1 can be chosen such that the sum in (89) decays
superexponentially with k (e.g., take wk = C2−2k

where C is the normalizing
constant), thus yielding a stationary process which is not exponentially regular.
We merely remark here that, while the P constructed in this example is clearly
not ergodic, one can similarly (although the details are somewhat more involved)
construct a stationary and ergodic P for which αP(k) decays superexponentially
as well. This notion of regularity will play a role in the proof of the main result of
this section which we are now ready to present.

THEOREM 9. Let l be such that l0 and l1 are three times differentiable
in (0,1). Assume further that for all B > 0 cl(B) is finite and SB(z) is positive
for 0 < z < 1. Finally, assume that for all u,a, b ∈ [0,1], the function gB , defined
by gB(u, a, b) = (lB(u, a) − lB(u, b))/cl(B), satisfies

∂2gB(u, a, b)

∂u2
+
(

∂gB(u, a, b)

∂u

)2

≥ 0.(90)
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Then for any distinguishable channel f there exists a predictor P which is
universal w.r.t. f in the sense that

lim
n→∞

1

n
LP (Y n

1 ,Xn
1 ) = U(l,Per, f ), P(Per, f )-a.s.(91)

for all Per’s that are exponentially regular and such that P(Per, f ) satisfies (14).

Two examples of families of loss functions shown in [19] to comply with the
hypotheses of Theorem 9 are presented after Theorem 6.

The proof of Theorem 9, to which the remainder of this section is dedicated,
establishes the existence of a universal predictor for each f by means of an explicit
construction. The significance of the exponential regularity assumption will be
made clear and elaborated on in the sequel, as it will naturally arise at one of the
stages of the proof.

Let us define λr
k(x

n
1 |yn

1 ), λr
k(x|y) and λr(x|y) similarly to the definitions

for λk(x
n
1 |yn

1 ), λk(x|y) and λ(x|y) of (35)–(37), respectively, with the crucial
difference that now Mk, rather than denoting the set of all kth order Markov
experts, denotes the set of all kth order Markov experts of the form

Ft(Y
t−1
1 ) = �l

(∑
x

t−1
t−k

αx
t−1
t−k

βx
t−1
t−k

∏t−1
i=t−k f (Yi |xi)∑

xt−1
t−k

βxt−1
t−k

∏t−1
i=t−k f (Yi|xi)

)
,(92)

where αx
t−1
t−k

∈ [0,1] for all xt−1
t−k ∈ {0,1}k and {βx

t−1
t−k

}xt−1
t−k∈{0,1}k belongs to the

simplex βx
t−1
t−k

≥ 0 for all xt−1
t−k ∈ {0,1}k and

∑
xt−1
t−k ∈{0,1}k βx

t−1
t−k

= 1. Note, in
particular, the strong dependence of the sets Mk on the channel f . To motivate
this choice of Mk , note that the “best” Bayesian kth order predictor for this setting
would be

F
optk
t (Y t−1

1 ) = �l

(
Pr(Xt = 1|Y t−1

t−k )
)

(93)

= �l

(∑
xt−1
t−k

Pr(Xt = 1|xt−1
t−k )Pr(xt−1

t−k )
∏t−1

i=t−k f (Yi |xi)∑
xt−1
t−k

Pr(xt−1
t−k )

∏t−1
i=t−k f (Yi |xi)

)
,(94)

so that clearly F optk ∈ Mk.

THEOREM 10. Let P be stationary and ergodic and f be such that P(P,f )

satisfies (14). Then

λr(X|Y) ≤ U(l,P,f ), P(P,f )-a.s.(95)

Since, as will be established below, λr(X|Y) is achievable by a (universal)
predictor, the inequality in (95) actually holds with equality (by Theorem 2). The
proof of Theorem 10 is similar to that of Theorem 3 and is therefore omitted. Its
implication is that, similarly as was done in the previous section where the BSC
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was considered, universality can be attained by achieving λr(X|Y), which, in turn,
can be done if one finds a way for efficiently competing with the sets Mk for
all k’s.

The main reason why in this setting, where the observations take values in
a continuum, it is imperative to modify the definition of Mk from the set of
all kth order Markov predictors to the set of kth order Markov predictors of
the form (92) is the following. The richness of the set of all kth order Markov
predictors for this case renders the originally defined λk(x

n
1 |yn

1 ), λk(x|y) and
λk(x|y) meaningless for this case. In fact, when, for example, the conditional
distributions characterizing the channel f (·|·) are absolutely continuous with
respect to, say, Lebesgue measure (i.e., when the noisy observations are purely
continuous-valued random variables), the originally defined λk(X

n
1 |Yn

1 ), λk(X|Y)

and λk(X|Y) are almost surely all zero. To see this, note that in this case,
for any n, the probability that Yn

1 will have two identical components is zero.
Therefore, there almost surely exists a (continuous) function h : R → [0,1] such
that h(Yi) = Xi for all 1 ≤ i ≤ n. Consequently, this implies that the originally
defined λ1(X

n
1 |Yn

1 ) equals zero almost surely for all n which, in turn [by the
monotonicity of λk(X

n
1 |Yn

1 ) in k], implies the same for λk(X
n
1 |Yn

1 ), λk(X|Y) and
λ(X|Y). Hence, the ambition to compete with all Markov predictors of all orders
is clearly excessively optimistic (in fact, successful competition is impossible as it
would contradict Theorem 2). The considerably more modest ambition to compete
with the modified classes Mk, however, as we plan to show next, is indeed realistic,
and will suffice for universality by Theorem 10.

As discussed in [19], the hypotheses of Theorem 11 are satisfied by most loss
functions of interest, with the exception of the absolute loss function. It will be
clear from the proof that follows, however, that for the absolute loss function,
a universal predictor can be similarly constructed by replacing the basic predictors
used as building blocks for the universal predictor of Theorem 9 with standard
exponential weighting predictors (cf., e.g., [19]).

To set the scene for the proof of Theorem 9, we define, analogously to the
cumulative loss estimator introduced in Section 4.1, for any predictor F ,

L̂F (yn
1 )

def=
n∑

t=1

(1 − yt )l0
(
Ft(y

t−1
1 )

)+ yt l1
(
Ft(y

t−1
1 )

)
.(96)

As will be argued in the proof below, L̂F (Y n
1 ), under certain assumptions, is an

efficient estimator for LF (Y n
1 , xn

1 ) (in a sense to be made precise). The predictors
which will be used as building blocks in the construction of our universal predictor
are those that were proven effective in [19] for the individual sequence setting.
For convenience, prior to the proof of Theorem 9, we recall the relevant results
from [19]. For a fixed B > 0, consider the predictor given in the following
algorithm (which is guaranteed never to fail as long as yt ∈ [−B,B + 1] for all
1 ≤ t ≤ n), for the case where F is an arbitrary finite class of predictors.
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ALGORITHM 2.

Initialization. Enumerate the N predictors in F and set their weights w1,i = 1,
1 ≤ i ≤ N .

Prediction. Let vt,i = wt,i/Wt , where Wt =∑N
i=1 wt,i . At the beginning of trial t ,

compute for u = 0 and u = 1 the value

	B(u) = −cl(B) ln
N∑

i=1

vt,i exp
{−lB

(
u,F

(i)
t (yt−1)

)
/cl(B)

}

and predict with any value Pt that satisfies for u = 0 and u = 1 the condition

lB(u,Pt) ≤ 	B(u).

If no such Pt exists, the algorithm is said to fail.
Update. After observing the t th outcome yt , let

wt+1,i = wt,i exp
{
−lB

(
yt + B

2B + 1
,F

(i)
t (yt−1)

)/
cl(B)

}
.

THEOREM 11 ([19], Theorem 28). Let l : {0,1} × [0,1] → [0,∞] be a loss
function such that l1(0) = l0(1) < ∞, l0 and l1 are three times differentiable
in (0,1), and l′0(z) > 0, l′1(z) < 0 for 0 < z < 1. Assume that cl(B) is finite and
SB(z) is positive for 0 < z < 1. Assume further that for all u,a, b ∈ [0,1], the
function gB , defined by gB(u, a, b) = (lB(u, a) − lB(u, b))/cl(B), satisfies

∂2gB(u, a, b)

∂u2 +
(

∂gB(u, a, b)

∂u

)2

≥ 0.(97)

Then the predictor P of Algorithm 2 is guaranteed never to fail for all n and
yn

1 ∈ [−B,B]n and we have

∀n ≥ 1 : max
yn∈[−B,B]n

{
L̂P (yn) − min

F∈F
L̂F (yn)

}
≤ cl(B) ln |F |.(98)

To construct our predictor, we redefine now Mε
k , to be the notion of an ε-grid

of Mk suitable for the setting of the present section. Namely, we let Mε
k be the

subset of Mk such that any F ∈ Mε
k , which clearly has the form

Ft(Y
t−1
1 ) = �l

(∑
xt−1
t−k

αxt−1
t−k

βxt−1
t−k

∏t−1
i=t−k f (Yi |xi)∑

xt−1
t−k

βx
t−1
t−k

∏t−1
i=t−k f (Yi|xi)

)
,(99)

is such that αx
t−1
t−k

and βx
t−1
t−k

are integer multiples of ε for all xt−1
t−k ∈ {0,1}k. We

clearly have |Mε
k| < 1/ε�2k+1

. The set Mε
k is shown in the Appendix to be an

ε-cover of Mk in the following sense.
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LEMMA 3. For any predictor F ∈ Mk of the form Ft(y
t−1
1 ) = �l(e(y

t−1
t−k )),

where

e(yt−1
t−k ) =

∑
xt−1
t−k

αxt−1
t−k

βxt−1
t−k

∏t−1
i=t−k f (Yi |xi)∑

xt−1
t−k

βx
t−1
t−k

∏t−1
i=t−k f (Yi |xi)

,(100)

there exists a predictor G ∈ Mε
k of the form Gt(y

t−1
1 ) = �l(g(yt−1

t−k )) such that

∣∣e(yt−1
t−k ) − g(yt−1

t−k )
∣∣≤ ε

(
2

β − ε
+ 1

)
,(101)

for all ε < β , where β = min{βxt−1
t−k

:βxt−1
t−k

> 0}.

Observe, in particular, that Lemma 3 and the boundedness of l′0 and l′1 (which,
in turn, implies that l0 and l1 are Lipschitz) assure us of the fact that for any k,
ε < βk =def min{v∈{0,1}k : Pr(Xk

1=v)>0} Pr(Xk
1 = v), and binary-valued process X we

have

min
F∈Mε

k

L̂F (yt
1) ≤ L̂F optk (y

t
1) + Ctε

(
2

βk − ε
+ 1

)
,(102)

where F optk is as defined in (93) for the process X, and the constant C (which
depends on the loss function) is independent of ε, t , k and the process X. Equipped
with Theorem 11 and Lemma 3, we now procede to construct a predictor in a
manner similar to that by which the predictor in Theorem 8 was constructed for
the case of the BSC.

THEOREM 12. Let the hypotheses of Theorem 9 hold. Let further P be the

predictor obtained by dividing the data y = (y
N1
1 y

N1+N2
N1+1 · · ·yN1+···+Nk

N1+···+Nk−1+1 · · ·)
into nonoverlapping blocks and applying the predictor of Theorem 11 to each
block where, for the kth block (of length Nk), the expert class is Mεk

k . Taking
Nk = 22k

and εk = 1/Nk, we have for all sufficiently large k, y ∈ [−B,B]∞ and
exponentially regular stationary binary process X,

L̂P (yn
1 ) − L̂F optk (y

n
1 ) ≤ O

(√
n
)
,(103)

where the predictors {F optk }k≥0 are as defined in (93) for the process X.

To see why exponential regularity is needed, note that by taking for the kth
block εk which decays super exponentially (as in the above theorem) guarantees
the validity of inequality (102) (with ε = εk) for all sufficiently large k. This fact
will be exploited in the proof that follows.
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PROOF OF THEOREM 12. Suppose first that n =∑k
j=1 Nj + t , where 1 ≤ t ≤

Nk+1. We then have for sufficiently large k,

L̂P (yn
1 ) − L̂F optk (y

n
1 )

(104)
= L̂P

(
y

N1+···+Nk−1
1

)− L̂F optk

(
y

N1+···+Nk−1
1

)
+ L̂P

(
y

N1+···+Nk

N1+···+Nk−1+1

)− L̂F optk

(
y

N1+···+Nk

N1+···+Nk−1+1

)
(105)

+ L̂P

(
y

N1+···+Nk+t
N1+···+Nk+1

)− L̂F optk

(
y

N1+···+Nk+t
N1+···+Nk+1

)
(106)

≤ c1

k−1∑
j=1

Nj(107)

+ cl(B)2k+1 ln Nk + 2C/βk(108)

+ cl(B)2k+2 ln Nk+1 + 2C/βk+1(109)

≤ c1Nk−1
(
1 + o(k)

)+ cl(B)2k+1 ln Nk + 2C/βk
(110)

+ cl(B)2k+2 ln Nk+1 + 2C/βk+1

= c1
√

Nk

(
1 + o(k)

)+ 2cl(B)
[
(lnNk)

2 + (ln Nk+1)
2]

+ 4C/βk+1

= O
(√

Nk

)
(111)

≤ O
(√

n
)
,(112)

where βk =def min{v∈{0,1}k : Pr(Xk
1=v)>0} Pr(Xk

1 = v). The term in (107) bounds
that in (104) for some constant c1 as it clearly follows from the boundedness
of the loss function and the definition of L̂F (·) that, for any F , y ∈ [−B,B],
a, l : |L̂F (ya+l

a+1)| ≤ c1l. To see that (108) bounds (105) and, similarly, that
(109) bounds (106), we write

L̂P

(
y

N1+···+Nk

N1+···+Nk−1+1

)− L̂F optk

(
y

N1+···+Nk

N1+···+Nk−1+1

)
(113)

≤ L̂P

(
y

N1+···+Nk

N1+···+Nk−1+1

)− inf
F∈M

εk
k

L̂F

(
y

N1+···+Nk

N1+···+Nk−1+1

)
(114)

+ CNkεk

1

βk − εk

≤ cl(B) ln |Mεk

k | + C
1

βk − εk

(115)

≤ cl(B) ln1/εk�2k+1 + C
1

βk − εk

(116)

≤ cl(B)2k+1 ln Nk + 2C
1

βk

,(117)
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where inequality (115) follows from Theorem 11. Inequality (114) follows
from Lemma 3 [the constant C is that appearing in inequality (102)]. Finally,
equality (111) follows since, by definition, Nk grows superexponentially with k

while our exponential regularity assumption on the process X assures us that 1/βk

grows, at most, exponentially rapidly. To conclude, the only thing left to verify is
that for any n′ > n of the form n′ =∑k′

j=1 Nj + t , where k′ > k and 1 ≤ t ≤ Nk′+1,
we still have

L̂P

(
yn′

1
)− L̂F optk

(
yn′

1
)≤ O

(√
n′ ).(118)

This fact is established easily as at the end of the proof of Theorem 8.

PROOF OF THEOREM 9. Suppose first that for some B > 0 we have∫ B

−B
f (yt |xt ) dyt = 1(119)

and that Yt is an unbiased estimator for xt , that is,∫ B

−B
ytf (yt |xt ) dyt = xt .(120)

For this case it was established in [19], Lemma 2, that L̂F (Y n
1 ) is an efficient

estimator for LF (Y n
1 , xn

1 ) in the sense that, for any predictor F and all x ∈ {0,1}∞
we have

lim sup
n→∞

|LF (Y n
1 , xn

1 ) − L̂F (Y n
1 )|√

n log log n
≤ C(B), Qf -a.s.,(121)

where C(B) is a deterministic constant depending only on B and we let Qf denote
the probability measure corresponding to the case where the channel is given by
f (·|·). In particular, this gives

lim
n→∞

1

n

∣∣LF (Y n
1 , xn

1 ) − L̂F (Y n
1 )
∣∣= 0, Qf -a.s.(122)

Consequently, by combining Theorem 12 with (122), we have for all k and
x ∈ {0,1}N,

LP (Y,x) ≤ LF optk (Y,x), Qf -a.s.,(123)

where P is the predictor of Theorem 12. This implies that if X is any stationary
and ergodic sequence then almost surely

LP (Y,X) ≤ LF optk (Y,X)(124)

= λr
k(X|Y),(125)

where the equality follows from the obvious fact that F optk ∈ Mk almost surely
has the best asymptotic performance among all members of Mk. Since k in (125)
is arbitrary, we have almost surely

LP (Y,X) ≤ λr(X|Y).(126)
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Applying Theorem 10 completes the proof for the case where the channel satisfies
(119) and (120). To establish the proof for the general case, we now argue that any
other situation can be reduced to a channel which satisfies (119) and (120). To see
this, note that for any process {(Xt , Yt )} with Bayesian envelope U(l,P), and for
any measurable injection h, the process {(Xt ,Zt )} where Zt = h(Yt ) has the same
Bayesian envelope (as Yt and Zt clearly carry the same information). Therefore,
even when the channel does not satisfy (119) and (120), the existence of some
h(·) for which Zt = h(Yt) and f (zt |xt) does satisfy these equations will suffice as,
clearly, a universal predictor can be tailored for the joint process {(Xt ,Zt )}, and
this predictor can be employed when the process is {(Xt , Yt )} by simply feeding
the predictor with h(Yt). Clearly, as {(Xt , Yt )} and {(Xt ,Zt )} have the same
Bayesian envelope, such a predictor would be universal for {(Xt , Yt )}. Obtaining
such a function, namely an h(·) under which f (zt |xt) satisfies (119) and (120), is
a straightforward task. To see this concretely, let, for example, h̃ : R → (−1,1) be
the (increasing and continuous) bijection given by

h̃(t) = 2 sign(t)

[
1

1 + e−t2 − 1/2
]
.

Let further a(xt) =def
∫∞
−∞ h̃(yt )f (yt |xt ) dyt denote the expected value of h̃(Yt )

conditioned on Xt = xt . It is straightforward to check that, when a(0) �= a(1),
letting Zt = h(Yt), where h(·) = 1

a(1)−a(0)
h̃(·) − a(0)

a(1)−a(0)
, gives f (zt |xt ) which

satisfies (119) and (120) (with B = 1+|a(0)|
|a(1)−a(0)| ). Clearly, in the (a-typical) case

where a(0) = a(1), the above suggested h̃(·) can be replaced by any other injection
(with a bounded range) under which a(0) �= a(1) (such an injection will always
exist whenever the channel is distinguishable). �

We remark that, though the components of the noise process considered in this
section were assumed independent (i.e., a memoryless channel), Theorem 9 can
actually be shown to hold for much more general noise processes (cf. discussion
in [19] regarding the generality of the noise process). Also, the assumption that the
noise components have a density which is absolutely continuous w.r.t. Lebesgue
measure can be significantly relaxed.

4.3. Remark. In this section, we defined the Markov noisy predictability
λ(x|y) for the case of binary observations and λr(x|y) for the case of continuous-
valued observations. Our construction actually gave rise to a predictor which was
universal in the “individual sequence” noisy setting, that is, for which

LF (Y,x) ≤ λ(x|Y), Q-a.s. ∀x ∈ {0,1}∞,(127)

where Q is the product measure governing the noise components and in the
continuous case the right-hand side is replaced by λr(x|Y). Note that (127)
implies that LF (Y,X) ≤ λ(X|Y) [resp., LF (Y,X) ≤ λr(X|Y)], P(P,Q,g)-a.s.
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for any P . In particular, when P(P,Q,g) satisfies (14), then we have shown in the
previous sections that λ(X|Y) ≤ U(l,P,Q,g) [resp., λr(X|Y) ≤ U(l,P,Q,g)],
P(P,Q,g)-a.s. and hence the predictor satisfying (127) is universal in the sense of
Definition 2. Thus, an alternative definition of universality may be directly through
λ(X|Y) [resp., λr(X|Y)] rather than through U(l,P,Q,g), and the predictors
constructed here would be universal under such a definition as well.

APPENDIX

PROOF OF LEMMA 3. Recall that β = min{βx
t−1
t−k

:βx
t−1
t−k

> 0} and fix ε < β .
Throughout this proof we let, for any a ∈ [0,1], [a] denote the integer multiple
of ε which is closest to a. Denoting, for convenience, γxt−1

t−k
= ∏t−1

i=t−k f (Yi |xi),
and I = {0,1}k, it will clearly be more than enough to establish, for all {αi}i∈I ∈
[0,1]I , {βi}i∈I in the simplex (βi ≥ 0,

∑
i∈I βi = 1), and {γi}i∈I ∈ [0,∞)I , that∣∣∣∣∣

∑
i∈I αiβiγi∑
i∈I βiγi

−
∑

i∈I [αi][βi]γi∑
i∈I [βi]γi

∣∣∣∣∣≤ ε

(
2

β − ε
+ 1

)
.(A.1)

To this end, note first that, since we can write∑
i∈I αiβiγi∑
i∈I βiγi

=
∑

i∈I αiβi(γi/maxi′∈I γi′)∑
i∈I βi(γi/maxi′∈I γi′)

,(A.2)

there is no loss of generality in henceforth assuming that {γi}i∈I ∈ [0,1]I . Now∣∣∣∣∣
∑

i∈I αiβiγi∑
i∈I βiγi

−
∑

i∈I [αi ]βiγi∑
i∈I βiγi

∣∣∣∣∣≤
∑

i∈I |αi − [αi]|βiγi∑
i∈I βiγi

(A.3)

≤ ε.(A.4)

In addition, letting εi = [βi] − βi (so that |εi | ≤ ε), we have∣∣∣∣∣
∑

i∈I αiβiγi∑
i∈I βiγi

−
∑

i∈I αi[βi]γi∑
i∈I [βi]γi

∣∣∣∣∣
=
∣∣∣∣∣
∑

i∈I αiβiγi∑
i∈I βiγi

−
∑

i∈I αiβiγi +∑
i∈I εiαiγi∑

i∈I βiγi +∑
i∈I εiγi

∣∣∣∣∣
=
∣∣∣∣∣
∑

i∈I αiβiγi∑
i∈I βiγi

[
1 −

(
1 +

∑
i∈I εiγi∑
i∈I βiγi

)−1
]

−
∑

i∈I εiαiγi∑
i∈I (βi + εi)γi

∣∣∣∣∣
≤
∣∣∣∣∣1 −

(
1 +

∑
i∈I εiγi∑
i∈I βiγi

)−1
∣∣∣∣∣+

∣∣∣∣∣
∑

i∈I εiαiγi∑
i∈I (βi + εi)γi

∣∣∣∣∣
≤
∑

i∈I (|εi |/βi)βiγi∑
i∈I βiγi

+ ε
∑

i∈I γi

β
∑

i∈I (1 − ε/β)γi

(A.5)
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≤ ε
(
1/β + 1/(β − ε)

)
≤ ε

2

β − ε
.(A.6)

By the arbitrariness of {αi}, (A.6) implies also∣∣∣∣∣
∑

i∈I [αi]βiγi∑
i∈I βiγi

−
∑

i∈I [αi ][βi]γi∑
i∈I [βi]γi

∣∣∣∣∣≤ ε
2

β − ε
.(A.7)

Finally, (A.3) and (A.7), combined with the triangle inequality, give (A.1). �

Example of a stationary process {(Xt , Yt )} which does not comply with the
model of Definition 1: Let P be the probability measure under which {(Xt , Yt )}t∈Z

is distributed as follows:

· · · X−2 X−1 X0 X1 X2
Y−2 Y−1 Y0 Y1 Y2

· · · =




· · · 0 0 0 0 0
1 1 1 1 1

· · · , w.p. 1
4 ,

· · · 1 0 1 0 1
1 0 1 0 1

· · · , w.p. 1
4 ,

· · · 0 1 0 1 0
0 1 0 1 0

· · · , w.p. 1
4 ,

· · · 1 1 1 1 1
0 0 0 0 0

· · · , w.p. 1
4 .

(A.8)

Clearly, P is stationary. In addition, we observe that

P(Y1 = 1|X1 = 1) = 1/2

< 1(A.9)

= P(Y1 = 1, Y2 = 0|X1 = 1,X2 = 0).

Assume, by contradiction, that there exists a tuple (P,Q,g) such that P =
P(P,Q,g). This would imply

P(Y1 = 1, Y2 = 0|X1 = 1,X2 = 0)

= P
(
g(X1,N1) = 1, g(X2,N2) = 0|X1 = 1,X2 = 0

)
= P

(
g(1,N1) = 1, g(0,N2) = 0|X1 = 1,X2 = 0

)
= P

(
g(1,N1) = 1, g(0,N2) = 0

)
(A.10)

≤ P
(
g(1,N1) = 1

)
(A.11)

= P
(
g(X1 = 1,N1) = 1|X1 = 1

)
(A.12)

= P(Y1 = 1|X1 = 1),(A.13)
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where (A.10) and (A.12) follow from the independence of X and N under
P(P,Q,g). Clearly, the inequality established between the two ends of the above
chain contradicts (A.9).
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